Besi: Perbedaan antara revisi
k nilai ekonomis |
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
(199 revisi perantara oleh 91 pengguna tidak ditampilkan) | |||
Baris 1: | Baris 1: | ||
{{kotak info besi}} |
|||
{{Elementbox_header | number=26 | symbol=Fe | name=besi | left=[[mangan]] | right=[[kobalt]] | above=- | below=[[rutenium|Ru]] | color1=#ffc0c0 | color2=black }} |
|||
{{Elementbox_series | [[logam transisi]] }} |
|||
{{Elementbox_groupperiodblock | group=8 | period=4 | block=d }} |
|||
{{Elementbox_appearance_img | Fe,26| metalik mengkilap<br />keabu-abuan }} |
|||
{{Elementbox_atomicmass_gpm | [[1 E-26 kg|55,845(2)]] }} |
|||
{{Elementbox_econfig | [[[argon|Ar]]] 3d<sup>6</sup> 4s<sup>2</sup> }} |
|||
{{Elementbox_epershell | 2, 8, 14, 2 }} |
|||
{{Elementbox_section_physicalprop | color1=#ffc0c0 | color2=black }} |
|||
{{Elementbox_phase | [[padat]] }} |
|||
{{Elementbox_density_gpcm3nrt | 7,86 }} |
|||
{{Elementbox_densityliq_gpcm3mp | 6,98 }} |
|||
{{Elementbox_meltingpoint | k=1811 | c=1538 | f=2800 }} |
|||
{{Elementbox_boilingpoint | k=3134 | c=2861 | f=5182 }} |
|||
{{Elementbox_heatfusion_kjpmol | 13,81 }} |
|||
{{Elementbox_heatvaporiz_kjpmol | 340 }} |
|||
{{Elementbox_heatcapacity_jpmolkat25 | 25,10 }} |
|||
{{Elementbox_vaporpressure_katpa | 1728 | 1890 | 2091 | 2346 | 2679 | 3132 | comment= }} |
|||
{{Elementbox_section_atomicprop | color1=#ffc0c0 | color2=black }} |
|||
{{Elementbox_crystalstruct | kubus pusat badan }} |
|||
{{Elementbox_oxistates | 2, '''3''', 4, 6<br />(oksida [[amfoter]]) }} |
|||
{{Elementbox_electroneg_pauling | 1,83 }} |
|||
{{Elementbox_ionizationenergies3 | 762,5 | 1561,9 | 2957 }} |
|||
{{Elementbox_atomicradius_pm | [[1 E-10 m|140]] }} |
|||
{{Elementbox_atomicradiuscalc_pm | [[1 E-10 m|156]] }} |
|||
{{Elementbox_covalentradius_pm | [[1 E-10 m|125]] }} |
|||
{{Elementbox_section_miscellaneous | color1=#ffc0c0 | color2=black }} |
|||
{{Elementbox_magnetic | [[feromagnetisme|feromagnetik]] }} |
|||
{{Elementbox_eresist_ohmmat20 | 96,1 n}} |
|||
{{Elementbox_thermalcond_wpmkat300k | 80,4 }} |
|||
{{Elementbox_thermalexpansion_umpmkat25 | 11,8 }} |
|||
{{Elementbox_speedofsound_rodmpsatrt | (elektrolitik)<br />5120 }} |
|||
{{Elementbox_youngsmodulus_gpa | 211 }} |
|||
{{Elementbox_shearmodulus_gpa | 82 }} |
|||
{{Elementbox_bulkmodulus_gpa | 170 }} |
|||
{{Elementbox_poissonratio | 0,29 }} |
|||
{{Elementbox_mohshardness | 4,0 }} |
|||
{{Elementbox_vickershardness_mpa | 608 }} |
|||
{{Elementbox_brinellhardness_mpa | 490 }} |
|||
{{Elementbox_isotopes_begin | isotopesof=iron | color1=#ffc0c0 | color2=black }} |
|||
{{Elementbox_isotopes_decay | mn=54 | sym=Fe | na=5,8% | hl=>3,1E22 tahun | dm=penangkapan 2ε |de=? | pn=54 | ps=[[kromium|Cr]] }} |
|||
{{Elementbox_isotopes_decay | mn=55 | sym=Fe | na=[[synthetic radioisotope|syn]] | hl=2,73 tahun | dm=penangkapan ε | de=0,231 | pn=55 | ps=[[mangan|Mn]] }} |
|||
{{Elementbox_isotopes_stable | mn=56 | sym=Fe | na=91,72% | n=30 }} |
|||
{{Elementbox_isotopes_stable | mn=57 | sym=Fe | na=2,2% | n=31 }} |
|||
{{Elementbox_isotopes_stable | mn=58 | sym=Fe | na=0,28% | n=32 }} |
|||
{{Elementbox_isotopes_decay | mn=59 | sym=Fe | na=[[synthetic radioisotope|syn]] | hl=44,503 hari | dm=[[Beta decay|β]] | de=1,565 | pn=59 | ps=[[kobalt|Co]] }} |
|||
{{Elementbox_isotopes_decay | mn=60 | sym=Fe | na=[[synthetic radioisotope|syn]] | hl=1,5E6 tahun | dm=[[Beta decay|β]]<sup>-</sup> | de=3,978 | pn=60 | ps=[[kobalt|Co]] }} |
|||
{{Elementbox_isotopes_end}} |
|||
{{Elementbox_footer | color1=#ffc0c0 | color2=black }} |
|||
'''Besi''' adalah [[unsur kimia]] dengan simbol '''Fe''' (dari {{lang-la|ferrum}}) dan [[nomor atom]] 26. Besi merupakan [[logam]] dalam [[deret transisi pertama]].<ref>{{Cite web |url=http://www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1May13.pdf |title=Salinan arsip |access-date=2016-01-11 |archive-date=2015-08-22 |archive-url=https://web.archive.org/web/20150822234830/http://www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1May13.pdf |dead-url=yes }}</ref> Besi adalah unsur paling umum di [[bumi]] berdasarkan massa, membentuk sebagian besar bagian [[inti luar bumi|inti luar]] dan [[inti dalam bumi|dalam]] bumi. Besi adalah [[Kelimpahan unsur dalam kerak bumi|unsur keempat terbesar pada kerak bumi]]. Kelimpahannya dalam [[planet berbatu]] seperti bumi karena melimpahnya produksi akibat [[Fusi nuklir|reaksi fusi]] dalam [[bintang]] bermassa besar, di mana produksi [[nikel-56]] (yang meluruh menjadi isotop besi paling umum) adalah [[reaksi fusi nuklir]] terakhir yang bersifat [[eksotermal]]. Akibatnya, [[nikel]] [[Radioaktivitas|radioaktif]] adalah unsur terakhir yang diproduksi sebelum keruntuhan hebat [[Supernova tipe II|supernova]]. Keruntuhan tersebut menghamburkan [[Prekursor (kimia)|prekursor]] [[radionuklida]] besi ke angkasa raya. |
|||
[[Besi]] adalah [[logam]] yang berasal dari bijih besi (tambang) yang banyak digunakan untuk kehidupan manusia sehari-hari dari yang bermanfaat sampai dengan yang merusakkan. Dalam [[tabel periodik]], besi mempunyai simbol '''Fe''' dan [[nomor atom]] 26.Besi juga mempunyai nilai ekonomis yang tinggi. |
|||
Seperti [[unsur golongan 8]] lainnya, besi berada pada rentang [[Bilangan oksidasi|tingkat oksidasi]] yang lebar, −2 hingga +6, meskipun +2 dan +3 adalah yang paling banyak. Unsur besi terdapat dalam [[meteorit]] dan lingkungan rendah [[oksigen]] lainnya, tetapi reaktif dengan oksigen dan [[air]]. Permukaan besi segar tampak berkilau abu-abu keperakan, tetapi [[Oksidasi|teroksidasi]] dalam udara normal menghasilkan [[besi oksida]] [[hidrat]], yang dikenal sebagai [[karat]]. Tidak seperti logam lain yang membentuk lapisan oksida [[Pasivasi (kimia)|pasivasi]], oksida besi menempati lebih banyak tempat daripada logamnya sendiri dan kemudian mengelupas, mengekspos permukaan segar untuk korosi. |
|||
Logam besi telah digunakan sejak [[Zaman Besi|zaman purba]], meskipun [[Logam paduan|paduan]] [[tembaga]], yang memiliki titik lebur lebih rendah, yang digunakan lebih awal dalam sejarah manusia. Besi murni relatif lembut, tetapi tidak bisa didapat melalui [[Peleburan (metalurgi)|peleburan]]. Materi ini mengeras dan diperkuat secara signifikan oleh kotoran, [[karbon]] khususnya, dari proses peleburan. Dengan proporsi karbon tertentu (antara 0,002% dan 2,1%) menghasilkan [[baja]], yang lebih keras dari besi murni, mungkin sampai 1000 kali. Logam besi mentah diproduksi di [[tanur tinggi]], di mana bijih direduksi dengan [[batu bara]] menjadi ''[[pig iron]]'', yang memiliki kandungan karbon tinggi. Pengolahan lebih lanjut dengan oksigen mengurangi kandungan karbon sehingga mencapai proporsi yang tepat untuk pembuatan baja. Baja dan [[Logam paduan|paduan]] besi berkadar karbon rendah bersama dengan logam lain ([[baja paduan]]) sejauh ini merupakan logam yang paling umum digunakan oleh industri, karena lebarnya rentang sifat-sifat yang didapat dan kelimpahan batuan yang mengandung besi. |
|||
{{clr}} |
|||
Senyawa kimia besi memiliki banyak manfaat. Besi oksida dicampur dengan serbuk aluminium dapat dipantik untuk membuat [[reaksi termit]], yang digunakan dalam pengelasan dan pemurnian bijih. Besi membentuk senyawa biner dengan [[halogen]] dan [[kalsogen]]. Senyawa organologamnya antara lain [[ferosen]], [[senyawa sandwich]] pertama yang ditemukan. |
|||
{{Compact periodic table}} |
|||
{{kimia-stub}} |
|||
Besi memainkan peranan penting dalam biologi, membentuk kompleks dengan oksigen molekuler dalam [[hemoglobin]] dan [[myoglobin]]; kedua senyawa ini adalah protein [[Transport oksigen|pengangkut oksigen]] dalam vertebrata. Besi juga logam pada bagian aktif sebagian besar [[enzim]] [[redoks]] yang berperan dalam [[respirasi seluler]] serta [[oksidasi dan reduksi]] dalam tumbuhan dan hewan. |
|||
== Karakteristik == |
|||
{{Link FA|eo}} |
|||
=== Sifat-sifat mekanis === |
|||
{{Link FA|af}} |
|||
{|class="wikitable" style="float:left; clear:left; margin-right:1em; margin-top:0;" |
|||
|+ Nilai karakteristik [[Kekuatan tarik|daya tarik]] (TS) dan [[kekerasan Brinell]] (BH) berbagai bentuk besi.<ref name=pure>{{Cite book|url=https://books.google.com/?id=-Ll6qjWB-RUC&pg=PA164|pages=164–167|title=Handbook of materials and techniques for vacuum devices|last=Kohl|first= Walter H.|publisher=Springer|date=1995|isbn=1-56396-387-6}}</ref><ref name=corr>{{Cite book|url=http://www.gorni.eng.br/e/Gorni_SFHTHandbook.pdf|title=ASM Handbook – Mechanical Testing and Evaluation|publisher= ASM International|volume= 8|date= 2000|page= 275|isbn=0-87170-389-0|editor=Kuhn, Howard and Medlin, Dana (prepared under the direction of the ASM International Handbook Committee)}}</ref> |
|||
!Material |
|||
!TS <br />(MPa) |
|||
!BH <br />([[Brinell scale|Brinell]]) |
|||
|- |
|||
|[[Kumis besi]] |
|||
|11000 |
|||
| |
|||
|- |
|||
|Ausformed (hardened) <br>steel |
|||
|2930 |
|||
|850–1200 |
|||
|- |
|||
|[[Martensit|Baja martensit]] |
|||
|2070 |
|||
|600 |
|||
|- |
|||
|[[Bainit|Baja bainit]] |
|||
|1380 |
|||
|400 |
|||
|- |
|||
|[[Pearlit|Baja pearlitik]] |
|||
|1200 |
|||
|350 |
|||
|- |
|||
|Besi dingin |
|||
|690 |
|||
|200 |
|||
|- |
|||
|Besi kecil-butiran |
|||
|340 |
|||
|100 |
|||
|- |
|||
|Besi mengandung karbon |
|||
|140 |
|||
|40 |
|||
|- |
|||
|Murni, besi kristal tunggal |
|||
|10 |
|||
|3 |
|||
|} |
|||
Sifat mekanik besi dan paduannya dapat dievaluasi menggunakan berbagai uji, termasuk [[Timbangan Brinell|uji Brinell]], [[Timbangan Rockwell|uji Rockwell]] dan [[uji kekerasan Vickers]]. Data pada besi begitu konsisten sehingga sering digunakan untuk kalibrasi peralatan atau uji perbandingan.<ref name=corr/><ref>{{cite web| url=http://mdmetric.com/tech/hardnessconversion.html| title=Hardness Conversion Chart| accessdate=23 May 2010| publisher=Maryland Metrics| archive-date=2015-06-18| archive-url=https://web.archive.org/web/20150618071701/http://mdmetric.com/tech/hardnessconversion.html| dead-url=yes}}</ref> Namun, sifat mekanik besi sangat dipengaruhi oleh kemurnian sampel: besi murni kristal tunggal untuk keperluan penenelitian faktanya lebih lunak daripada aluminium,<ref name=pure/> dan besi hasil produksi industri yang paling murni (99,99%) memiliki kekerasan 20–30 Brinell.<ref>{{Cite journal| title=Properties of Various Pure Irons: Study on pure iron I| url=http://ci.nii.ac.jp/naid/110001459778/en| volume=50| issue=1| pages=42–47| journal=Tetsu-to-Hagane| first1 = Kusakawa|last1 = Takaji|first2 = Otani|last2 =Toshikatsu| date=1964}}</ref> Kenaikan kandungan karbon dalam besi akan menyebabkan kenaikan yang signifikan pada kekerasan dan kekuatan tarik. Kekerasan maksimum [[Timbangan Rockwell|65 R<sub>c</sub>]] dicapai dengan kadar karbon 0.6%, meskipun prosedur ini untuk logam dengan daya tarik rendah<ref>{{Cite book|url=https://books.google.com/?id=LgB5dkmPML0C&pg=PA218|page=218|title=Materials Science and Engineering|first=V.|last= Raghavan|publisher =PHI Learning Pvt. Ltd.|isbn=81-203-2455-2|date=2004}}</ref> |
|||
[[Kategori:Unsur kimia]] |
|||
[[Berkas:Iron-alpha-pV.svg|jmpl|240px|Volume molar vs tekanan untu besi-α pada temperatur kamar]] |
|||
Karena signifikansinya untuk inti planet, sifat fisik besi pada tekanan dan suhu tinggi juga telah dipelajari secara mendalam. Bentuk besi yang stabil di bawah kondisi standar dapat mengalami tekanan hingga 15 GPa sebelum berubah menjadi bentuk tekanan tinggi, seperti yang dijelaskan pada bagian selanjutnya. |
|||
=== Diagram fasa dan alotrop === |
|||
[[af:Yster]] |
|||
{{Main|Alotrop besi}} |
|||
[[als:Eisen]] |
|||
Besi merupakan contoh [[alotropi]] pada logam. Setidaknya ada empat bentuk alotrop besi, yang dikenal sebagai α, γ, δ, dan ε; pada tekanan yang sangat tinggi dengan volume yang rendah, beberapa bukti eksperimental yang kontroversial ada untuk fase β yang stabil pada tekanan dan suhu yang sangat tinggi.<ref name="beta-iron">{{Cite journal| first = Reinhard| last = Boehler|title = High-pressure experiments and the phase diagram of lower mantle and core materials| journal = Review of Geophysics| volume = 38| pages = 221–245| publisher = American Geophysical Union| date = 2000| doi=10.1029/1998RG000053| issue = 2| bibcode=2000RvGeo..38..221B}}</ref> |
|||
[[ar:حديد]] |
|||
[[Berkas:Pure iron phase diagram (EN).png|jmpl|kiri|240px|[[Diagram fasa]] tekanan rendah besi murni]] |
|||
[[ast:Fierro]] |
|||
Besi cair dingin mengkristal pada 1538 °C ke alotrop δ, yang memiliki struktur kristal ''[[body-centered cubic]]'' (bcc). Setelah mendingin lebih lanjut menjadi 1394 °C, berubah menjadi besi alotrop γ, dengan struktur kristal ''[[face-centered cubic]]'' (fcc), atau [[austenit]]. Pada 912 °C atau lebih rendah, struktur kristal berubah kembali menjadi alotrop besi α bcc, atau [[Ferit (besi)|ferit]]. Akhirnya, pada 770 °C ([[titik Curie]], Tc) besi menjadi [[magnet]]. Ketika besi melewati suhu Curie tidak ada perubahan dalam struktur kristal, tetapi ada perubahan dalam "struktur domain", di mana setiap domain mengandung atom besi dengan spin elektron tertentu. Dalam besi non magnet, semua spin elektron dari atom dalam satu domain berada dalam arah yang sama, namun, domain sekitarnya menunjuk ke berbagai arah lain sehingga dengan demikian secara keseluruhan mereka menetralkan satu sama lain. Hasilnya, besi tidak bersifat magnet. Dalam besi magnet, spin elektron dari semua domain selaras, sehingga efek magnetik domain tetangga saling memperkuat. Meskipun setiap domain mengandung miliaran atom, ukuran mereka sangat kecil, hanya sekitar 10 mikrometer.<ref name="Metallo">{{Cite book|url = https://books.google.com/?id=hoM8VJHTt24C&pg=PA24|pages=24–28|title =Metallographer's guide: practice and procedures for irons and steels|first1 = B. L.|last1 = Bramfitt|first2= Arlan O.|last2 = Benscoter|chapter = The Iron Carbon Phase Diagram|publisher = ASM International|date = 2002|isbn = 978-0-87170-748-2}}</ref> Pada tekanan di atas sekitar 10 GPa dan suhu beberapa ratus kelvin atau kurang, besi-α berubah menjadi struktur [[hexagonal close-packed]] (hcp), yang juga dikenal sebagai [[Heksaferum|besi-ε]]; fase-γ yang temperaturnya lebih tinggi juga berubah menjadi besi-ε, tetapi tidak terjadi pada tekanan yang lebih tinggi. [[Beta ferit|Fase-β]], jika ada, akan muncul pada tekanan minimal 50 GPa dan suhu minimal 1.500 K; telah diperkirakan memiliki struktur ortorombik atau struktur hcp ganda.<ref name="beta-iron" /> |
|||
[[az:Dəmir]] |
|||
[[be:Жалеза]] |
|||
Besi sangat penting ketika dicampur dengan logam tertentu lainnya dan dengan karbon untuk membentuk baja. Ada banyak jenis baja, semua dengan sifat yang berbeda, dan pemahaman tentang sifat-sifat [[alotrop besi]] adalah kunci untuk pembuatan baja berkualitas baik. |
|||
[[be-x-old:Жалеза]] |
|||
[[bg:Желязо]] |
|||
Besi-α, juga dikenal sebagai ferit, adalah bentuk besi paling stabil pada temperatur normal. Ini adalah logam yang cukup lunak yang dapat larut hanya dengan konsentrasi kecil karbon (tidak lebih dari 0,021% massa pada 910 °C).<ref>{{Cite book|url=https://books.google.com/?id=xv420pEC2qMC&pg=PA183|page=183|title=Concise encyclopedia of the structure of materials|first=John Wilson|last = Martin|publisher=Elsevier|date= 2007|isbn=0-08-045127-6}}</ref> |
|||
[[bn:লোহা]] |
|||
[[br:Houarn]] |
|||
Di atas 912 °C dan sampai 1400 °C besi-α mengalami [[transisi fasa]] dari bcc ke konfigurasi besi-γ fcc, juga disebut [[austenit]]. Logam Ini juga lunak tetapi dapat melarutkan jauh lebih banyak karbon (sebanyak 2,04% massa pada 1146 °C). Bentuk besi ini digunakan dalam jenis baja nirkarat yang digunakan untuk membuat peralatan makan, dan rumah sakit serta peralatan jasa layanan makanan.<ref name="Metallo" /> |
|||
[[bs:Željezo]] |
|||
[[ca:Ferro]] |
|||
Besi fasa tekanan tinggi penting sebagai model untuk bagian-bagian padat pada inti planet. [[Inti dalam]] planet [[bumi]] umumnya diasumsikan terdiri dari [[Logam paduan|paduan]] besi-[[nikel]] dengan struktur ε (atau β). |
|||
[[co:Ferru]] |
|||
[[cs:Železo]] |
|||
Titik lebur besi didefinisikan secara eksperimen dengan baik untuk tekanan sampai sekitar 50 GPa. Untuk tekanan yang lebih tinggi, studi yang berbeda menempatkan [[titik triple]] γ-ε cair pada tekanan yang berbeda hingga puluhan gigapascal dan menghasilkan perbedaan titik lebur lebih dari 1000 K. Secara umum, simulasi komputer [[dinamika molekuler]] pada besi yang sedang meleleh dan percobaan gelombang kejut memberikan titik leleh yang lebih tinggi dan kemiringan kurva lebur yang lebih curam daripada percobaan statis yang dilakukan dalam [[sel diamond anvil]].<ref name="melting">{{Cite book|pages=527–541|doi=10.1016/B978-044452748-6.00047-X|title =Mineral Physics|first1 = Reinhard|last1 = Boehler|first2= M.|last2 = Ross|chapter = Properties of Rocks and Minerals_High-Pressure Melting|publisher = Elsevier|date = 2007|series = Treatise on Geophysics|volume = 2}}</ref> |
|||
[[cv:Тимĕр]] |
|||
[[cy:Haearn]] |
|||
=== Isotop === |
|||
[[da:Jern]] |
|||
{{Main|Isotop besi}} |
|||
[[de:Eisen]] |
|||
[[el:Σίδηρος]] |
|||
Besi alami terdiri dari empat [[isotop]] stabil: 5,845% <sup>54</sup>Fe, 91,754% [[Besi-56|<sup>56</sup>Fe]], 2,119% <sup>57</sup>Fe dan 0,282% <sup>58</sup>Fe. Dari empat isotop stabil ini, hanya <sup>57</sup>Fe yang mempunyai [[spin (fisika)|spin]] inti (−{{frac|1|2}}). [[Nuklida]] <sup>54</sup>Fe diperkirakan mengalami [[peluruhan beta ganda]], tetapi proses ini belum pernah diteliti untuk nuklei ini, dan hanya batas bawah waktu paruh yang ditetapkan: t<sub>1/2</sub>>3,1{{e|22}} tahun. |
|||
[[en:Iron]] |
|||
[[eo:Fero]] |
|||
<sup>60</sup>Fe adalah [[radionuklida yang telah punah]] dengan [[waktu paruh]] panjang (2,6 juta tahun).<ref name="RugelFaestermann2009">{{cite journal|last1=Rugel|first1=G.|last2=Faestermann|first2=T.|last3=Knie|first3=K.|last4=Korschinek|first4=G.|last5=Poutivtsev|first5=M.|last6=Schumann|first6=D.|last7=Kivel|first7=N.|last8=Günther-Leopold|first8=I.|last9=Weinreich|first9=R.|last10=Wohlmuther|first10=M.|title=New Measurement of the <sup>60</sup>Fe Half-Life|journal=Physical Review Letters|volume=103|issue=7|date=2009|issn=0031-9007|doi=10.1103/PhysRevLett.103.072502}}</ref> Ia tidak ditemukan di bumi, namun produk peluruhan utamanya adalah nuklida stabil [[nikel-60]]. |
|||
[[es:Hierro]] |
|||
[[et:Raud]] |
|||
Banyak riset masa lalu tentang pengukuran komposisi isotop Fe telah difokuskan pada penentuan variasi <sup>60</sup>Fe karena proses yang menyertai [[nukleosintesis]] (yaitu, studi [[meteorit]]) dan formasi bijih. Namun dalam dekade terakhir, perkembangan teknologi [[spektrometri massa]] telah memungkinkan untuk melakukan deteksi dan kuantifikasi renik, variasi rasio alami [[isotop stabil]] besi. Banyak dari penelitian ini telah didorong oleh komunitas [[ilmu bumi]] dan [[ilmu planet|planet]], meskipun aplikasi untuk sistem biologis dan industri mulai bermunculan.<ref>{{Cite journal|last1=Dauphas|first1=N.|last2=Rouxel|first2=O.|date=2006|title=Mass spectrometry and natural variations of iron isotopes|journal=Mass Spectrometry Reviews|volume=25|pages=515–550|url=http://geosci.uchicago.edu/~dauphas/OLwebsite/PDFfiles/Dauphas_Rouxel_MSR06.pdf|doi=10.1002/mas.20078|pmid=16463281|issue=4|access-date=2016-01-11|archive-date=2010-06-10|archive-url=https://web.archive.org/web/20100610095913/http://geosci.uchicago.edu/~dauphas/OLwebsite/PDFfiles/Dauphas_Rouxel_MSR06.pdf|dead-url=yes}}</ref> |
|||
[[eu:Burdina]] |
|||
[[fa:آهن]] |
|||
Isotop besi yang paling melimpah {{Sup|56}}Fe merupakan daya tarik tersendiri bagi para ilmuwan nuklir karena merupakan titik akhir nukleosintesis yang paling umum.Hal ini sering dikutip, secara salah, sebagai isotop dengan energi ikatan tertinggi, perbedaan yang sebenarnya dimiliki [[nikel-62]].<ref>{{cite journal|last1=Fewell|first1=M. P.|title=The atomic nuclide with the highest mean binding energy|journal=American Journal of Physics|volume=63|page=653|date=1995|doi=10.1119/1.17828|bibcode=1995AmJPh..63..653F|issue=7}}</ref> Karena <sup>56</sup>Ni mudah dihasilkan dari inti yang lebih ringan dalam [[proses alfa]] pada [[reaksi nuklir]] di supernova (lihat [[proses pembakaran silikon]]), nikel-56 (14 [[Partikel Alfa|partikel alfa]]) adalah titik akhir rantai fusi dalam [[Bintang Populasi III|bintang sangat besar]], karena penambahan partikel alfa lain akan menghasilkan seng-60, yang membutuhkan lebih banyak energi. Oleh karena itu, nikel-56, dengan waktu paruh sekitar 6 hari, merupakan porsi terbesar dalam bintang-bintang ini, tetapi segera meluruh melalui emisi positron berturutan pada produk peluruhan supernova dalam awan gas [[sisa supernova]]. Peluruhan pertama membentuk kobalt-56, dan kemudian besi-56 yang stabil. Nuklida terakhir ini kemudian menjadi relatif mayoritas di jagat raya, dibandingkan dengan [[Kemetalikan (Metallicity)|logam]] stabil lainnya dengan [[Massa atom|berat atom]] yang mendekati. |
|||
[[fi:Rauta]] |
|||
[[fr:Fer]] |
|||
Dalam fase meteorit ''Semarkona'' dan ''Chervony Kut'' korelasi antara konsentrasi <sup>60</sup>Ni, [[Produk peluruhan|produk anang]] <sup>60</sup>Fe, dan kelimpahan isotop besi yang stabil dapat ditemukan yang merupakan bukti keberadaan <sup>60</sup>Fe pada saat [[Pembentukan dan evolusi Tata Surya|pembentukan Sistem Tata Surya]]. Kemungkinan energi yang dilepaskan pada peluruhan <sup>60</sup>Fe, bersama energi yang dilepaskan pada peluruhan radionuklida <sup>26</sup>Al, memberikan kontribusi pada pelelehan kembali dan [[Diferensiasi planet|diferensiasi]] [[asteroid]] setelah pembentukannya 4,6 miliar tahun yang lalu. Kelimpahan 60Ni dalam materi [[wikt:extraterrestrial|ekstraterestrial]] juga memberikan wawasan lebih jauh ke dalam asal mula [[Tata Surya|Sistem Tata Surya]] dan sejarah awalnya.<ref>{{cite journal|doi=10.1016/j.newar.2003.11.022|title=Evidence for live 60Fe in meteorites|date=2004|last1=Mostefaoui|first1=S.|last2=Lugmair|first2=G.W.|last3=Hoppe|first3=P.|last4=El Goresy|first4=A.|journal=New Astronomy Reviews|volume=48|pages=155|bibcode = 2004NewAR..48..155M }}</ref> |
|||
[[fur:Fier]] |
|||
[[ga:Iarann]] |
|||
Inti atom besi memiliki beberapa energi ikatan tertinggi per inti, hanya bisa diimbangi oleh [[isotop nikel]] <sup>62</sup>Ni. Ini terbentuk melalui [[fusi nuklir]] pada bintang. Meskipun penambahan sedikit energi dapat diekstraksi melalui sintesis <sup>62</sup>Ni, kondisi dalam bintang tidak cocok untuk proses ini. Distribusi unsur di Bumi lebih didominasi oleh besi daripada nikel, dan juga mungkin dalam produksi elemen supernova.<ref>{{cite journal|title = Iron and Nickel Abundances in H~II Regions and Supernova Remnants|date = 1995|bibcode=1995AAS...186.3707B|author=Bautista, Manuel A.|author2=Pradhan, Anil K.|journal=Bulletin of the American Astronomical Society|volume=27|page=865}}</ref> |
|||
[[gan:鐵]] |
|||
[[gd:Iarann]] |
|||
[[Besi-56]] adalah isotop stabil terberat yang diproduksi melalui proses alfa dalam [[nukleosintesis stellar]]; unsur yang lebih berat daripada besi adalah nikel memerlukan [[supernova]] untuk pembentukannya. Besi adalah unsur yang paling melimpah dalam inti [[raksasa merah]], dan logam paling melimpah dalam [[meteorit besi]] dan dalam [[inti planet]] yang berupa logam padat seperti [[bumi]]. |
|||
[[gl:Ferro]] |
|||
[[gn:Kuarepoti]] |
|||
=== Nukleosintesis === |
|||
[[gu:લોખંડ]] |
|||
Besi dibentuk oleh bintang yang sangat besar dengan inti yang sangat panas (lebih dari 2,5 miliar kelvin) melalui [[proses pembakaran silikon]]. Ia merupakan unsur stabil terberat yang diproduksi dengan cara ini. Proses dimulai dari inti stabil kedua terbesar melalui pembakaran silikon, yaitu kalsium. Satu inti stabil kalsium mengalami fusi dengan satu inti helium, membentuk titanium yang tidak stabil. Sebelum titanium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk kromium yang tak stabil. Sebelum kromium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk besi yang tak stabil. Sebelum besi meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk nikel-56 yang tak stabil. Fusi nikel-56 lebih jauh memerlukan energi dan bukannya menghasilkan energi, sehingga setelah produksi nikel-56, bintang tidak lagi menghasilkan energi yang dibutuhkan untuk menjaga inti agar tidak runtuh. Akhirnya, nikel-56 meluruh menjadi kobalt-56 yang tak stabil, yang pada gilirannya meluruh menjadi [[besi-56]] yang stabil. Ketika inti bintang runtuh, ia membentuk [[supernova]]. Supernova juga menciptakan bentuk-bentuk besi stabil tambahan melalui [[proses-r]]. |
|||
[[gv:Yiarn]] |
|||
[[hak:Thiet]] |
|||
=== Keberadaan === |
|||
[[he:ברזל]] |
|||
{{Category see also|Mineral besi}} |
|||
[[hi:लोहम्]] |
|||
[[hr:Željezo]] |
|||
==== Keberadaan di planet ==== |
|||
[[ht:Fè]] |
|||
[[Berkas:Widmanstatten hand.jpg|jmpl| [[Meteorit besi]], memiliki komposisi yang sama dengan inti bumi.]] |
|||
[[hu:Vas]] |
|||
Besi adalah [[Kelimpahan unsur kimia|unsur paling melimpah]] keenam di [[Alam semesta|jagat raya]], dan merupakan unsur [[refraktori]] yang paling umum.<ref name=apjl717_2_L92>{{cite journal |
|||
[[hy:Երկաթ]] |
|||
| last1=McDonald | first1=I. | last2=Sloan | first2=G. C. |
|||
[[ia:Ferro]] |
|||
| last3=Zijlstra | first3=A. A. | last4=Matsunaga | first4=N. |
|||
[[io:Fero]] |
|||
| last5=Matsuura | first5=M. | last6=Kraemer | first6=K. E. |
|||
[[is:Járn]] |
|||
| last7=Bernard-Salas | first7=J. | last8=Markwick | first8=A. J. |
|||
[[it:Ferro]] |
|||
| title=Rusty Old Stars: A Source of the Missing Interstellar Iron? |
|||
[[ja:鉄]] |
|||
| journal=The Astrophysical Journal Letters |
|||
[[jbo:tirse]] |
|||
| volume=717 | issue=2 | pages=L92–L97 | date=2010 |
|||
[[jv:Wesi]] |
|||
| doi=10.1088/2041-8205/717/2/L92 | bibcode=2010ApJ...717L..92M |arxiv = 1005.3489 }}</ref> Ia terbentuk sebagai tahap [[Eksotermik|eksotermal]] terakhir [[nukleosintesis stelar]], melalui [[Proses pembakaran sililkon|fusi silikon]] dalam bintang besar. |
|||
[[ka:რკინა]] |
|||
[[kg:Kibende]] |
|||
[[Besi asli]] atau logam jarang ditemukan di permukaan bumi karena cenderung mengalami oksidasi, tetapi oksidanya menandakan dan mewakili bijih utamanya. Sementara kandungan besi pada kerak bumi hanya 5%, inti bumi bagian [[Inti bumi dalam|dalam]] dan [[Inti bumi luar|luar]] diyakini memiliki kandungan paduan besi-[[nikel]] yang banyak, diperkirakan 35% dari keseluruhan massa bumi. Oleh karena itu, besi merupakan unsur paling melimpah di bumi, tetapi menduduki tempat keempat kelimpahan unsur di kerak bumi.<ref>{{cite web|title = Iron: geological information|url = http://www.webelements.com/iron/geology.html|accessdate = 23 May 2010|publisher = WebElements}}</ref><ref>{{Cite journal| doi = 10.1073/pnas.77.12.6973|url = http://www.pnas.org/content/77/12/6973| title = Chemical composition of Earth, Venus, and Mercury|author =John W. Morgan |author2=Edward Anders |last-author-amp=yes |journal = [[Proc. Nat. Acad. Sci.]]|volume = 77|issue = 12|pages = 6973–6977|date = 1980|pmid=16592930|pmc=350422|bibcode=1980PNAS...77.6973M}}</ref> Sebagian besar besi pada kerak bumi ditemukan bersenyawa dengan oksigen sebagai mineral [[besi oksida]] seperti [[hematit]] ({{chem2|Fe|2|O|3}}) dan [[magnetit]] ({{chem2|Fe|3|O|4}}). Deposit besar besi ditemukan dalam ''[[banded iron formations]]''. Formasi geologis ini adalah jenis batuan yang menandung lapisan-lapisan tipis besi oksida yang berulang (seperti pita-pita), dan diseling dengan lapisan [[Serpih (geologi)|serpih]] ({{Lang-en|shale}}) dan [[Rijang (geologi)|rijang]] ({{Lang-en|chert}}) yang miskin kandungan besinya. Banded iron formation terbentuk antara {{Ma|3700}} dan {{Ma|1800}}.<ref>{{Cite journal| first1 = T. W.|last2 = Reinhard|title = Early Earth: Oxygen for heavy-metal fans|journal = Nature|volume = 461|issue = 7261|pages = 179–181|date = 2009|last1 = Lyons|doi = 10.1038/461179a|pmid = 19741692|first2 = CT|bibcode=2009Natur.461..179L}}</ref><ref>{{Cite journal| first1 = P.|title = Paleoecological Significance of the Banded Iron-Formation|journal = Economic Geology|volume = 68|last1 = Cloud|pages = 1135–1143|date = 1973|doi = 10.2113/gsecongeo.68.7.1135| issue = 7}}</ref> |
|||
[[ko:철]] |
|||
[[ksh:Eisen]] |
|||
Sekitar 1 dalam 20 [[meteorit]] mengandung mineral unik besi-nikel [[taenit]] (35–80% iron) dan [[kamasit]] (90–95% iron). Meskipun jarang, [[meteorit besi]] adalah bentuk utama besi logam alami di permukaan bumi.<ref>{{Cite journal| url = https://books.google.com/?id=QDU7AAAAIAAJ&pg=PA152|page =152|title = Planet earth: cosmology, geology, and the evolution of life and environment|first = Cesare|last = Emiliani|publisher = Cambridge University Press|date = 1992|isbn = 978-0-521-40949-0|chapter = Meteorites}}</ref> |
|||
[[ku:Hesin]] |
|||
[[la:Ferrum]] |
|||
Warna merah permukaan Mars terbentuk dari [[regolit]] yang kaya besi oksida. Ini telah dibuktikan berdasarkan [[spektroskopi Mössbauer]].<ref>{{Cite journal| doi = 10.1007/s10751-007-9508-5|title = Two earth years of Mössbauer studies of the surface of Mars with MIMOS II|date = 2007|last1 = Klingelhöfer|first1 = G.|last2 = Morris|first2 = R. V.|last3 = Souza|first3 = P. A.|last4 = Rodionov|first4 = D.|last5 = Schröder|first5 = C.|journal = Hyperfine Interactions|volume = 170|pages = 169–177|bibcode = 2006HyInt.170..169K }}</ref> |
|||
[[lb:Eisen]] |
|||
[[li:Iezer]] |
|||
==== Cadangan yang digunakan di masyarakat ==== |
|||
[[ln:Ebendé]] |
|||
Menurut ''[[Metal Stocks in Society report]]'' yang dikeluarkan oleh [[Panel Sumber Daya Internasional]] ({{Lang-en|[[International Resource Panel]]}}), cadangan global besi yang digunakan di masyarakat adalah {{Kg to lb|2200|abbr = yes}} per kapita. Sebagian besar adalah negara maju ({{Kg to lb|7000|14000|abbr = yes|wiki = no}} – {{Kg to lb|14000|abbr = yes}} per kapita) sedangkan negara yang kurang berkembang hanya {{Kg to lb|2000|abbr = yes}} per kapita. |
|||
[[lt:Geležis]] |
|||
[[lv:Dzelzs]] |
|||
== Kimia dan senyawa == |
|||
[[mi:Rino]] |
|||
{{category see also|Senyawa besi}} |
|||
[[mk:Железо]] |
|||
[[ml:ഇരുമ്പ്]] |
|||
{| class="wikitable" style="float:right; clear:right; margin-left:1em; margin-top:0;" |
|||
[[mn:Төмөр (химийн элемент)]] |
|||
|- |
|||
[[mr:लोखंड]] |
|||
! Tingkat |
|||
[[ms:Besi]] |
|||
oksidasi |
|||
[[mt:Ħadid]] |
|||
!Contoh senyawa |
|||
[[myv:Кшни]] |
|||
|- |
|||
[[nah:Tlīltepoztli]] |
|||
| −2 (d{{sup|10}}) || [[Dinatrium tetrakarbonilferat]] (pereaksi Collman) |
|||
[[nds:Iesen]] |
|||
|- |
|||
[[nl:IJzer (element)]] |
|||
| −1 (d{{sup|9}}) || {{chem2|Fe|2|(CO)|8|2−}} |
|||
[[nn:Jern]] |
|||
|- |
|||
[[no:Jern]] |
|||
| 0 (d{{sup|8}}) || [[Besi pentakarbonil]] |
|||
[[nrm:Fé]] |
|||
|- |
|||
[[oc:Fèrre]] |
|||
| 1 (d{{sup|7}}) || [[Siklopentadienylbesi dikarbonil dimer|Siklopentadienilferum dikarbonil dimer]] ("Fp<sub>2</sub>") |
|||
[[pl:Żelazo]] |
|||
|- |
|||
[[pt:Ferro]] |
|||
| 2 (d{{sup|6}}) || [[Fero sulfat]], [[ferosen]] |
|||
[[qu:Chuki]] |
|||
|- |
|||
[[ro:Fier]] |
|||
| 3 (d{{sup|5}}) || [[Feri klorida]], [[ferosenium tetrafluoroborat]] |
|||
[[ru:Железо]] |
|||
|- |
|||
[[sa:लोहम्]] |
|||
| 4 (d{{sup|4}}) || [[Barium ferat(IV)]], {{chem2|Fe(diars)|2|Cl|2|2+}} |
|||
[[scn:Ferru]] |
|||
|- |
|||
[[sco:Airn]] |
|||
| 5 (d{{sup|3}}) || {{chem2|FeO|4|3-}} |
|||
[[sh:Željezo]] |
|||
|- |
|||
[[simple:Iron]] |
|||
| 6 (d{{sup|2}}) || [[Kalium ferat]] |
|||
[[sk:Železo]] |
|||
|} |
|||
[[sl:Železo]] |
|||
[[sq:Hekuri]] |
|||
Besi menunjukkan karakteristik sifat kimia [[logam transisi]], misalnya kemampuan membentuk tingkat oksidasi yang bervariasi dan mampu membentuk ikatan koordinasi dan kimia organologam: memang penemuan senyawa besi, [[ferosen]]<!--ferrocene-->, yang memberi perubahan revolusioner pada bidang ini pada akhir 1950an.<ref name=Greenwood905>Greenwood and Earnshaw, p. 905</ref> Besi kadang-kadang dianggap sebagai prototipe untuk seluruh blok logam transisi, karena kelimpahannya dan perannya yang besar sekali dalam perkembangan teknologi kemanusiaan.<ref name=Greenwood1070/> Keduapuluh enam elektronnya tertata dalam [[Konfigurasi elektron|konfigurasi]] [Ar]3d{{sup|6}}4s{{sup|2}}, yang elektron 3d dan 4s nya relatif memiliki energi yang berdekatan, sehingga dapat kehilangan elektron dalam jumlah yang bervariasi dan tidak ada titik yang jelas ionisasi lebih lanjut yang tidak menguntungkan.<ref name=Greenwood1074>Greenwood and Earnshaw, pp. 1074–5</ref> |
|||
[[sr:Гвожђе (хемијски елемент)]] |
|||
[[sv:Järn]] |
|||
Besi membentuk senyawa utamanya dalam [[Bilangan oksidasi|tingkat oksidasi]] +2 dan +3. Menurut tradisi, senyawa besi(II) disebut [[Fero (besi)|fero]] dan senyawa besi(III) disebut [[Feri (besi)|feri]]. Besi juga dapat memiliki tingkat oksidasi yang lebih tinggi, contohnya adalah [[kalium ferat]] (K<sub>2</sub>FeO<sub>4</sub>), berwarna ungu, yang mengandung besi dengan bilangan oksidasi +6. Besi(IV) adalah bentuk antara yang umum dalam banyak reaksi oksidasi biokimia.<ref>{{Cite journal| doi = 10.1021/ar700027f|title = High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions|date = 2007|last1 = Nam|first1 = Wonwoo|journal = Accounts of Chemical Research|volume = 40|pages = 522–531|pmid = 17469792|issue = 7}}</ref><ref name="HollemanAF">{{Cite book|publisher = Walter de Gruyter|date = 1985|edition = 91–100|pages = 1125–1146|isbn = 3-11-007511-3|title = Lehrbuch der Anorganischen Chemie|first1 = Arnold F.|last1 = Holleman|last2 = Wiberg|first2 = Egon|last3 = Wiberg|first3 = Nils|chapter = Iron|language = German}}</ref> Sejumlah senyawa organologam mengandung tingkat oksidasi formal +1, 0, −1, atau bahkan −2. Tingkat oksidasi dan sifat ikatan lainnya sering diuji menggunakan teknik spektroskopi Mössbauer.<ref>{{Cite book|chapter = Mössbauer Spectroscopy and the Coordination Chemistry of Iron|first1 = William Michael|last1 = Reiff|first2 = Gary J.|last2 = Long|title = Mössbauer spectroscopy applied to inorganic chemistry|publisher = Springer|date = 1984|isbn = 978-0-306-41647-7|pages = 245–283}}</ref> Terdapat juga banyak [[senyawa valensi campuran]] yang berintikan besi(II) dan besi(III) sekaligus, seperti [[magnetit]] dan [[biru Prusia]] (Fe<sub>4</sub>(Fe[CN]<sub>6</sub>)<sub>3</sub>).<ref name="HollemanAF" /> Senyawa yang disebutkan terakhir di atas digunakan sebagai "biru" tradisional dalam [[cetak biru]].<ref>{{Cite book|chapter = An introduction in monochrome|pages = 11–19|first = Mike|last = Ware|publisher = NMSI Trading Ltd|title = Cyanotype: the history, science and art of photographic printing in Prussian blue|isbn = 978-1-900747-07-3|date = 1999|url = https://books.google.com/?id=C-7I69gFIbMC&pg=PA11}}</ref> |
|||
[[sw:Chuma]] |
|||
[[Berkas:Iron(III) chloride hexahydrate.jpg|jmpl|alt=Some canary-yellow powder sits, mostly in lumps, on a laboratory watch glass.|[[Besi(III) klorida]] hidrat, dikenal juga sebagai feri klorida]] |
|||
[[ta:இரும்பு]] |
|||
[[te:ఇనుము]] |
|||
Besi adalah logam transisi pertama yang tidak dapat mencapai keadaan oksidasi golongannya (+8), meskipun kongenernya yang lebih berat ruthenium dan osmium bisa, ruthenium lebih sulit daripada osmium.<ref name=Greenwood1075>Greenwood and Earnshaw, pp. 1075–9</ref> Ruthenium menunjukkan kimia kation akuatik pada tingkat oksidasi rendahnya mirip dengan besi, tetapi osmium tidak, sehingga lebih stabil pada tingkat oksidasi tinggi dengan membentuk kompleks anion.<ref name=Greenwood1075/> Kenyataannya, pada paruh kedua dari deret transisi 3d ini, kemiripan vertikal golongan dari atas ke bawah bersaing dengan kemiripan horizontal besi dengan tetangganya [[kobalt]] dan [[nikel]] pada tabel periodik, yang juga feromagnetik pada [[suhu ruang]] dan berbagi kemiripan kimia. Dengan demikian, besi, kobalt, dan nikel kadang-kadang dikelompokkan sebagai [[triad besi]]<ref name=Greenwood1070>Greenwood and Earnshaw, p. 1070</ref> |
|||
[[tg:Оҳан]] |
|||
[[th:เหล็ก]] |
|||
Senyawa besi yang diproduksi dalam industri skala besar adalah [[besi(II) sulfat]] (FeSO<sub>4</sub>.7[[Air kristal|H<sub>2</sub>O]]) dan [[besi(III) klorida]] (FeCl3). Besi(II) sulfat adalah salah satu sumber besi(II) yang paling umum, tetapi kurang stabil terhadap oksidasi udara dibandingkan [[garam Mohr]] ((NH<sub>4</sub>)<sub>2</sub>Fe(SO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O). Senyawa besi(II) cenderung teroksidasi menjadi senyawa besi(III) di udara.<ref name="HollemanAF" /> |
|||
[[tr:Demir]] |
|||
[[uk:Залізо]] |
|||
Tidak seperti logam lainnya, besi tidak membentuk amalgam dengan raksa. Sebagai hasilnya, raksa diperdagangkan dalam botol besi berukuran {{Lb to kg|76|abbr = yes}}.<ref>{{Cite book|title = Hand-book of chemistry|volume = 6|first = Leopold|last1 = Gmelin|authorlink = Leopold Gmelin|pages = 128–129|chapter = Mercury and Iron|url = https://books.google.com/?id=nosMAAAAYAAJ&pg=PA128|publisher = Cavendish Society|date = 1852}}</ref> |
|||
[[uz:Temir]] |
|||
[[vec:Fero]] |
|||
Sejauh ini besi adalah unsur yang paling reaktif dalam golongannya, bersifat piroforik ketika dihaluskan dan mudah larut dalam asam encer, membentuk Fe{{sup|2+}}. Namun, besi tidak bereaksi dengan [[asam nitrat]] pekat dan asam oksidator, karena pembentukan lapisan oksida yang kuat yang dapat bereaksi dengan [[asam klorida]].<ref name=Greenwood1075/> |
|||
[[vi:Sắt]] |
|||
[[yi:אייזן]] |
|||
=== Senyawa biner === |
|||
[[zh:铁]] |
|||
Besi bereaksi dengan oksigen di udara membentuk berbagai [[Besi oksida|senyawa oksida dan hidroksida]]; yang paling umum adalah [[besi(II,III) oksida]] (Fe<sub>3</sub>O<sub>4</sub>), dan [[besi(III) oksida]] (Fe<sub>2</sub>O<sub>3</sub>). [[Besi(II) oksida]] juga ada, meskipun tidak stabil pada temperatur kamar. Oksida-oksida ini adalah bijih utama untuk produksi besi (lihat ''[[bloomery]]'' dan tanur tinggi). Mereka juga digunakan dalam produksi [[Ferit (magnet)|ferit]], bermanfaat sebagai media [[penyimpanan magnetik]] di komputer, dan pigmen. Sulfida yang telah dikenal adalah [[besi pirit]] (FeS<sub>2</sub>), juga dikenal sebagai "emas bodoh" karena kilau keemasannya.<ref name="HollemanAF" /> |
|||
[[zh-min-nan:Fe (goân-sò͘)]] |
|||
[[zh-yue:鐵]] |
|||
[[Berkas:Pourbaix Diagram of Iron.svg|jmpl|ka|[[Diagram Pourbaix]] besi]] |
|||
Halida fero dan feri biner telah dikenal lama, dengan pengecualian feri iodida. Fero halida biasanya muncul dari pengolahan logam besi dengan asam halogen biner terkait untuk menghasilkan garam terhidrasi yang sesuai.<ref name="HollemanAF" /> |
|||
:<chem>Fe + 2HX -> FeX2 + H2</chem> |
|||
Besi bereaksi dengan fluor, klorin, dan bromin menghasilkan feri halida yang sesuai. [[Feri klorida]] adalah yang paling umum: |
|||
:<chem>2Fe{} + 3X2 -> 2FeX3\ {(X~=~F,~Cl,~Br)}</chem> |
|||
Feri iodida adalah perkecualian, tidak stabil secara termodinamika karena sifat oksidator Fe{{sup|3+}} dan sifat reduktor I{{sup|−}}:<ref name=Greenwood1082>Greenwood and Earnshaw, p. 1082–4</ref> |
|||
:<math chem>\ce{2I^- + 2Fe^3+ -> I2 + 2Fe^2+}\quad (E^0 = +0{,}23\,\mathrm V)</math> |
|||
Namun, feri iodida dalam jumlah miligram, padatan hitam, tetap dapat dibuat melalui reaksi [[besi pentakarbonil]] dengan [[iodium]] dan [[karbon monoksida]] dengan adanya [[heksana]] dan cahaya pada suhu −20 °C. Perlu dipastikan bahwa sistem tertutup rapat agar terhindar dari udara dan air.<ref name=Greenwood1082/> |
|||
=== Kimia larutan === |
|||
[[Berkas:Ferrate and permanganate solution.jpg|jmpl|100px|ka|Perbandingan warna larutan ferat (kiri) dan [[permanganat]] (kanan)]] |
|||
[[Potensial reduksi standar]] dalam larutan asam untuk beberapa ion besi yang umum adalah sebagai berikut:<ref name=Greenwood1075/> |
|||
{| |
|||
|- |
|||
| <chem>Fe^2+ + 2e^-</chem> || <chem><=> Fe</chem> || <math>\quad E^0 = -0{,}447\,\mathrm V</math> |
|||
|- |
|||
| <chem>Fe^3+ + 3e^-</chem> || <chem><=> Fe</chem> || <math>\quad E^0 = -0{,}037\,\mathrm V</math> |
|||
|- |
|||
| <chem>FeO4^2- + 8H^+ + 3e^-</chem> || <chem><=> Fe^3+ + 4H2O</chem> || <math>\quad E^0 = +2{,}20\,\mathrm{V}</math> |
|||
|} |
|||
Anion [[ferat]](VI) yang berbentuk tetrahedral dan berwarna merah-ungu adalah oksidator kuat yang dapat mengoksidasi nitrogen dan amonia pada suhu kamar, dan bahkan air dalam larutan asam atau netral:<ref name=Greenwood1082/> |
|||
:<chem>4FeO4^2- + 10H2O -> 4Fe^3+ + 20OH^- + 3O2</chem> |
|||
Ion Fe{{sup|3+}} memiliki kimia kationik sederhana yang besar, meskipun ion heksaquo [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> yang berwarna ungu pucat sangat mudah terhidrolisis ketika pH dinaikkan di atas 0 sebagai berikut:<ref name=Greenwood1088>Greenwood and Earnshaw, p. 1088–91</ref> |
|||
{| |
|||
|- |
|||
|<chem>[Fe(H2O)6]^3+</chem> || <chem><=> [Fe(H2O)5(OH)]^2+ + H^+</chem> || [[Konstanta kesetimbangan|<math>K</math>]] <math>=10^{-3{,}05}\,\mathrm{mol\,dm^{-3}}</math> |
|||
|- |
|||
|<chem>[Fe(H2O)5(OH)]^2+</chem> || <chem><=> [Fe(H2O)4(OH)2]^+ + H^+</chem> || <math>K = 10^{-3{,}26}\,\mathrm{mol\,dm^{-3}}</math> |
|||
|- |
|||
|<chem>2[Fe(H2O)6]^3+</chem> || <chem><=> [Fe(H2O)4(OH)]2^4+ + 2H^+ + 2H2O</chem> || <math>K = 10^{-2{,}91}\,\mathrm{mol\,dm^{-3}}</math> |
|||
|} |
|||
{{multiple image |
|||
<!-- Layout parameters --> |
|||
| align = right |
|||
| direction = horizontal |
|||
| background color = <!-- box background --> |
|||
| width = 200px |
|||
| caption_align = |
|||
<!-- Header --> |
|||
| header_background = |
|||
| header_align = |
|||
| header = |
|||
<!--image 1--> |
|||
| image1 = Iron(III)-oxide-sample.jpg |
|||
| width1 = |
|||
| alt1 = |
|||
| link1 = |
|||
| caption1 = [[Besi(III) oksida]] merah tua |
|||
<!--image 2--> |
|||
| image2 = Iron(II)-sulfate-heptahydrate-sample.jpg |
|||
| width2 = |
|||
| alt2 = |
|||
| link2 = |
|||
| caption2 = [[Besi(II) sulfat]] heptahidrat biru-hijau |
|||
<!-- and so on, to a maximum of 10 images (image10) --> |
|||
<!-- Footer --> |
|||
| footer_background = |
|||
| footer_align = <!-- left (default), center, right --> |
|||
| footer = |
|||
}} |
|||
Ketika pH naik di atas 0 terbentuk spesies hasil hidrolisis yang berwarna kuning, dan ketika dinaikkan di atas 2-3 terbentuk endapan [[besi(III) oksida]] hidrat yang berwarna coklat kemerahan. Meskipun Fe{{sup|3+}} memiliki konfigurasi d{{sup|5}}, spektrum serapannya tidak seperti Mn{{sup|2+}} dengan pita d-d spin terlarangnya yang lemah, karena Fe{{sup|3+}} memiliki muatan positif yang lebih tinggi dan lebih terpolarisasi. Ini melemahkan energi serapan [[Kompleks transfer muatan|transfer muatan]] ligan-ke-logam. Oleh karena itu, semua kompleks di atas memililki warna yang agak kuat, dengan satu perkecualian ion heksaquo - dan bahkan yang memiliki spektrum yang didominasi oleh transfer muatan di daerah ultraviolet dekat.<ref name=Greenwood1088/> Sebaliknya, ion besi(II) heksaquo [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> yang berwarna hijau pucat tidak mengalami hidrolisis. Karbon dioksida tidak muncul ketika ditambahkan anion [[karbonat]], malah menghasilkan endapan putih [[besi(II) karbonat]]. Dalam kondisi karbon dioksida berlebih, ini membentuk bikarbonat yang sedikit larut, yang jamak terjadi dalam air tanah, tetapi dengan cepat teroksidasi di udara membentuk [[besi(III) oksida]] yang menyebabkan endapan coklat di banyak aliran air.<ref name=Greenwood1091>Greenwood and Earnshaw, p. 1091–7</ref> |
|||
=== Senyawa koordinasi dan organologam === |
|||
{{See also|Kimia organobesi}} |
|||
[[Berkas:Prussian blue.jpg|jmpl|[[Biru Prusia]]]] |
|||
Telah dikenal beberapa kompleks sianida. Contoh yang paling terkenal adalah [[biru Prusia]], (Fe<sub>4</sub>(Fe[CN]<sub>6</sub>)<sub>3</sub>). [[Kalium ferisianida]] dan [[kalium ferosianida]] juga telah diketahui; pembentukan biru Prusia pada reaksi dengan besi(II) dan besi(III) merupakan dasar "uji kimia basah".<ref name="HollemanAF" /> Biru Prusia juga digunakan sebagai antidot pada keracunan [[talium]] dan [[sesium]] radioaktif.<ref>{{cite web| url =http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130337.htm| title = Questions and Answers on Prussian Blue| accessdate = 6 June 2009}}</ref><ref>{{Cite journal| doi =10.1345/aph.1E024|pages = 1509–1514|pmid =15252192|title =Soluble or Insoluble Prussian Blue for Radiocesium and Thallium Poisoning?|first2 =ED|date =2004|last2 =Callen|last1 =Thompson|issue =9|first1 =D. F|journal =Annals of Pharmacotherapy|volume =38}}</ref> Biru Prusia dapat digunakan untuk mencuci pakaian guna menghilangkan noda kekuningan yang ditinggalkan oleh garam besi dalam air. |
|||
Telah dikenal beberapa senyawa karbonil besi. Senyawa besi(0) utama adalah [[besi pentakarbonil]], Fe(CO)<sub>5</sub>, yang digunakan untuk memproduksi serbuk [[karbonil besi]], bentuk yang sangat reaktif dari logam besi. Termolisis besi pentakarbonil menghasilkan gugus tiga-inti, [[triferum dodekakarbonil]]. Pereaksi Collman, [[dinatrium tetrakarbonilferat]], adalah pereaksi yang digunakan dalam kimia organik. Pereaksi ini mengandung besi dengan tingkat oksidasi −2. [[Siklopentadienilferum dikarbonil dimer]] mengandung besi dengan tingkat oksidasi yang langka, yaitu +1.<ref>{{Greenwood&Earnshaw1st|pages=1282–86}}.</ref> |
|||
[[Berkas:Ferrocene-2D.png|jmpl|80px|[[Ferosen]]]] |
|||
Ferosen ({{Lang-en|[[Ferrocene]]}}) adalah kompleks yang sangat stabil. [[Senyawa sandwich]] pertama, yang mempunyai pusat besi(II) dengan dua ligan [[siklopentadienil]] yang terikat melalui kesepuluh atom karbonnya. Pengaturan ini adalah hal yang mengejutkan ketika pertama kali ditemukan,<ref>{{cite journal|title=Ferrocene: Ironclad History of Rashomon Tale?|pages=123–124|pmid=10649350|url=http://www.roaldhoffmann.com/sites/all/files/ferrocene.pdf|date=2000|last1=Laszlo|first1=P|last2=Hoffmann|first2=R|volume=39|issue=1|doi=10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z|journal=Angewandte Chemie (International ed. in English)|access-date=2016-01-11|archive-date=2012-06-28|archive-url=https://www.webcitation.org/68kbtsJr1?url=http://www.roaldhoffmann.com/sites/all/files/ferrocene.pdf|dead-url=yes}}</ref> tetapi penemuan ferosen memicu cabang baru kimia organologam. Ferosen sendiri dapat digunakan sebagai tulang punggung ligan, misalnya [[dppf]]. Ferosen dapat dioksidasi menjadi kation [[ferosenium]] (Fc<sup>+</sup>). Pasangan ferosen/ferosenium sering digunakan sebagai rujukan dalam elektrokimia.<ref>{{Cite journal|doi = 10.1002/chin.200443242|title = Ferrocene: 50 Years of Transition Metal Organometallic Chemistry—From Organic and Inorganic to Supramolecular Chemistry|date = 2004|last1 = Federman Neto|first1 = Alberto|last2 = Pelegrino|first2 = Alessandra Caramori|last3 = Darin|first3 = Vitor Andre|journal = ChemInform|volume = 35|issue = 43}}</ref> |
|||
== Sejarah == |
|||
{{Main|Sejarah metalurgi besi}} |
|||
=== Besi tempa === |
|||
{{further|Produksi besi purba}} |
|||
[[Berkas:Mars symbol.svg|kiri|jmpl|80px|alt=A circle, with a short, simple arrow shape extending diagonally upwards and rightwards from its edge|Simbol planet Mars telah digunakan sejak zaman dahulu untuk menandakan keberadaan besi.]] [[Berkas:QtubIronPillar.JPG|jmpl|alt=An pillar, slightly fluted, with some ornamentation at its top. It is black, slightly weathered to a dark brown near the base. It is around {{convert|7|m|ft|abbr=off|sp=us}} tall. It stands upon a raised circular base of stone, and is surrounded by a short, square fence.|[[Pilar Besi Delhi|Tugu besi Delhi]] adalah sebuah contoh ekstraksi besi dan metodologi pengolahan pada zaman awal India. [[Pilar Besi Delhi|Tugu besi Delhi]] tahan karat selama 1600 tahun terakhir.]] |
|||
Besi telah digarap, atau [[Besi tempa|ditempa]], selama beberapa milenium. Namun, objek besi berumur panjang jauh lebih jarang daripada objek yang dibuat dari emas atau perak karena besi mudah berkarat . Manik-manik yang terbuat dari [[besi meteor]] di 3500 SM atau sebelumnya ditemukan di Gerzah, Mesir oleh G.A. Wainwright.{{sfn|Weeks|1968|p=29}} Manik-manik mengandung 7,5% nikel, yang merupakan tanda bahwa berasal dari meteor karena hanya sedikit besi yang ditemukan pada kerak bumi dan tidak ada kandungan nikelnya. Besi meteorit sangat dihormati karena asal-usulnya di langit dan sering digunakan untuk menempa senjata dan alat-alat atau seluruh spesimen yang ditempatkan di gereja-gereja.{{sfn|Weeks|1968|p=31}} Barang-barang yang terbuat dari besi oleh bangsa Mesir bertanggal 2500 hingga 3000 SM.{{sfn|Weeks|1968|p=29}} Besi memiliki keuntungan pembeda dibandingkan perunggu untuk peralatan perang. Besi jauh lebih keras dan lebih awet dibandingkan perunggu, meskipun rentan terhadap karat . Namun, hal. ini telah ditentang. [[Hittites|Hittitolog]] [[Trevor Bryce]] berargumentasi bahwa sebelum teknik pengolahan besi tingkat lanjut dikembangkan di [[India]], senjata besi meteorit yang digunakan oleh tentara [[Mesopotamia]] awal memiliki kecenderungan mudah hancur dalam peperangan, karena kandungan karbonnya yang tinggi.<ref>{{cite book|author=Bryce, Trevor|title=Hittite Warrior|url=https://books.google.com/books?id=0_oi1CLayh8C&pg=PA22|date=2007|publisher=Osprey Publishing|isbn=978-1-84603-081-9|pages=22–23}}{{Pranala mati|date=Maret 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> |
|||
Produksi besi pertama dimulai sejak [[Zaman Perunggu|Zaman Perunggu tengah]] tetapi memerlukan beberapa abad sebelum dapat menggantikan perunggu. Contoh [[Peleburan (metalurgi)|leburan]] besi dari [[Asmar (Mesopotamia)|Asmar]], Mesopotamia dan Tall Chagar Bazaar di Siria bagian utara dibuat antara 2.700 dan 3.000 SM.{{sfn|Weeks|1968|p=32}} [[Hittites]] tampaknya adalah yang pertama memahami produksi besi dari bijihnya dan sangat dihormati dalam masyarakat mereka. Mereka mulai melebur besi antara 1.500 dan 1.200 SM dan praktik ini tersebar ke Timur Dekat setelah kekaisaran mereka runtuk pada tahun 1.180 SM.{{sfn|Weeks|1968|p=32}} Periode berikutnya disebut [[Zaman Besi]]. Peleburan besi, oleh karenanya dinamakan Zaman Besi, mencapai Eropa dua ratus tahun kemudian dan tiba di [[Zimbabwe]], Afrika pada abad ke-8.{{sfn|Weeks|1968|p=32}} Di China, besi hanya muncul sekitar tahun 700-500 SM.<ref>Sawyer, Ralph D. and Mei-chün Sawyer. ''The Seven Military Classics of Ancient China.'' Boulder: Westview, (1993), p. 10.</ref> Peleburan besi telah diperkenalkan kepada China melalui Asia Tengah.<ref name="pigott2">Pigott, Vincent C. (1999). p. 8.</ref> Bukti awal penggunaan [[tanur tinggi]] di China berpenanggalan abad pertama setelah masehi,<ref name="Golas1999">{{cite book|author=Peter J. Golas|title=Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 13, Mining|url=https://books.google.com/books?id=TSiII7s2wLkC&pg=PA152|date=25 February 1999|publisher=Cambridge University Press|isbn=978-0-521-58000-7|page=152|quote=earlist blast furnace discovered in China from about the first century AD}}</ref> dan tungku kubah ({{Lang-en|cupola furnaces}}) digunakan pada awal periode perang (403–221 BCE).<ref name="pigott">Pigott, Vincent C. (1999). ''The Archaeometallurgy of the Asian Old World''. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 0-924171-34-0, p. 191.</ref> Penggunaan tanur tinggi dan kubah tetap menyebar selama [[Dinasti Song]] dan [[Dinasti Tang|Tang]].<ref name="The Coming of the Ages of Steel">{{cite book|title=The Coming of the Ages of Steel|url=https://books.google.com/books?id=uMwUAAAAIAAJ&pg=PA54|publisher=Brill Archive|page=54|id=GGKEY:DN6SZTCNQ3G|date=1961}}</ref> |
|||
Artifak besi lebur ditemukan di [[Sejarah metalurgi di sub benua India|India]] berpenanggalan antara 1.800 hingga 1.200 SM,<ref name=Tewari>{{cite web| url = http://antiquity.ac.uk/projgall/tewari/tewari.pdf|first = Rakesh|last = Tewari|title = The origins of Iron Working in India: New evidence from the Central Ganga plain and the Eastern Vindhyas|publisher = State Archaeological Department|accessdate = 23 May 2010}}</ref> dan di [[Levant]] sejak sekitar 1.500 SM (menunjukkan peleburan di [[Anatolia]] atau [[Kaukasus]]).<ref>{{Cite journal|doi=10.1080/00438243.1989.9980081|last=Photos|first = E.|title=The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results|journal=World Archaeology |volume=20 |issue=3 |date=1989 |pages=403–421|publisher=Taylor & Francis, Ltd.|jstor = 124562}}</ref><ref>{{Cite book|last = Muhly|first = James D.|chapter = Metalworking/Mining in the Levant|pages = 174–183|title =Near Eastern Archaeology IN: Eisenbrauns|editor = Lake, Richard Winona|date = 2003|volume = 180}}</ref> |
|||
Pengolahan besi masuk ke [[Yunani]] di akhir abad ke-11 SM.<ref>Riederer, Josef; Wartke, Ralf-B.: "Iron", Cancik, Hubert; Schneider, Helmuth (eds.): [[Brill's New Pauly]], Brill 2009</ref> Penyebaran pengolahan besi di Eropa Tengah dan Barat dihubungkan dengan ekspansi kaum [[Kelt]]. Menurut [[Gaius Plinius Secundus]] (''Pliny the Elder'') penggunaan besi adalah jamak pada era [[Romawi Kuno|Romawi]].{{sfn|Weeks|1968|p=31}} Produksi besi tahunan [[Kekaisaran Romawi]] diperkirakan 84.750 [[ton]],<ref>Craddock, Paul T. (2008): "Mining and Metallurgy", in: [[John Peter Oleson|Oleson, John Peter]] (ed.): ''The Oxford Handbook of Engineering and Technology in the Classical World'', Oxford University Press, ISBN 978-0-19-518731-1, p. 108</ref> sementara China Han yang padat penduduk memproduksi sekitar 5.000 [[ton]].<ref>Wagner, Donald B.: "The State and the Iron Industry in Han China", NIAS Publishing, Copenhagen 2001, ISBN 87-87062-77-1, p. 73</ref> |
|||
Selama Revolusi Industri di Inggris, [[Henry Cort]] mulai memperhalus besi dari [[besi kasar]] ({{Lang-en|pig iron}}) dan [[besi tempa]] (atau besi batang) menggunakan sistem produksi inovatif. Pada tahun 1783, ia mematenkan [[Puddling (metalurgi)|proses puddling]] untuk mengolah bijih besi. Proses ini kemudian disempurnakan oleh peneliti lain, termasuk [[Joseph Hall]]. |
|||
=== Besi tuang / besi cor === |
|||
[[Besi tuang]] (atau besi cor) ({{Lang-en|cast iron}}) pertama kali diproduksi di [[China]] selama abad ke-5 SM,<ref>{{Cite journal|author=Wagner, Donald B. |title=Chinese blast furnaces from the 10th to the 14th century|journal=Historical Metallurgy|volume=37|issue=1|date=2003|pages=25–37}} originally published in {{Cite journal|first =Donald B.|last =Wagner|title=Chinese blast furnaces from the 10th to the 14th century|journal=West Asian Science, Technology, and Medicine|volume=18 |date=2001|pages=41–74}}</ref> tetapi hampir tidak dikenal di Eropa sampai periode abad pertengahan.<ref>Giannichedda, Enrico (2007): [https://books.google.com/books?id=LAgxAJNXhFwC&pg=PA200 "Metal production in Late Antiquity"], in ''Technology in Transition AD 300–650'' Lavan, L.; Zanini, E. and Sarantis, A.(eds.), Brill, Leiden; ISBN 90-04-16549-5, p. 200.</ref><ref name="Biddle">{{Cite book|title = Chemistry, Precision and Design|publisher = A Beka Book, Inc.|first1 = Verne|last1 =Biddle|first2= Gregory|last2 =Parker}}</ref> Artifak besi tuang tertua ditemukan oleh arkeolog di tempat yang sekarang dikenal sebagai [[Luhe County]], [[Jiangsu]], China. Besi tuang digunakan oleh [[Sejarah Tiongkok|China kuno]] untuk peralatan perang, pertanian, dan arsitektur.<ref name="Wagner">{{cite book|author=Donald B. Wagner|title=Iron and Steel in Ancient China|date=1993|publisher=BRILL|isbn=978-90-04-09632-5|pages=335–340}}</ref> Selama periode [[Abad Pertengahan|abad pertengahan]], di Eropa ditemukan sarana produksi besi tempa dari besi cor (dalam konteks ini dikenal sebagai besi kasar) dengan menggunakan ''[[finery forge]]''. Pada seluruh proses ini, digunakan [[batu bara]] sebagai bahan bakar. |
|||
[[Tanur tinggi]] abad pertengahan mempunyai tinggi sekitar {{Convert|10|ft|m}} dan terbuat dari bata tahan api; udara tekan diperoleh dari penghembus yang digerakkan oleh tangan.<ref name="Biddle" /> Tanur tinggi modern jauh lebih besar. |
|||
[[Berkas:Philipp Jakob Loutherbourg d. J. 002.jpg|jmpl|''[[Coalbrookdale by Night]]'', 1801. Cahaya tanur tinggi di kota pembuatan besi [[Coalbrookdale]], [[Britania Raya|Inggris]]]] |
|||
Pada tahun 1709, [[Abraham Darby I]] membentuk tanur tinggi batu bara untuk memproduksi besi tuang. Ketersediaan besi murah adalah salah satu faktor yang menyebabkan Revolusi Industri. Menjelang akhir abad ke-18, besi tuang mulai menggantikan besi tempa untuk tujuan tertentu, karena harganya yang lebih murah. Kandungan karbon dalam besi tidak dilihat sebagai alasan untuk membedakan sifat besi tempa, besi tuang, dan baja hingga abad ke-18.{{sfn|Weeks|1968|p=32}} |
|||
Karena besi menjadi lebih murah dan lebih banyak, besi juga menjadi bahan struktural utama menyusul pembangunan inovatif [[The Iron Bridge|jembatan besi pertama]] pada tahun 1778. |
|||
===Tabel kualitas komparatif besi tuang=== |
|||
[[Besi tuang]] atau besi cor ([[bahasa Inggris]]: ''cast iron'') adalah [[Logam paduan|paduan]] [[besi]]-[[karbon]] dengan kandungan karbon lebih dari 2%.<ref>{{cite book|last1=Campbell|first1=F.C.|title=Elements of Metallurgy and Engineering Alloys|url=https://archive.org/details/elementsmetallur00fcam|date=2008|publisher=ASM International|location=Materials Park, Ohio|isbn=978-0-87170-867-0|page=[https://archive.org/details/elementsmetallur00fcam/page/n453 453]}}</ref> Paduan besi dengan kandungan karbon kurang dari 2% disebut sebagai [[baja]]. Unsur paduan utama yang membentuk karakter besi tuang adalah karbon (C) antara 3-3,5% dan [[silikon]] (Si) antara 1,8-2,4%. Perbedaan kadar C dan Si menyebabkan [[titik lebur]] besi tuang lebih rendah dari baja, yakni sekitar 1.150 sampai 1.200 °C. Unsur paduan yang terkandung didalamnya mempengaruhi warna patahannya; besi tuang putih mengandung unsur karbida sedangkan besi tuang kelabu mengandung serpihan grafit. |
|||
{|class="wikitable" |
|||
|+Kualitas komparatif besi tuang<ref>Lyons, William C. and Plisga, Gary J. (eds.) ''Standard Handbook of Petroleum & Natural Gas Engineering'', Elsevier, 2006</ref> |
|||
|- |
|||
!Nama |
|||
!Komposisi nominal [% berat] |
|||
!Bentuk dan kondisi |
|||
!Kekuatan hasil <nowiki>[</nowiki>[[pounds per square inch|ksi]] (0.2% offset)] |
|||
!Kekuatan tarik [ksi] |
|||
!Perpanjangan [%] |
|||
!Kekerasan <nowiki>[</nowiki>[[Brinell scale]]<nowiki>]</nowiki> |
|||
!Penggunaan |
|||
|- |
|||
!Besi cor kelabu ([[ASTM International|ASTM]] A48) |
|||
|C 3.4, Si 1.8, [[manganese|Mn]] 0.5 |
|||
|Cast |
|||
|— |
|||
|50 |
|||
|0.5 |
|||
|260 |
|||
|Blok silinder mesin, roda gila, kotak roda gigi, alas alat mesin |
|||
|- |
|||
!Besi cor putih |
|||
|C 3.4, Si 0.7, Mn 0.6 |
|||
|Cast (as cast) |
|||
|— |
|||
|25 |
|||
|0 |
|||
|450 |
|||
|Permukaan bantalan bearing |
|||
|- |
|||
!Besi lunak (ASTM A47) |
|||
|C 2.5, Si 1.0, Mn 0.55 |
|||
|Cast (annealed) |
|||
|33 |
|||
|52 |
|||
|12 |
|||
|130 |
|||
|Bantalan bearing gandar, roda track, poros engkol otomotif |
|||
|- |
|||
!Besi ulet atau nodular |
|||
|C 3.4, P 0.1, Mn 0.4, [[nickel|Ni]] 1.0, Mg 0.06 |
|||
|Cast |
|||
|53 |
|||
|70 |
|||
|18 |
|||
|170 |
|||
|Roda gigi, poros bubungan, poros engkol |
|||
|- |
|||
!Besi ulet atau nodular (ASTM A339) |
|||
|— |
|||
|Cast (quench tempered) |
|||
|108 |
|||
|135 |
|||
|5 |
|||
|310 |
|||
|— |
|||
|- |
|||
!Ni-keras tipe 2 |
|||
|C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0 |
|||
|Sand-cast |
|||
|— |
|||
|55 |
|||
|— |
|||
|550 |
|||
|Aplikasi kekuatan tinggi |
|||
|- |
|||
!Ni-resist tipe 2 |
|||
|C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5 |
|||
|Cast |
|||
|— |
|||
|27 |
|||
|2 |
|||
|140 |
|||
|Ketahanan terhadap panas dan korosi |
|||
|} |
|||
=== Baja === |
|||
{{See also|Pembuatan baja}} |
|||
Baja (dengan kandungan karbon yang lebih kecil daripada besi kasar tetapi lebih banyak daripada besi tempa) pertama kali diproduksi menggunakan [[bloomery]]. Pandai besi di [[Luristan]], Iran bagian barat membuat baja yang bagus pada 1.000 SM.{{sfn|Weeks|1968|p=32}} Kemudian, versi pengembagannya adalah, [[baja Wootz]] oleh India dan [[baja Damaskus]] dikembangkan sekitar 300 SM dan 500 setelah masehi. Metode ini adalah spesialisasi, dan oleh karenanya baja tiak menjadi komoditas utama hingga tahun 1850an.<ref>Spoerl, Joseph S. [http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm A Brief History of Iron and Steel Production] {{Webarchive|url=https://web.archive.org/web/20100602031459/http://www.anselm.edu/homepage/dbanach/h-carnegie-steel.htm |date=2010-06-02 }}. Saint Anselm College</ref> |
|||
Metode produksi baru adalah melalui [[karburasi]] besi batangan dalam [[proses sementasi]] ditemukan pada abad ke-17. Pada Revolusi Industri, metode baru memproduksi besi batangan tanpa batu bara ditemukan dan hal ini kemudian digunakan untuk memproduksi baja. Pada akhir 1850an, [[Henry Bessemer]] menciptakan proses pembuatan baja baru, melibatkan penghembusan udara melalui lelehan besi kasar untuk memproduksi baja lunak. Hal ini membuat baja jauh lebih ekonomis, oleh karena itu besi tempa tidak lagi diproduksi.<ref>{{cite book|url = https://books.google.com/books?id=fUmTX8yKU4gC&pg=PA190|pages = 190–191|title = Encyclopedia of the Elements: Technical Data - History - Processing - Applications|isbn = 9783527612345|author1 = Enghag|first1 = Per|date = 8 January 2008}}</ref> |
|||
==== Baja tahan karat ==== |
|||
Baja tahan karat adalah istilah yang umum untuk semua jenis baja yang merupakan produk dari proses peleburan khusus, memiliki tingkat kemurnian yang tinggi, dan bereaksi merata terhadap panas yang diberikan. Berdasarkan definisi ini, baja stainless tidak harus selalu merupakan baja alloy atau baja alloy tinggi. Dalam uraian ini akan dibatasi pada baja stainless alloy tinggi dengan kandungan kromium setidaknya 10,5%. Berdasarkan strukturnya, baja stainless alloy tinggi dapat dikelompokkan ke dalam kategori berikut: |
|||
* baja tahan karat feritik |
|||
* baja tahan karat martensitik |
|||
* baja tahan karat austenitik |
|||
* baja tahan karat feritik-austenitik (baja dupleks) |
|||
* Baja tahan karat feritik |
|||
;Baja tahan karat feritik dibagi menjadi dua kelompok: |
|||
* dengan kromium (CR) sekitar 11 hingga 13% |
|||
* dengan kromium (CR) sekitar 17% |
|||
Baja tahan karat dengan kandungan kromium sebesar 10,5% hingga 13% dikategorikan sebagai lembam korosi karena kandungan kromiumnya yang rendah. Baja ini digunakan jika kriteria yang diutamakan adalah masa pakai, keamanan, dan tingkat perawatan yang rendah dan tidak ada kriteria spesifik yang dibutuhkan. Bidang aplikasi yang umum menggunakannya misalnya konstruksi kontainer, konstruksi gerbong, dan konstruksi kendaraan. |
|||
;Baja tahan karat martensitik |
|||
Baja tahan karat martensitik dengan kandungan kromium 12 hingga 18% dan kandungan karbon melebihi 0,1% akan berubah menjadi austenitik pada temperatur di atas 950 - 1050°C. Pendinginan cepat (quenching) akan menghasilkan struktur martensitik. Struktur ini, terutama jika dikeraskan dan didinginkan, akan menghasilkan kekuatan yang tinggi dan bahkan meningkatkan kandungan karbon. Baja tahan karat martensitik digunakan misalnya untuk produksi pisau silet, pisau, atau gunting. |
|||
;Baja tahan karat austenitik |
|||
Baja tahan karat austenitik (disebut juga: baja kromium-nikel) dengan kandungan nikel di atas 8% merupakan kombinasi yang ideal untuk aplikasi praktis yang terkait pemrosesan, ketahanan terhadap korosi, dan karakteristik mekanisnya. Karakteristik utama dari jenis baja stainless ini adalah ketahanan yang tinggi terhadap korosi. Atas dasar itu, baja stainless austenitik diterapkan di area dengan media yang agresif, misalnya kontak dengan air laut yang mengandung klorida dan dalam industri kimia dan makanan. |
|||
;Baja tahan karat feritik-austenitik |
|||
Baja tahan karat feritik-austenitik seringkali disebut juga baja dupleks karena merupakan komposit yang terbentuk dari dua struktur ini. Karena baja ini memiliki tingkat fleksibilitas yang tinggi dan juga memiliki ketahanan yang lebih baik terhadap korosi, baja jenis ini terutama cocok untuk penggunaan pada teknik lepas pantai. |
|||
==== SAE steel grades ==== |
|||
Sistem nilai baja steel grades SAE adalah sistem penomoran paduan standar (SAE J1086 - Numbering Metals and Alloys) untuk nilai baja yang dikelola oleh SAE International. |
|||
{| class="wikitable" |
|||
|+ Penamaan baja tahan karat {{sfn|Oberg|2004|pp=448–49}} |
|||
|- |
|||
! colspan=2 | Penamaan |
|||
! colspan=9 | Komposisi menurut berat (%) |
|||
|- |
|||
! SAE |
|||
! UNS |
|||
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]] |
|||
! Lainnya |
|||
|- |
|||
! colspan="11" | Austenitik |
|||
|- |
|||
| 201 || S20100 || 16–18 || 3.5–5.5 || 0.15 || 5.5–7.5 || 0.75 || 0.06 || 0.03 || 0.25 || - |
|||
|- |
|||
| 202 || S20200 || 17–19 || 4–6 || 0.15 || 7.5–10.0 || 0.75 || 0.06 || 0.03 || 0.25 || - |
|||
|- |
|||
| 205 || S20500 || 16.5–18 || 1–1.75 || 0.12–0.25 || 14–15.5 || 0.75 || 0.06 || 0.03 || 0.32–0.40 || - |
|||
|- |
|||
| 254<ref name="ni">{{cite web |url=http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |title=What is Stainless Steel? |publisher=Nickel Institute |access-date=2007-08-13 |url-status=dead |archive-url=https://web.archive.org/web/20051231194101/http://www.nickelinstitute.org/index.cfm/ci_id/11021.htm |archive-date=2005-12-31 }}</ref> || S31254 || 20 || 18 || 0.02 max. || - || - || - || - || 0.20 || 6 Mo; 0.75 Cu; "Super austenitic"; All values nominal |
|||
|- |
|||
| 301 || S30100 || 16–18 || 6–8 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 302 || S30200 || 17–19 || 8–10 || 0.15 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || - |
|||
|- |
|||
| 302B || S30215 || 17–19 || 8–10 || 0.15 || 2 || 2.0–3.0 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 303 || S30300 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.15 min. || - || Mo 0.60 (optional) |
|||
|- |
|||
| 303Se || S30323 || 17–19 || 8–10 || 0.15 || 2 || 1 || 0.2 || 0.06 || - || 0.15 Se min. |
|||
|- |
|||
| 304 || S30400 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || - |
|||
|- |
|||
| 304L || S30403 || 18–20 || 8–12 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.1 || - |
|||
|- |
|||
| 304Cu || S30430 || 17–19 || 8–10 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || - || 3–4 Cu |
|||
|- |
|||
| 304N || S30451 || 18–20 || 8–10.50 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || - |
|||
|- |
|||
| 305 || S30500 || 17–19 || 10.50–13 || 0.12 || 2 || 0.75 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 308 || S30800 || 19–21 || 10–12 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 309 || S30900 || 22–24 || 12–15 || 0.2 || 2 || 1 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 309S || S30908 || 22–24 || 12–15 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| [[SAE 310S stainless steel|310]] || S31000 || 24–26 || 19–22 || 0.25 || 2 || 1.5 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| [[SAE 310S stainless steel|310S]] || S31008 || 24–26 || 19–22 || 0.08 || 2 || 1.5 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 314 || S31400 || 23–26 || 19–22 || 0.25 || 2 || 1.5–3.0 || 0.045 || 0.03 || - || - |
|||
|- |
|||
| 316 || S31600 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo |
|||
|- |
|||
| 316L || S31603 || 16–18 || 10–14 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 || 2.0–3.0 Mo |
|||
|- |
|||
| 316F || S31620 || 16–18 || 10–14 || 0.08 || 2 || 1 || 0.2 || 0.10 min. || - || 1.75–2.50 Mo |
|||
|- |
|||
| 316N || S31651 || 16–18 || 10–14 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10–0.16 || 2.0–3.0 Mo |
|||
|- |
|||
| 317 || S31700 || 18–20 || 11–15 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo |
|||
|- |
|||
| 317L || S31703 || 18–20 || 11–15 || 0.03 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || 3.0–4.0 Mo |
|||
|- |
|||
| 321 || S32100 || 17–19 || 9–12 || 0.08 || 2 || 0.75 || 0.045 || 0.03 || 0.10 max. || Ti 5(C+N) min., 0.70 max. |
|||
|- |
|||
| 329 || S32900 || 23–28 || 2.5–5 || 0.08 || 2 || 0.75 || 0.04 || 0.03 || - || 1–2 Mo |
|||
|- |
|||
| 330 || N08330 || 17–20 || 34–37 || 0.08 || 2 || 0.75–1.50 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 347 || S34700 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max. |
|||
|- |
|||
| 348 || S34800 || 17–19 || 9–13 || 0.08 || 2 || 0.75 || 0.045 || 0.030 || - || Nb + Ta, 10 × C min., 1 max., but 0.10 Ta max.; 0.20 Ca |
|||
|- |
|||
| 384 || S38400 || 15–17 || 17–19 || 0.08 || 2 || 1 || 0.045 || 0.03 || - || - |
|||
|- |
|||
! colspan=2 | Penamaan |
|||
! colspan=9 | Komposisi menurut berat (%) |
|||
|- |
|||
! SAE |
|||
! UNS |
|||
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]] |
|||
! Lainnya |
|||
|- |
|||
! colspan="11" | Feritik |
|||
|- |
|||
| 405 || S40500 || 11.5–14.5 || - || 0.08 || 1 || 1 || 0.04 || 0.03 || - || 0.1–0.3 Al, 0.60 max. |
|||
|- |
|||
| 409 || S40900 || 10.5–11.75 || 0.05 || 0.08 || 1 || 1 || 0.045 || 0.03 || - || Ti 6 × (C + N) <ref>{{cite book|title=ASTM A SA-240/SA-540M|chapter=section 2, part A:Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications|year=2007|page=385}}</ref> |
|||
|- |
|||
| 429 || S42900 || 14–16 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 430 || S43000 || 16–18 || 0.75 || 0.12 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 430F || S43020 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo (optional) |
|||
|- |
|||
| 430FSe || S43023 || 16–18 || - || 0.12 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min. |
|||
|- |
|||
| 434 || S43400 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo |
|||
|- |
|||
| 436 || S43600 || 16–18 || - || 0.12 || 1 || 1 || 0.04 || 0.03 || - || 0.75–1.25 Mo; Nb+Ta 5 × C min., 0.70 max. |
|||
|- |
|||
| 442 || S44200 || 18–23 || - || 0.2 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 446 || S44600 || 23–27 || 0.25 || 0.2 || 1.5 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
! colspan=2 | Penamaan |
|||
! colspan=9 | Komposisi menurut berat (%) |
|||
|- |
|||
! SAE |
|||
! UNS |
|||
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]] |
|||
! Lainnya |
|||
|- |
|||
! colspan="11" | Martensitik |
|||
|- |
|||
| 403 || S40300 || 11.5–13.0 || 0.60 || 0.15 || 1 || 0.5 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 410 || S41000 || 11.5–13.5 || 0.75 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 414 || S41400 || 11.5–13.5 || 1.25–2.50 || 0.15 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 416 || S41600 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.060 Mo (optional) |
|||
|- |
|||
| 416Se || S41623 || 12–14 || - || 0.15 || 1.25 || 1 || 0.06 || 0.06 || - || 0.15 Se min. |
|||
|- |
|||
| 420 || S42000 || 12–14 || - || 0.15 min. || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 420F || S42020 || 12–14 || - || 0.15 min. || 1.25 || 1 || 0.06 || 0.15 min. || - || 0.60 Mo max. (optional) |
|||
|- |
|||
| 422 || S42200 || 11.0–12.5 || 0.50–1.0 || 0.20–0.25 || 0.5–1.0 || 0.5 || 0.025 || 0.025 || - || 0.90–1.25 Mo; 0.20–0.30 V; 0.90–1.25 W |
|||
|- |
|||
| 431 || S41623 || 15–17 || 1.25–2.50 || 0.2 || 1 || 1 || 0.04 || 0.03 || - || - |
|||
|- |
|||
| 440A || S44002 || 16–18 || - || 0.60–0.75 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo |
|||
|- |
|||
| 440B || S44003 || 16–18 || - || 0.75–0.95 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo |
|||
|- |
|||
| [[440C]] || S44004 || 16–18 || - || 0.95–1.20 || 1 || 1 || 0.04 || 0.03 || - || 0.75 Mo |
|||
|- |
|||
! colspan=2 | Penamaan |
|||
! colspan=9 | Komposisi menurut berat (%) |
|||
|- |
|||
! SAE |
|||
! UNS |
|||
! [[Kromium|Cr]] !! [[Nikel|Ni]] !! [[Karbon|C]] !! [[Mangan|Mn]] !! [[Silikon|Si]] !! [[Fosforus|P]] !! [[Belerang|S]] !! [[Nitrogen|N]] |
|||
! Lainnya |
|||
|- |
|||
! colspan="11" | Tahan panas |
|||
|- |
|||
| 501 || S50100 || 4–6 || - || 0.10 min. || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo |
|||
|- |
|||
| 502 || S50200 || 4–6 || - || 0.1 || 1 || 1 || 0.04 || 0.03 || - || 0.40–0.65 Mo |
|||
|- |
|||
! colspan="11"|Pengerasan presipitasi martensit |
|||
|- |
|||
| 630 || S17400 || 15–17 || 3–5 || 0.07 || 1 || 1 || 0.04 || 0.03 || - || Cu 3–5, Ta 0.15–0.45 <ref>{{cite web |url=http://www.upmet.com/media/17-4.pdf |title=Precipitation-Hardening Stainless Steel Type 17-4PH (S17400)}}</ref> |
|||
|} |
|||
=== Dasar kimia modern === |
|||
Pada tahun 1774, [[Antoine Lavoisier]] mereaksikan uap air dengan besi logam di dalam tabung besi pijar untuk menghasilkan [[hidrogen]] dalam percobaan yang mengarah ke demonstrasi [[Hukum kekekalan massa|konservasi massa]], yang mengubah instrumentasi kimia dari ilmu kualitatif menjadi kuantitatif. Oksidasi anaerobik besi pada temperatur tinggi secara skematis dapat ditunjukkan oleh reaksi berikut: |
|||
:<chem>Fe + H2O -> FeO + H2</chem> |
|||
:<chem>2Fe + 3H2O -> Fe2O3 + 3H2</chem> |
|||
:<chem>3Fe + 4H2O -> Fe3O4 + 4H2</chem> |
|||
<!-- |
|||
===Recent discoveries=== |
|||
* discovery of [[Mössbauer effect]] |
|||
* many enzymes use iron in the catalytic center |
|||
* Nickel-56 is the natural end product of silicon burning in massive stars. However, nickel-56 decays to cobalt-56 and then to stable iron-56, ultimately making iron the most abundant heavy element produced by that nucleosynthesis. |
|||
* superconductivity? |
|||
* magnetic effect |
|||
* [[ferrocene]] --> |
|||
== Produksi besi logam == |
|||
=== Jalur industri === |
|||
{{See also|Bijih besi}} |
|||
Produksi besi atau baja adalah suatu proses dengan dua tahapan utama, kecuali produk yang diinginkan adalah besi tuang. Tahap pertama adalah produksi besi kasar (''pig iron'') dalam tanur tinggi. Cara lain, reduksi langsung. Tahap kedua, besi kasar diubah menjadi besi tempa atau baja.<!--https://books.google.com/books?id=xkVPNtRagDkC--> |
|||
[[Berkas:Chinese Fining and Blast Furnace.jpg|jmpl|Proses pengolahan leburan bijih besi untuk membuat besi tempa dari besi kasar, dengan ilustrasi di sebelah kanan menampilkan pria yang bekerja di tanur tinggi, dari ensiklopedia ''Tiangong Kaiwu'', diterbitkan pada 1637 oleh [[Song Yingxing]].]] [[Berkas:Iron-Making.jpg|jmpl|Cara ekstraksi besi abad ke-19]] |
|||
Untuk beberapa fungsi terbatas seperti inti elektromagnet, besi murni diproduksi dengan cara elektrolisis larutan [[fero sulfat]]. |
|||
Bijih besi terdiri atas [[oksigen]] dan [[atom]] [[besi]] yang berikatan bersama dalam [[molekul]]. Besi sendiri biasanya didapatkan dalam bentuk [[magnetit]] (Fe<sub>3</sub>O<sub>4</sub>), [[hematit]] (Fe<sub>2</sub>O<sub>3</sub>), [[goethit]], [[limonit]] atau [[siderit]]. Bijih besi biasanya kaya akan [[besi oksida]] dan beragam dalam hal [[warna]], dari kelabu tua, kuning muda, ungu tua, hingga merah karat. Saat ini, cadangan biji besi tampak banyak, namun seiring dengan bertambahnya penggunaan besi secara eksponensial berkelanjutan, cadangan ini mulai berkurang, karena jumlahnya tetap. Sebagai contoh, [[Lester Brown]] dari [[Worldwatch Institute]] telah memperkirakan bahwa bijih besi bisa habis dalam waktu 64 tahun berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.<ref>{{cite web |url=http://www.mii.org/Minerals/photoiron.html |title=Iron Ore – Hematite, Magnetite & Taconite |work=Mineral Information Institute |access-date=7 April 2006 |url-status=dead |archive-url=https://web.archive.org/web/20060417160321/http://www.mii.org/Minerals/photoiron.html |archive-date=17 April 2006 }}</ref><ref>{{Cite journal|last1=Goldstein|first1=J.I.|last2=Scott|first2=E.R.D.|last3=Chabot|first3=N.L.|date=2009|title=Iron meteorites: Crystallization, thermal history, parent bodies, and origin|journal=Geochemistry|language=en|volume=69|issue=4|pages=293–325|doi=10.1016/j.chemer.2009.01.002|bibcode=2009ChEG...69..293G}}</ref> |
|||
;Tabel kandungan mineral besi |
|||
{| class=wikitable |
|||
!Mineral !! Rumus kimia !! Kandungan besi teoritis dalam mineral (dalam%)!! Kandungan besi teoritis setelah kalsinasi (dalam%) |
|||
|- |
|||
| [[Hematit]] || {{Chem|Fe|2|O|3}} || align="center" | 69,96 || align="center" | 69,96 |
|||
|- |
|||
| [[Magnetit]] || {{Chem|Fe|3|O|4}} || align="center" | 72,4 || align="center" | 72,4 |
|||
|- |
|||
| [[Magnesioferrite]] || {{Chem|MgOFe|2|O|3}} || align="center" | 56-65 || align="center" | 56-65 |
|||
|- |
|||
| [[Goetit]] || {{Chem|Fe|2|O|3|H|2|O}} || align="center" | 62,9 || align="center" | 70 |
|||
|- |
|||
| [[Hydrogœthite]] || {{Chem|3Fe|2|O|3|4H|2|O}} || align="center" | 60,9 || align="center" | 70 |
|||
|- |
|||
| [[Limonit]] || {{Chem|2Fe|2|O|3|3H|2|O}} || align="center" | 60 || align="center" | 70 |
|||
|- |
|||
| [[Siderite]] || {{Chem|FeCO|3}} || align="center" | 48,3 || align="center" | 70 |
|||
|- |
|||
| [[Pirit]] || {{Chem|FeS|2}} || align="center" | 46,6 || align="center" | 70 |
|||
|- |
|||
| [[Pyrrhotite]] || {{Chem|Fe|1-x|S}} || align="center" | 61,5 || align="center" | 70 |
|||
|- |
|||
| [[Ilmenit]] || {{Chem|FeTiO|3}} || align="center" | 36,8 || align="center" | 36,8 |
|||
|} |
|||
==== Proses tanur tinggi ==== |
|||
{{Main|Tanur tinggi}} |
|||
Produksi besi industri dimulai dari bijih besi, biasanya [[hematit]], dengan rumus Fe<sub>2</sub>O<sub>3</sub>, dan [[magnetit]], dengan rumus Fe<sub>3</sub>O<sub>4</sub>. Bijih ini direduksi menjadi logam dalam suatu reaksi [[karbotermal]], yaitu diberi perlakuan dengan karbon. Konversi ini biasa dilakukan dalam tanur tinggi pada temperatur sekitar 2000 °C. Karbon dipasok dalam bentuk kokas. Process ini juga mengandung ''fluks'' seperti ''[[limestone]]'', yang digunakan untuk menghilangkan mineral silika dalam bijih, yang dapat menyimbat tanur. Kokas dan gamping dimasukkan melalui puncak tanur, ketika tengah terjadi ledakan hebat saat pemanasan [[Atmosfer bumi|udara]], sekitar 4 ton per ton besi,<ref name="Biddle" /> yang dipompa ke dalam tanur melalui bagian bawah. |
|||
Di dalam tanur, kokas bereaksi dengan oksigen dalam ledakan udara menghasilkan [[karbon monoksida]]: |
|||
:<chem>2C + O2 -> 2CO</chem> |
|||
Karbon monoksida yang mereduksi bijih besi (sesuai [[persamaan reaksi]] di bawah, hematite) menjadi lelehan besi, berubah menjadi [[karbon dioksida]] sesuai proses: |
|||
:<chem>Fe2O3 + 3CO -> 2Fe + 3CO2</chem> |
|||
Beberapa besi dalam temperatur tinggi di bagian-bagian tanur yang lebih ''dingin'' bereaksi langsung dengan kokas: |
|||
:<chem>2Fe2O3 + 3C -> 4Fe + 3CO2</chem> |
|||
Fluks yang berguna untuk melelehkan ketakmurnian dalam bijih biasanya adalah [[Batugamping|batu gamping]] ({{Lang-en|limestone}}) ([[kalsium karbonat]]) dan [[dolomit]] (kalsium-magnesium karbonat). Fluks khusus lainnya digunakan bergantung pada karakteristik bijih. Panas di dalam tungku mengakibatkan fluks batu gamping terdekomposisi menjadi [[kalsium oksida]] (dikenal juga sebagai tawas): |
|||
:<chem>CaCO3 -> CaO + CO2</chem> |
|||
Kemudian kalsium oksida bereaksi dengan silikon dioksida membentuk [[Slag (cairan)|''slag'']]. |
|||
:<chem>CaO + SiO2 -> CaSiO3</chem> |
|||
Slag meleleh karena panas tanur. Pada dasar tanur, lelehan slag mengapung di atas lelehan besi yang lebih padat, dan tingkap di bagian samping tanur dibuka untuk mengalirkan dan memisahkan besi dengan slag. Besi, ketika telah dingin, disebut besi kasar (''pig iron''), sementara slag dapat digunakan sebagai bahan konstruksi [[Jalan raya|jalan]] atau bahan pengaya tanah yang miskin mineral untuk [[pertanian]].<ref name="Biddle" /> |
|||
[[Berkas:LightningVolt Iron Ore Pellets.jpg|jmpl|Tumpukan pelet bijih besi yang akan digunakan dalam produksi baja.]] |
|||
==== Reduksi besi langsung ==== |
|||
Karena masalah lingkungan, telah dikembangkan metode alternatif pengolahan besi. "Reduksi besi langsung" mereduksi bijih besi menjadi serbuk yang dinamakan besi "karang" atau besi "langsung" yang cocok untuk pembuatan baja.<ref name="Biddle" /> Dua reaksi utama pada proses reduksi langsung: |
|||
* Gas alam dioksidasi sebagian (dengan panas dan katalis): |
|||
:<chem>2CH4 + O2 -> 2CO + 4H2</chem> |
|||
* Gas-gas ini kemudian diberi perlakuan dengan bijih besi dalam tanur, menghasilkan besi karang padat: |
|||
:<chem>Fe2O3 + CO + 2H2 -> 2Fe + CO2 + 2H2O</chem> |
|||
[[Silika]] dihilangkan dengan penambahan fluks [[Batugamping|gamping]] seperti telah dijelaskan di atas. |
|||
=== Metode laboratorium === |
|||
[[Berkas:Iron carbon phase diagram.svg|jmpl|340px|Diagram fase besi-karbon, berbagai bentuk [[larutan padat]] yang stabil]] |
|||
Besi logam secara umum diproduksi di laboratorium melalui dua metode. Pertama adalah elektrolisis fero klorida pada katode besi. Metode kedua melibatkan reduksi besi oksida dengan gas hidrogen pada temperatur sekitar 500 °C.<ref>H. Lux "Metallic Iron" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1490-1..</ref> |
|||
== Aplikasi == |
|||
[[Berkas:Iron powder.JPG|jmpl|250px|[[Serbuk besi]]]] |
|||
=== Metalurgi === |
|||
{|class="wikitable" style="float:left; clear:left; margin-right:1em; margin-top:0;" |
|||
|+Produksi besi 2009 (juta [[ton]])<ref>[http://www.worldsteel.org/statistics/statistics-archive/yearbook-archive.html Steel Statistical Yearbook 2010] {{Webarchive|url=https://web.archive.org/web/20120701061319/http://worldsteel.org/statistics/statistics-archive/yearbook-archive.html |date=2012-07-01 }}. World Steel Association</ref> |
|||
!Negara!![[Bijih besi]]!![[Besi kasar]]!![[Besi reduksi langsung|Besi reduksi]]!![[Baja]] |
|||
|- |
|||
|Cina|| 1.114,9||549.4 || || 573.6 |
|||
|- |
|||
|Australia||393,9|| 4.4|| ||5.2 |
|||
|- |
|||
|Brazil||305,0||25.1 ||0.011 ||26.5 |
|||
|- |
|||
|Jepang|| || 66.9|| || 87.5 |
|||
|- |
|||
|India||257,4||38.2 || 23.4||63.5 |
|||
|- |
|||
|Rusia||92,1|| 43.9|| 4.7||60.0 |
|||
|- |
|||
|Ukraina||65,8|| 25.7|| ||29.9 |
|||
|- |
|||
|Korea |
|||
Selatan |
|||
|| 0,1|| 27.3|| ||48.6 |
|||
|- |
|||
|Jerman||0,4 || 20.1||0.38 ||32.7 |
|||
|- |
|||
!Dunia!! 1.594,9!!914.0!! 64.5!! 1,232.4 |
|||
|} |
|||
Besi adalah logam yang paling banyak digunakan, mencakup 92% dari produksi logam dunia.<ref group="n">Data UGSG menyatakan produksi besi termsuk daur ulang adalah 998Mt, aluminium (39Mt), tembaga (18Mt), seng (11Mt) dan timbal (8,6Mt)</ref> <!-- The UGSG gives a production of iron including recycling with 998Mt, while aluminium (39Mt), copper (18Mt), zinc (11Mt) and lead (8.6Mt) add up to 77 Mt, all including recycling. This more like 8% than 5.-->Biayanya yang rendah dan kekuatannya yang tinggi membuatnya sangat diperlukan dalam aplikasi teknik seperti pembangunan mesin dan [[peralatan mesin]], [[mobil]], [[Lambung kapal|lambung]] [[Kapal|kapal-kapal]] besar, dan komponen struktur [[bangunan]]. Karena besi murni cukup lunak, hal ini paling sering dikombinasikan dengan unsur paduan untuk membuat baja. |
|||
Besi yang tersedia untuk komersial diklasifikasikan berdasarkan kemurnian dan kandungan aditifnya. [[Besi kasar|''Pig iron'']] memiliki 3,5-4,5% karbon<ref name="msts">{{Cite book|last1 = Camp|first1 = James McIntyre|last2 = Francis|first2 = Charles Blaine|title = The Making, Shaping and Treating of Steel|publisher = Carnegie Steel Company|date=1920|location = Pittsburgh|pages = 173–174|url = https://books.google.com/?id=P9MxAAAAMAAJ|isbn = 1-147-64423-3}}</ref> dan mengandung berbagai jumlah kontaminan seperti [[belerang]], silikon dan [[fosfor]]. ''Pig iron'' bukan produk komersial, melainkan tahap antara dalam produksi besi tuang dan baja. Pengurangan kontaminan dalam pig iron yang berpengaruh negatif kepada sifat materi, seperti belerang dan fosfor, menghasilkan besi tuang yang mengandung 2–4% karbon, 1–6% silikon, dan sejumlah kecil [[mangan]]. Ia memiliki [[titik leleh]] di kisaran 1420-1470 K, lebih rendah daripada salah satu dari dua komponen utama, dan membuatnya produk pertama yang akan meleleh ketika karbon dan besi dipanaskan bersama-sama. Sifat mekaniknya sangat bervariasi dan bergantung pada bentuk karbon dalam paduan. |
|||
Besi tuang "putih" mengandung karbon dalam bentuk [[sementit]], atau besi-karbida. Senyawa keras dan rapuh ini mendominasi sifat mekanik besi tuang putih ini, sehingga tetap keras, tetapi tidak tahan kejut. Permukaan besi tuang putih yang rusak penuh goresan halus pecahan besi-karbida, suat bahan mengkilap, keperakan dan sangat pucat. |
|||
Dalam [[besi abu-abu]], karbon berbentuk serpihan halus [[grafit]] terpisah, dan juga membuat bahan rapuh karena serpihannya bermata tajam yang menghasilkan alokasi [[konsentrasi tegangan]] dalam materi. Varian baru dari besi abu-abu, disebut sebagai [[besi elastis]] yang diberi perlakuan khusus dengan [[magnesium]] dalam jumlah renik untuk mengubah bentuk grafit menjadi sferoid, atau nodul, mengurangi konsentrasi tegangan serta meningkatkan ketangguhan dan kekuatan material. |
|||
[[Besi tempa]] mengandung kurang dari 0,25% karbon, tetapi mengandung terak dalam jumlah besar sehingga memberikan karakteristik berserat.<ref name="msts" /> Ini adalah produk keras, dapat ditempa, tetapi tidak mudah dilebur seperti ''pig iron''. Ia juga mudah diasah Besi tempa ditandai oleh adanya serat terak halus yang terperangkap dalam logam. Besi tempa lebih tahan korosi daripada baja. Produk ''[[blacksmithing]]'' dan "besi tempa" tradisional dan telah hampir sepenuhnya digantikan oleh [[baja ringan]]. |
|||
Baja ringan lebih mudah berkarat daripada besi tempa, tetapi lebih murah dan lebih banyak tersedia. [[Baja karbon]] mengandung 2,0% karbon atau kurang,<ref name="kts">{{cite web|title = Classification of Carbon and Low-Alloy Steels|url = http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=62|accessdate = 5 January 2008}}</ref> ditambah sedikit [[manganese|mangan]], [[belerang]], [[Fosforus|fosfor]], dan [[silikon]]. [[Baja paduan]] mengandung bervariasi jumlah karbon dan logam lain, seperti [[kromium]], [[vanadium]], [[molibdenum]], [[nikel]], [[wolfram]], dan sebagainya. Kandungan paduannya mendongkrak biaya, sehingga biasanya hanya digunakan untuk keperluan khusus. Satu baja paduan umum, adalah [[baja nirkarat]]. Recent Perkembangan terkini dalam metalurgi besi telah menghasilkan berbagai baja paduan mikro, yang disebut juga baja '[[Baja HSLA|HSLA]]' (singkatan dari {{Lang-en|'''H'''igh '''S'''trength '''L'''ow '''A'''lloy}}), mengandung sedikit tambahan untuk menghasilkan kekuatan tinggi dan biasanya ketangguhan spektakuler dengan biaya minimal. |
|||
[[Berkas:Ironattenuation.PNG|jmpl|alt=A graph of attenuation coefficient vs. energy between 1 meV and 100 keV for several photon scattering mechanisms.|[[Koefisien atenuasi massa]] [[foton]] besi.]] |
|||
Terlepas dari aplikasi tradisional, besi juga digunakan untuk perlindungan dari radiasi pengion. Meskipun lebih ringan daripada bahan perlindungan tradisional lainnya, yaitu timbal, ini jauh lebih kuat secara mekanis. Atenuasi radiasi sebagai fungsi energi ditunjukkan dalam grafik. |
|||
Kerugian utama besi dan baja adalah bahwa besi murni, dan sebagian besar paduannya, dapat membentuk [[karat]] jika tidak dilindungi. [[Cat|Pengecatan]], [[galvanisasi]], [[pasivasi (kimia)|pasivasi]], pelapisan plastik dan [[Pembiruan (baja)|pembiruan]] semua digunakan untuk melindungi besi dari karat dengan menghalangi masuknya [[air]] dan oksigen atau dengan [[proteksi katodik]]. |
|||
=== Senyawa besi === |
|||
Meskipun peran metalurgi dominan dalam hal jumlah, senyawa besi banyak digunakan oleh baik industri maupun kegunaan lainnya. Katalis besi secara tradisional digunakan dalam [[proses Haber-Bosch]] untuk produksi amonia dan [[proses Fischer-Tropsch]] untuk konversi karbon monoksida menjadi [[hidrokarbon]] untuk bahan bakar dan pelumas.<ref>{{Cite book|title = Surface science: foundations of catalysis and nanoscience|first = Kurt W.|last = Kolasinski|isbn = 978-0-471-49244-3|publisher =John Wiley and Sons|date = 2002|url = https://books.google.com/?id=OA7L1l6oHAYC&pg=PR15|chapter = Where are Heterogenous Reactions Important|pages = 15–16}}</ref> Serbuk besi dalam pelarut asam digunakan dalam [[reduksi Bechamp]] yaitu reduksi [[nitrobenzena]] menjadi [[anilin]].<ref>{{Cite book|url = https://books.google.com/?id=BiywGdlot9kC&pg=PA167|chapter = Nitrobenzene and Nitrotoluene|isbn = 978-0-8247-2481-8|publisher = CRC Press|date = 1989|first = John J.|last = McKetta|title = Encyclopedia of Chemical Processing and Design: Volume 31 – Natural Gas Liquids and Natural Gasoline to Offshore Process Piping: High Performance Alloys|pages = 166–167}}</ref> |
|||
[[Besi(III) klorida]] digunakan untuk pemurnian air dan [[pengolahan limbah]], untuk mewarnai tekstil, sebagai pewarna cat, sebagai aditif pakan ternak, dan sebagai [[Industrial etching|''etchant'']] untuk [[tembaga]] dalam pabrikasi [[Papan sirkuit cetak|PCB]].<ref>{{Cite journal| doi = 10.1002/14356007.a14_591| title = Ullmann's Encyclopedia of Industrial Chemistry| date = 2000| last1 = Wildermuth| first1 = Egon| last2 = Stark| first2 = Hans| last3 = Friedrich| first3 = Gabriele| last4 = Ebenhöch| first4 = Franz Ludwig| last5 = Kühborth| first5 = Brigitte| last6 = Silver| first6 = Jack| last7 = Rituper| first7 = Rafael| chapter = Iron Compounds| isbn = 3527306730}}</ref> Ini bisa juga dilarutkan dalam alkohol untuk membuat besi ''tincture''. Halida lainnya cenderung memiliki penggunaan yang terbatas di laboratorium. |
|||
[[Besi(II) sulfat]] digunakan sebagai prekursor untuk senyawa besi lainnya. Ini juga digunakan untuk [[redoks|mereduksi]] kromat dalam semen. Ini digunakan untuk memfortifikasi makanan dan mengobati [[anemia defisiensi besi]]. Hal di atas adalah kegunaan utamanya. [[Besi(III) sulfat]] digunakan dalam pengendapan partikel limbah dalam air tangki. [[Besi(II) klorida]] digunakan sebagai pereduksi flokulator, dalam pembentukan kompleks besi dan besi oksida magnetik, serta sebagai reduktor dalam sintesis organik. |
|||
=== Korosi dan pencegahannya === |
|||
Korosi besi memerlukan '''[[oksigen]]''' dan '''[[air]]'''. Berbagai jenis logam contohnya [[seng]] dan [[magnesium]] dapat melindungi besi dari korosi. Cara-cara pencegahan korosi besi yang akan dibahas berikut ini didasarkan pada dua sifat tersebut. Proses korosi besi disebut juga dengan [[Karat|perkaratan]]. |
|||
# '''Pengecatan'''. Jembatan, pagar, dan railing biasanya dicat. Cat menghindarkan kontak dengan udara dan air. Cat yang mengandung timbel dan zink (seng) akan lebih baik, karena keduanya melindungi besi terhadap korosi. |
|||
# '''Pelumuran dengan [[oli]] atau gemuk'''. Cara ini diterapkan untuk berbagai perkakas dan mesin. Oli dan gemuk mencegah kontak dengan air. |
|||
# '''Pembalutan dengan Plastik'''. Berbagai macam barang, misalnya rak piring dan keranjang sepeda dibalut dengan plastik. Plastik mencegah kontak dengan udara dan air. |
|||
# '''''Tin plating''''' (pelapisan dengan [[timah]]). Kaleng-kaleng kemasan terbuat dari besi yang dilapisi dengan timah. Pelapisan dilakukan secara elektrolisis, yang disebut ''tin plating''. Timah tergolong logam yang tahan karat. Akan tetapi, lapisan timah hanya melindungi besi selama lapisan itu utuh (tanpa cacat). Apabila lapisan timah ada yang rusak, misalnya tergores, maka timah justru mendorong/mempercepat korosi besi. Hal itu terjadi karena potensial reduksi besi lebih negatif daripada timah. Oleh karena itu, besi yang dilapisi dengan timah akan membentuk suatu sel elektrokimia dengan besi sebagai anode. Dengan demikian, timah mendorong korosi besi. Akan tetapi hal ini justru yang diharapkan, sehingga kaleng-kaleng bekas cepat hancur. |
|||
# '''Galvanisasi''' (pelapisan dengan [[seng]]). Pipa besi, tiang telepon dan berbagai barang lain dilapisi dengan zink. Berbeda dengan timah, zink dapat melindungi besi dari korosi sekalipun lapisannya tidak utuh. Hal ini terjadi karena suatu mekanisme yang disebut ''perlindungan katode''. Oleh karena potensial reduksi besi lebih positif daripada zink, maka besi yang kontak dengan zink akan membentuk sel elektrokimia dengan besi sebagai katode. Dengan demikian besi terlindungi dan zink yang mengalami oksidasi (berkarat). Badan mobil-mobil baru pada umumnya telah digalvanisasi, sehingga tahan karat. |
|||
# '''''Chromium Plating''''' (pelapisan dengan [[kromium]]). Besi atau baja juga dapat dilapisi dengan kromium untuk memberi lapisan pelindung yang mengkilap, misalnya untuk bumper mobil. ''Cromium plating'' juga dilakukan dengan elektrolisis. Sama seperti zink, kromium dapat memberi perlindungan sekalipun lapisan kromium itu ada yang rusak. |
|||
# '''''Sacrificial Protection''''' (pengorbanan anode). Magnesium adalah logam yang jauh lebih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi, maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti. |
|||
== Peran biologi == |
|||
Besi melimpah dalam biologi.<ref>{{cite book|last1=Dlouhy|first1=Adrienne C.|last2=Outten|first2=Caryn E.|date=2013|title=Metallomics and the Cell|publisher=Springer|isbn=978-94-007-5560-4|editor1-last=Banci|editor1-first=Lucia|series=Metal Ions in Life Sciences|volume=12|chapter=Chapter 8 The Iron Metallome in Eukaryotic Organisms|doi=10.1007/978-94-007-5561-1_8}} electronic-book ISBN 978-94-007-5561-1 {{ISSN|1559-0836}} electronic-{{ISSN|1868-0402}}</ref><ref> |
|||
{{cite book |
|||
|first1=Gereon M. |
|||
|last1=Yee |
|||
|first2=William B. |
|||
|last2=Tolman |
|||
|editor=Peter M.H. Kroneck and Martha E. Sosa Torres |
|||
|title=Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases |
|||
|series=Metal Ions in Life Sciences |
|||
|volume=15 |
|||
|year=2015 |
|||
|publisher=Springer |
|||
|chapter=Chapter 5 ''Transition Metal Complexes and the Activation of Dioxygen'' |
|||
|pages=131–204 |
|||
|doi=10.1007/978-3-319-12415-5_5 |
|||
}} |
|||
</ref> Besi-protein ditemukan dalam semua organisme mulai dari yang promotif [[archaea]] hingga manusia. Warna darah disebabkan oleh hemoglobin, suatu protein yang mengandung besi. Seperti dalam hemoglobin, besi sering kali terikat pada [[Kofaktor (biokimia)|kofaktor]], misalnya dalam [[heme]]. [[Gugus besi-belerang]] adalah penyusun [[nitrogenase]], suatu enzim yang bertanggung jawab pada [[fiksasi nitrogen]] biologis. Pengaruh teori evolusi memberikan peran pada besi sulfida dalam [[teori besi-belerang dunia]]. |
|||
[[Berkas:Heme b.png|jmpl|Struktur [[Heme|Heme b]], Fe akan terikat pada protein [[Ligan (biokimia)|ligan]] tambahan.]] |
|||
Besi adalah [[unsur renik]] penting yang ditemukan di hampir semua organisme hidup.<!--Probably incorrect: The only exceptions are several organisms that live in iron-poor environments and have evolved to use different elements in their metabolic processes, such as manganese instead of iron for catalysis, or [[hemocyanin]] instead of hemoglobin.{{Citation needed|date=September 2010}} 2010}}--> Enzim dan protein mengandung besi, sering kali mengandung [[gugus prostetik]] [[heme]], yang berperan besar dalam oksidasi dan transportasi biologis. Contoh protein yang ditemukan dalam organisme tingkat tinggi antara lain hemoglobin, [[sitokrom]] (lihat [[besi valensi tinggi]]), dan [[katalase]].<ref>{{Cite book|first1 =S. J.|last1 = Lippard|first2 = J. M.|last2 = Berg|title = Principles of Bioinorganic Chemistry|url =https://archive.org/details/ost-chemistry-bioinch|publisher = University Science Books|place = Mill Valley|date = 1994|isbn = 0-935702-73-3}}</ref> |
|||
=== Senyawa bioanorganik === |
|||
Senyawa besi "[[Kimia bioanorganik|bioanorganik]]" (yaitu senyawa besi yang digunakan dalam biologi) yang paling banyak diketahui adalah [[protein heme]]: contohnya: [[hemoglobin]], [[myoglobin]], dan [[sitokrom P450]]. Senyawa-senyawa ini dapat melakukan transportasi gas, membuat [[enzim]], dan digunakan dalam transfer [[elektron]]. [[Metaloprotein]] adalah gugus protein dengan ion logam [[Kofaktor (biokimia)|kofaktor]]. Beberapa contoh besi metaloprotein adalah [[feritin]] dan [[rubredoksin]]. Banyak enzim vital untuk kehidupan mengandung besi, seperti [[katalase]], [[lipoksigenase]], dan [[IRE-BP]]. |
|||
=== Kesehatan dan diet === |
|||
{{Utama|Defisiensi besi|Metabolisme besi}} |
|||
Besi memang melimpah, tetapi sumber zat besi utama antara lain [[daging merah]], [[kacang-kacangan]], [[kacang]], [[daging unggas]], [[ikan]], [[sayuran hijau]], [[selada air]], [[tahu]], [[buncis]], [[kacang polong]], [[roti]] yang difortifikasi, dan [[sereal]] yang difortifikasi. Besi dalam jumlah kecil ditemukan dalam [[molases]], [[tef]], dan [[tepung kentang]] (farina). Besi dalam daging (besi [[heme]]) lebih mudah diserap daripada besi dalam sayuran.<ref>[http://www.eatwell.gov.uk/healthissues/irondeficiency/ Food Standards Agency – Eat well, be well – Iron deficiency] {{Webarchive|url=https://web.archive.org/web/20060808184739/http://www.eatwell.gov.uk/healthissues/irondeficiency/ |date=2006-08-08 }}. Eatwell.gov.uk (5 March 2012). Retrieved on 27 June 2012.</ref> Meskipun sejumlah studi menyebutkan bahwa heme/hemoglobin dari daging merah mempunyai efek yang dapat meningkatkan kemungkinan [[kanker usus besar]],<ref name="pmid10582688">{{Cite journal|title=Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme |journal=Cancer Research|volume=59 |issue=22 |date=1999 |pmid=10582688 |last=Sesink |first= Aloys L. A. |author2=T |author3=K |author4=V|pages=5704–9}}</ref><ref name="pmid16226281">{{Cite journal|title=Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes |journal=[[Mutat. Res.]] |volume=594 |issue=1–2 |pages=162–171 |date=2006 |pmid=16226281 |doi=10.1016/j.mrfmmm.2005.08.006 |last1=Glei |first1=M. |last2=Klenow |first2=S. |last3=Sauer |first3=J. |last4=Wegewitz |first4=U. |last5=Richter |first5=K. |last6=Pool-Zobel |first6=B. L.}}</ref> tetapi tetap ada sejumlah kontroversi,<ref>{{Cite journal|url=http://cebp.aacrjournals.org/content/10/5/439.full|title=Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach |journal=Cancer Epidemiology, Biomarkers & Prevention |date=2001 |volume=10 |pmid=11352852 |issue=5|last1=Sandhu|first1=M. S.|last2=White|first2=I. R.|last3=McPherson|first3=K.|pages=439–46}}</ref> dan bahkan ada beberapa studi yang menyatakan bahwa tidak ada bukti cukup yang mendukung klaim semacam itu.<ref>{{cite web| url = http://www.sciencedaily.com/releases/2007/06/070611113729.htm|title = Eating Red Meat Will Not Increase Colorectal Cancer Risk, Study Suggests|publisher = ScienceDaily|date = 13 June 2007| accessdate = 23 May 2010}}</ref> |
|||
Besi yang ada dalam [[suplemen makanan]] sering kali ditemukan sebagai [[besi(II) fumarat]], meskipun besi sulfat lebih murah dan dapat diserap cukup baik. Unsur besi, meski efisiensi penyerapannya hanya {{frac|3}} relatif dari besi sulfat,<ref>{{cite journal|last1=Hoppe|first1=M.|last2=Hulthén|first2=L.|last3=Hallberg|first3=L.|title=The relative bioavailability in humans of elemental iron powders for use in food fortification|journal=European Journal of Nutrition|volume=45|issue=1|pages=37–44|date=2005|pmid=15864409|doi=10.1007/s00394-005-0560-0}}</ref> sering ditambahkan dalam makanan seperti sereal dan tepung terigu. Besi yang paling mudah diserap tubuh apabila [[Pembentukan khelat|di-khelat-kan]] dengan asam amino<ref name="pmid11377130">{{Cite journal|title=Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate |journal=Nutrition |volume=17 |issue=5 |pages=381–4 |date=2001 |pmid=11377130| doi = 10.1016/S0899-9007(01)00519-6 |last1=Pineda |first1=O. |last2=Ashmead |first2=H. D.}}</ref> dan juga tersedia sebagai [[suplemen besi]]. Seringkali asam amino yang dipilih adalah yang termurah dan paling umum yaitu [[glisin]], dalam bentuk suplemen "besi glisinat".<ref name="Ashmead">{{Cite book|last = Ashmead|first = H. DeWayne|date = 1989|title = ''Conversations on Chelation and Mineral Nutrition''|publisher = Keats Publishing|isbn = 0-87983-501-X}}</ref> [[Angka Kecukupan Gizi]] (AKG) yang dianjurkan ({{lang-en|Recommended Dietary Allowance (RDA)}}) untuk besi beragam sesuai umur, jenis kelamin, dan sumber zat besi (besi berbasis heme memiliki [[bioavilabilitas]] yang lebih tinggi).<ref>{{cite web |url=http://www.iom.edu/Object.File/Master/7/294/0.pdf |title=Dietary Reference Intakes: Elements |publisher=The National Academies |date=2001 |format=PDF |accessdate=21 May 2008 |archive-date=2008-05-27 |archive-url=https://web.archive.org/web/20080527203113/http://www.iom.edu/Object.File/Master/7/294/0.pdf |dead-url=yes }}</ref> Bayi memerlukan suplemen besi jika mengkonsumsi susu formula.<ref>{{cite web |url=http://bodyandhealth.canada.com/condition_info_details.asp?disease_id=274 |title=Iron Deficiency Anemia |publisher=MediResource |accessdate=17 December 2008 |archive-date=2022-01-30 |archive-url=https://web.archive.org/web/20220130231205/https://www.healthing.ca/all-diseases-and-conditions/alphabetical-search/ |dead-url=yes }}</ref> [[Donor darah|Pendonor darah]] dan wanita hamil berisiko mengalami kekurangan besi dan sering kali dianjurkan untuk mengkonsumsi suplemen besi.<ref>{{Cite journal| doi= 10.1016/0925-5710(95)00426-2|pmid= 8867722|date= 1996|last1= Milman|first1= N|title= Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy|volume= 63|issue= 2|pages= 103–35|journal= [[International Journal of Hematology]]}}</ref> |
|||
=== Penyerapan dan penyimpanan === |
|||
Akuisisi besi menghadapi masalah bagi organisme aerobik, karena ion feri sukar larut pada pH mendekati netral. Oleh karena itu, bakteri telah melibatkan senyawa [[wikt:sequester|sekuestor]] yang disebut [[siderofora]] ({{lang-en|siderophore}}).<ref>{{Cite journal| url = http://www.jbc.org/content/270/45/26723.short|pmid = 7592901|doi = 10.1074/jbc.270.45.26723|date = 1995|last1 = Neilands|first1 = JB|title = Siderophores: structure and function of microbial iron transport compounds|volume = 270|issue = 45|pages = 26723–6|journal = The Journal of Biological Chemistry}}</ref><ref>{{Cite journal| doi =10.1146/annurev.bi.50.070181.003435|title =Microbial Iron Compounds|date =1981|last1 =Neilands|first1 =J B|journal =Annual Review of Biochemistry|volume =50|pages =715–31|pmid =6455965|issue=1}}</ref><ref>{{Cite journal| doi = 10.1023/A:1020218608266|date = 2002|last1 = Boukhalfa|first1 = Hakim|last2 = Crumbliss|first2 = Alvin L.|journal = BioMetals|volume = 15|pages = 325–39|pmid = 12405526|title = Chemical aspects of siderophore mediated iron transport|issue = 4}}</ref> |
|||
Setelah diserap, dalam [[sel (biologi)|sel]], penyimpanan besi diatur dengan hati-hati; ion besi "bebas" tidak tersedia begitu saja. Komponen utama yang mengatur ini adalah protein [[transferin]], yang mengikat ion besi yang diserap dari [[duodenum]] dan mengangkutnya melalui [[aliran arah]] menuju sel.<ref>{{Cite journal|doi=10.1371/journal.pbio.0000079|title=How Mammals Acquire and Distribute Iron Needed for Oxygen-Based Metabolism|date=2003|last=Rouault|first = Tracey A.|journal=PLoS Biology|volume=1|pages=e9 |pmid=14551907 |issue=3 |pmc=212690}}</ref> Pada hewan, tumbuhan, dan jamur, besi sering kali berupa ion yang berbentuk kompleks heme. Heme adalah komponen esensial protein [[sitokrom]], yang mengatur reaksi [[redoks]], dan komponen esensial [[protein pengangkut]] oksigen seperti [[hemoglobin]], [[myoglobin]], dan [[leghemoglobin]]. |
|||
Besi anorganik berkontribusi pada reaksi redoks dalam [[gugus besi-belerang]] enzim, seperti [[nitrogenase]] (terlibat dalam sintesis [[amonia]] dari [[nitrogen]] dan [[hidrogen]]) serta [[hidrogenase]]. Protein besi non-heme meliputi [[enzim]] [[metana monooksigenase]] (mengoksidasi [[metana]] menjadi [[metanol]]), [[ribonukleotida reduktase]] (mereduksi [[ribosa]] menjadi [[deoksiribosa]]; [[Replikasi DNA|biosintesis DNA]]), [[hemertrin]] (transpor [[oksigen]] dan fiksasi dalam [[invertebrata]] laut) serta [[asam fosfatase]] ungu ([[hidrolisis]] [[ester]] [[fosfat]]). |
|||
Distribusi besi sangat diatur dalam [[mamalia]], terutama karena ion besi berpotensi tinggi pada toksisitas biologis.<ref>{{Cite journal|title=Tumor necrosis factor-α-induced iron sequestration and oxidative stress in human endothelial cells |url=http://cat.inist.fr/?aModele=afficheN&cpsidt=17328512 |last11=Nakanishi|first11=T|last10=Suzuki|first10=K|first9=H |last9=Eguchi |first8=M |last8=Izumi |first7=Y |last7=Hasuike |first6=K |last6=Miyagawa |first5=R |last5=Moriguchi |first4=K |last4=Ito |first3=Y |last3=Otaki|journal=Arteriosclerosis, thrombosis, and vascular biology |first2=T |date=2005 |volume=25 |last2=Ookawara|issue=12 |pmid=16224057 |pages=2495–2501 |doi=10.1161/01.ATV.0000190610.63878.20 |last1=Nanami |first1=M.}}</ref> |
|||
=== Pengaturan asupan === |
|||
{{Utama|Hepsidin}} |
|||
[[Metabolisme besi dalam tubuh manusia|Asupan besi]] diatur ketat oleh tubuh manusia, yang tidak memiliki pengaturan fisiologis ekskresi besi. Hanya sejumlah kecil besi yang hilang setiap hari karena peluruhan sel mukosa dan epitel kulit, sehingga pengendalian level besi sangat diatur dari asupannya.<ref>{{cite book|author1=Ramzi S. Cotran|author2=Vinay Kumar|author3=Tucker Collins|author4=Stanley Leonard Robbins|title=Robbins pathologic basis of disease|url=https://books.google.com/books?id=kdhrAAAAMAAJ|accessdate= 27 June 2012|date=1999|publisher=Saunders|isbn=978-0-7216-7335-6}}</ref> Pengaturan asupan besi tidak berlangsung sempurna pada beberapa orang akibat dari [[Kelainan genetika|cacat genetik]] yang memetakan region gen HLA-H pada kromosom 6. Pada orang-orang ini, kelebihan asupan dapat mengakibatkan [[kelainan akibat kelebihan besi]] ({{lang-en|iron overload disorder}}), seperti [[hemokromatosis]]. Banyak orang memiliki kerentanan genetik terhadap kelebihan zat besi tanpa menyadarinya atau menyadari masalah sejarah keluarga. Berdasarkan alasan tersebut, disarankan untuk tidak mengkonsumsi suplemen besi kecuali mengalami [[defisiensi besi]] dan telah berkonsultasi dengan dokter. [[Hemokromatosis]] diperkirakan menyebabkan penyakit antara 0,3 dan 0,8% di kalangan ras kaukasia.<ref>{{Cite journal|title=Hereditary hemochromatosis|journal=Rev Med Interne|date=2000 |volume=21 |issue=11 |pages=961–71 |doi=10.1016/S0248-8663(00)00252-6 |pmid=11109593|last1=Durupt|first1=S|last2=Durieu|first2=I|last3=Nové-Josserand|first3=R|last4=Bencharif|first4=L|last5=Rousset|first5=H|last6=Vital Durand|first6=D}}</ref> |
|||
[[MRI]] menemukan bahwa besi terakumulasi dalam [[hipokampus]] otak pada penderita [[Alzheimer]] dan dalam [[substansia nigra]] pada penderita [[Parkinson]].<ref>{{Cite journal|url = http://archneur.highwire.org/cgi/content/abstract/66/3/371|pmid = 19273756|doi = 10.1001/archneurol.2008.586|date = 2009|last1 = Brar|first1 = S|last2 = Henderson|first2 = D|last3 = Schenck|first3 = J|last4 = Zimmerman|first4 = EA|title = Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism|volume = 66|issue = 3|pages = 371–4|journal = Archives of neurology}}{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> |
|||
=== Bioremediasi === |
|||
Bakteri pemakan besi hidup di lambung [[kapal karam]] seperti ''[[Titanic]]''.<ref>{{cite book |
|||
|last = Ward |
|||
|first = Greg |
|||
|title = The Rough Guide to the ''Titanic'' |
|||
|url = https://archive.org/details/roughguidetotita0000ward |
|||
|date = 2012 |
|||
|publisher = Rough Guides Ltd |
|||
|location = London |
|||
|page=[https://archive.org/details/roughguidetotita0000ward/page/171 171] |
|||
|isbn = 978-1-4053-8699-9 |
|||
|ref = harv |
|||
}}</ref> Bakteti asidofil ''[[Acidithiobacillus|Acidithiobacillus ferrooxidans]]'', ''[[Leptospirillum ferrooxidans]]'', ''[[Sulfolobus]]'' spp., ''[[Acidianus|Acidianus brierleyi]]'' and ''[[Sulfobacillus thermosulfidooxidans]]'' dapat mengoksidasi enzimatis besi fero.<ref>{{cite journal|url=http://mic.sgmjournals.org/content/156/3/609.full|title=Metals, minerals and microbes: geomicrobiology and bioremediation|journal=Microbiology|author=Geoffrey Michael Gadd|volume=156|date=March 2010|pages=609–643|doi=10.1099/mic.0.037143-0|pmid=20019082|issue=3|access-date=2016-01-11|archive-date=2014-10-25|archive-url=https://web.archive.org/web/20141025153753/http://mic.sgmjournals.org/content/156/3/609.full|dead-url=yes}}</ref> Sample jamur ''[[Aspergillus niger]]'' ditemukan tumbuh dari larutan penambangan emas, dan ditemukan mengandung kompleks sianologam seperti emas, perak, tembaga, besi dan seng. Jamur juga berperan dalam kemudahlarutan sulfida logam berat.<ref>{{cite book|url=https://books.google.com/books?id=WY3YvfNoouMC&pg=PA533&cad=4#v=onepage&q&f=false|title=Mycoremediation: Fungal Bioremediation|author=Harbhajan Singh|page=509}}</ref> |
|||
=== Hambatan permeabel reaktif === |
|||
[[Besi zerovalen]] adalah materi reaktif utama pada [[hambatan permeabel reaktif]].<ref>{{cite book|url = https://books.google.com/books?id=0MJap7ncvx8C&pg=PA5|page = 5|title = Long-Term Performance of Permeable Reactive Barriers|isbn = 9780080535616|author1 = Roehl|first1 = K.E.|last2 = Meggyes|first2 = T|last3 = Simon|first3 = F.G.|last4 = Stewart|first4 = D.I.|date = 27 April 2005}}</ref> |
|||
== Toksisitas == |
|||
{{NFPA 704|Health = 0|Flammability = 1|Reactivity = 1|S=|caption=Fire diamond for powdered iron metal}} |
|||
{{Utama|Keracunan besi}} |
|||
Mencerna besi dalam jumlah besar dapat menyebabkan kelebihan kadar besi dalam darah. Kadar besi fero yang tinggi dalam darah bereaksi dengan [[peroksida]] membentuk [[radikal bebas]], yang sangat reaktif dan dapat merusak [[DNA]], [[protein]], [[lemak]], dan komponen sel lainnya. Oleh karena itu, toksisitas besi muncul ketika besi bebas dalam sel, yang biasanya terjadi ketika kadar besi melebihi kemampuan [[transferin]] mengikat besi. Kerusakan pada sel [[Saluran pencernaan manusia|saluran pencernaan]] dapat juga menghambat pengaturan asupan besi yang berakibat pada peningkatan lebih lanjut kadar besi darah. Besi umumnya merusak sel dalam [[jantung]], [[liver]] dan lainnya, yang dapat menyebabkan efek parah, termasuk [[koma (medis)|koma]], [[asidosis metabolik]], [[Syok (sirkulatori)|syok]], [[Gagal liver|kegagalan liver]], [[koagulopati]], [[sindrom distres pernapasan dewasa]] ({{lang-en|adult respiratory distress syndrome}}), kerusakan organ jangka panjang, dan bahkan kematian.<ref name="Cheney" /> Manusia mengalami keracunan besi di atas 20 miligram besi per kilogram berat badan, dan 60 miligram per kilogram adalah [[dosis letal]].<ref name="emed-topic285">{{cite web|url=http://www.emedicine.com/emerg/topic285.htm|title=Toxicity, Iron| publisher = Medscape|accessdate=23 May 2010}}</ref> Asupan besi berlebihan, sering kali akibat dari konsumsi berlebih tablet [[fero sulfat]] pada anak-anak tetapi dengan dosis dewasa. Ini adalah salah satu keracunan umum yang menyebabkan kematian pada anak-anak usia di bawah enam tahun.<ref name="emed-topic285" /> [[Standar Asupan Gizi]] ({{lang-en|Dietary Reference Intake (DRI)}}) mencantumkan Batas Atas Toleransi ({{lang-en|Tolerable Upper Intake Level (UL)}}) untuk dewasa adalah 45 mg/hari. Untuk anak-anak di bawah empat belas tahun, ''UL''-nya 40 mg/hari. |
|||
Pengelolaan medis keracunan besi adalah rumit, dan dapat berupa penggunaan zat [[Pembentukan khelat|pengkhelat]] yang disebut [[deferoksamina]] untuk mengikat dan mengeluarkan kelebihan besi dari dalam tubuh.<ref name="Cheney">{{Cite journal| last1 =Cheney|first1 =K.| last2 =Gumbiner|first2 =C.| last3 = Benson|first3 =B.| last4 = Tenenbein|first4 =M.|title=Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine |journal=J Toxicol Clin Toxicol |volume=33 |issue=1 |pages=61–6 |date=1995 |pmid=7837315 |doi=10.3109/15563659509020217}}</ref><ref>{{Cite journal| last = Tenenbein|first = M|title=Benefits of parenteral deferoxamine for acute iron poisoning |journal=J Toxicol Clin Toxicol |volume=34 |issue=5 |pages=485–489 |date=1996 |pmid=8800185 |doi=10.3109/15563659609028005}}</ref><ref name="pmid21102602">{{cite journal | author = Wu H, Wu T, Xu X, Wang J, Wang J. | title = Iron toxicity in mice with collagenase-induced intracerebral hemorrhage | journal = J Cereb Blood Flow Metab. | volume = 31 | issue = 5 | pages = 1243–50 |date=May 2011 | pmid = 21102602 | doi =10.1038/jcbfm.2010.209 | pmc=3099628}}</ref> |
|||
== Lihat pula == |
|||
{{Portal|Kimia}} |
|||
<!-- Please keep this list tidy and in alphabetical order. Avoid links prominently featured in article. --> |
|||
* [[Baja]] |
|||
* [[Besi dalam cerita rakyat]] |
|||
* [[Besi (metafora)]] |
|||
* [[Besi nirkarat]] |
|||
* [[Daftar negara berdasarkan produksi besi]] |
|||
* [[El Mutún]] di [[Bolivia]], penyumbang 10% dari bijih besi dunia. |
|||
* [[Fertilisasi besi]] – usulan fertilisasi samudera untuk merangsang pertumbuhan [[fitoplankton]] |
|||
* ''[[Pelletizing]]'' – proses pembuatan pelet bijih besi |
|||
== Referensi == |
|||
{{Reflist|colwidth=30em}} |
|||
== Catatan kaki == |
|||
{{Reflist|group = n}} |
|||
== Daftar pustaka == |
|||
* {{Greenwood&Earnshaw2nd}} |
|||
* <!-- We -->{{Cite book |
|||
|last = Weeks |
|||
|first = Mary Elvira |
|||
|authorlink=Mary Elvira Weeks|author2=Leichester, Henry M. |
|||
|year = 1968 |
|||
|title = Discovery of the Elements |
|||
|url = https://archive.org/details/discoveryofeleme07edunse |
|||
|publisher = Journal of Chemical Education |
|||
|location = Easton, PA |
|||
|chapter = Elements Known to the Ancients |
|||
|pages = [https://archive.org/details/discoveryofeleme07edunse/page/n42 29]–40 |
|||
|lccn = 68-15217 |
|||
|ref = CITEREFWeeks1968 |
|||
|isbn = 0-7661-3872-0 |
|||
}} |
|||
== Bacaan lanjutan == |
|||
* {{cite|author=H.R. Schubert|title=History of the British Iron and Steel Industry... to 1775 AD|publisher=Routledge|location=London|year=1957}}. |
|||
* {{cite|author=R.F. Tylecote|title=History of Metallurgy|publisher=Institute of Materials|location=London|year=1992}}. |
|||
* {{cite|author=R.F. Tylecote|contribution=Iron in the Industrial Revolution|editor1=J. Day|editor2=R.F. Tylecote|title=The Industrial Revolution in Metals|publisher=Institute of Materials|year=1991|pages=200–60}}. |
|||
{{Wiktionary|iron}} |
|||
{{Commons|Iron}} |
|||
== Pranala luar == |
|||
* [http://www.webelements.com/webelements/elements/text/Fe/index.html WebElements.com – Iron] |
|||
* [http://education.jlab.org/itselemental/ele026.html It's Elemental – Iron] |
|||
* [http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html The Most Tightly Bound Nuclei] |
|||
* [http://www.webelements.com/webelements/elements/text/Fe/xtal.html Crystal structure of iron] |
|||
* [http://www.karyasteel.com Steel Plate Supplier Surabaya]{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }} |
|||
* [http://www.rsc.org/chemistryworld/podcast/element.asp Chemistry in its element podcast] (MP3) from the [[Royal Society of Chemistry]]'s [[Chemistry World]]: [http://www.rsc.org/images/CIIE_iron_48kbps_tcm18-120046.mp3 Iron] |
|||
* [http://www.periodicvideos.com/videos/026.htm Iron] at ''[[The Periodic Table of Videos]]'' (University of Nottingham) |
|||
* [https://books.google.com/books?id=brpx-LtdCLYC&pg=frontcover&d#v=onepage&q&f=true Metallurgy for the non-Metallurgist] |
|||
{{clr}} |
|||
{{Compact periodic table}} |
|||
{{Senyawa besi}} |
|||
[[Kategori:Besi| ]] |
|||
[[Kategori:Biologi dan farmakologi unsur kimia]] |
|||
[[Kategori:Unsur kimia]] |
|||
[[Kategori:Logam transisi]] |
|||
[[Kategori:Bahan bangunan]] |
|||
[[Kategori:Mineral diet]] |
|||
[[Kategori:Bahan feromagnetik]] |
|||
[[Kategori:Unsur kimia dengan struktur kubus berpusat-badan]] |
|||
[[Kategori:Logam]] |
Revisi terkini sejak 13 Maret 2024 01.44
26Fe Besi | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sifat umum | |||||||||||||||||||||||||||||||||||||||||
Pengucapan | /bêsi/[1] | ||||||||||||||||||||||||||||||||||||||||
Alotrop | lihat alotrop besi | ||||||||||||||||||||||||||||||||||||||||
Penampilan | metalik berkilau dengan semburat kelabu | ||||||||||||||||||||||||||||||||||||||||
Besi dalam tabel periodik | |||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||
Nomor atom (Z) | 26 | ||||||||||||||||||||||||||||||||||||||||
Golongan | golongan 8 | ||||||||||||||||||||||||||||||||||||||||
Periode | periode 4 | ||||||||||||||||||||||||||||||||||||||||
Blok | blok-d | ||||||||||||||||||||||||||||||||||||||||
Kategori unsur | logam transisi | ||||||||||||||||||||||||||||||||||||||||
Berat atom standar (Ar) |
| ||||||||||||||||||||||||||||||||||||||||
Konfigurasi elektron | [Ar] 3d6 4s2 | ||||||||||||||||||||||||||||||||||||||||
Elektron per kelopak | 2, 8, 14, 2 | ||||||||||||||||||||||||||||||||||||||||
Sifat fisik | |||||||||||||||||||||||||||||||||||||||||
Fase pada STS (0 °C dan 101,325 kPa) | padat | ||||||||||||||||||||||||||||||||||||||||
Titik lebur | 1811 K (1538 °C, 2800 °F) | ||||||||||||||||||||||||||||||||||||||||
Titik didih | 3134 K (2862 °C, 5182 °F) | ||||||||||||||||||||||||||||||||||||||||
Kepadatan mendekati s.k. | 7,874 g/cm3 | ||||||||||||||||||||||||||||||||||||||||
saat cair, pada t.l. | 6,98 g/cm3 | ||||||||||||||||||||||||||||||||||||||||
Kalor peleburan | 13,81 kJ/mol | ||||||||||||||||||||||||||||||||||||||||
Kalor penguapan | 340 kJ/mol | ||||||||||||||||||||||||||||||||||||||||
Kapasitas kalor molar | 25,10 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||
Tekanan uap
| |||||||||||||||||||||||||||||||||||||||||
Sifat atom | |||||||||||||||||||||||||||||||||||||||||
Bilangan oksidasi | −4, −2, −1, 0, +1,[2] +2, +3, +4, +5,[3] +6, +7[4] (oksida amfoter) | ||||||||||||||||||||||||||||||||||||||||
Elektronegativitas | Skala Pauling: 1,83 | ||||||||||||||||||||||||||||||||||||||||
Energi ionisasi | ke-1: 762,5 kJ/mol ke-2: 1561,9 kJ/mol ke-3: 2957 kJ/mol (artikel) | ||||||||||||||||||||||||||||||||||||||||
Jari-jari atom | empiris: 126 pm | ||||||||||||||||||||||||||||||||||||||||
Jari-jari kovalen | Spin rendah: 132±3 pm Spin tinggi: 152±6 pm | ||||||||||||||||||||||||||||||||||||||||
Jari-jari van der Waals | 194 [1] pm | ||||||||||||||||||||||||||||||||||||||||
Lain-lain | |||||||||||||||||||||||||||||||||||||||||
Kelimpahan alami | primordial | ||||||||||||||||||||||||||||||||||||||||
Struktur kristal | kubus berpusat badan (bcc) a=286,65 pm; | ||||||||||||||||||||||||||||||||||||||||
Struktur kristal | kubus berpusat muka (fcc) antara 1185–1667 K; a=364,680 pm | ||||||||||||||||||||||||||||||||||||||||
Kecepatan suara batang ringan | 5120 m/s (pada s.k.) (elektrolitik) | ||||||||||||||||||||||||||||||||||||||||
Ekspansi kalor | 11,8 µm/(m·K) (suhu 25 °C) | ||||||||||||||||||||||||||||||||||||||||
Konduktivitas termal | 80,4 W/(m·K) | ||||||||||||||||||||||||||||||||||||||||
Resistivitas listrik | 96,1 nΩ·m (suhu 20 °C) | ||||||||||||||||||||||||||||||||||||||||
Titik Curie | 1043 K | ||||||||||||||||||||||||||||||||||||||||
Arah magnet | feromagnetik | ||||||||||||||||||||||||||||||||||||||||
Modulus Young | 211 GPa | ||||||||||||||||||||||||||||||||||||||||
Modulus Shear | 82 GPa | ||||||||||||||||||||||||||||||||||||||||
Modulus curah | 170 GPa | ||||||||||||||||||||||||||||||||||||||||
Rasio Poisson | 0,29 | ||||||||||||||||||||||||||||||||||||||||
Skala Mohs | 4 | ||||||||||||||||||||||||||||||||||||||||
Skala Vickers | 608 MPa | ||||||||||||||||||||||||||||||||||||||||
Skala Brinell | 200–1180 MPa | ||||||||||||||||||||||||||||||||||||||||
Nomor CAS | 7439-89-6 | ||||||||||||||||||||||||||||||||||||||||
Sejarah | |||||||||||||||||||||||||||||||||||||||||
Penemuan | sebelum 5000 SM | ||||||||||||||||||||||||||||||||||||||||
Simbol | "Fe": dari Latin ferrum | ||||||||||||||||||||||||||||||||||||||||
Isotop besi yang utama | |||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||
Besi adalah unsur kimia dengan simbol Fe (dari bahasa Latin: ferrum) dan nomor atom 26. Besi merupakan logam dalam deret transisi pertama.[5] Besi adalah unsur paling umum di bumi berdasarkan massa, membentuk sebagian besar bagian inti luar dan dalam bumi. Besi adalah unsur keempat terbesar pada kerak bumi. Kelimpahannya dalam planet berbatu seperti bumi karena melimpahnya produksi akibat reaksi fusi dalam bintang bermassa besar, di mana produksi nikel-56 (yang meluruh menjadi isotop besi paling umum) adalah reaksi fusi nuklir terakhir yang bersifat eksotermal. Akibatnya, nikel radioaktif adalah unsur terakhir yang diproduksi sebelum keruntuhan hebat supernova. Keruntuhan tersebut menghamburkan prekursor radionuklida besi ke angkasa raya.
Seperti unsur golongan 8 lainnya, besi berada pada rentang tingkat oksidasi yang lebar, −2 hingga +6, meskipun +2 dan +3 adalah yang paling banyak. Unsur besi terdapat dalam meteorit dan lingkungan rendah oksigen lainnya, tetapi reaktif dengan oksigen dan air. Permukaan besi segar tampak berkilau abu-abu keperakan, tetapi teroksidasi dalam udara normal menghasilkan besi oksida hidrat, yang dikenal sebagai karat. Tidak seperti logam lain yang membentuk lapisan oksida pasivasi, oksida besi menempati lebih banyak tempat daripada logamnya sendiri dan kemudian mengelupas, mengekspos permukaan segar untuk korosi.
Logam besi telah digunakan sejak zaman purba, meskipun paduan tembaga, yang memiliki titik lebur lebih rendah, yang digunakan lebih awal dalam sejarah manusia. Besi murni relatif lembut, tetapi tidak bisa didapat melalui peleburan. Materi ini mengeras dan diperkuat secara signifikan oleh kotoran, karbon khususnya, dari proses peleburan. Dengan proporsi karbon tertentu (antara 0,002% dan 2,1%) menghasilkan baja, yang lebih keras dari besi murni, mungkin sampai 1000 kali. Logam besi mentah diproduksi di tanur tinggi, di mana bijih direduksi dengan batu bara menjadi pig iron, yang memiliki kandungan karbon tinggi. Pengolahan lebih lanjut dengan oksigen mengurangi kandungan karbon sehingga mencapai proporsi yang tepat untuk pembuatan baja. Baja dan paduan besi berkadar karbon rendah bersama dengan logam lain (baja paduan) sejauh ini merupakan logam yang paling umum digunakan oleh industri, karena lebarnya rentang sifat-sifat yang didapat dan kelimpahan batuan yang mengandung besi.
Senyawa kimia besi memiliki banyak manfaat. Besi oksida dicampur dengan serbuk aluminium dapat dipantik untuk membuat reaksi termit, yang digunakan dalam pengelasan dan pemurnian bijih. Besi membentuk senyawa biner dengan halogen dan kalsogen. Senyawa organologamnya antara lain ferosen, senyawa sandwich pertama yang ditemukan.
Besi memainkan peranan penting dalam biologi, membentuk kompleks dengan oksigen molekuler dalam hemoglobin dan myoglobin; kedua senyawa ini adalah protein pengangkut oksigen dalam vertebrata. Besi juga logam pada bagian aktif sebagian besar enzim redoks yang berperan dalam respirasi seluler serta oksidasi dan reduksi dalam tumbuhan dan hewan.
Karakteristik
[sunting | sunting sumber]Sifat-sifat mekanis
[sunting | sunting sumber]Material | TS (MPa) |
BH (Brinell) |
---|---|---|
Kumis besi | 11000 | |
Ausformed (hardened) steel |
2930 | 850–1200 |
Baja martensit | 2070 | 600 |
Baja bainit | 1380 | 400 |
Baja pearlitik | 1200 | 350 |
Besi dingin | 690 | 200 |
Besi kecil-butiran | 340 | 100 |
Besi mengandung karbon | 140 | 40 |
Murni, besi kristal tunggal | 10 | 3 |
Sifat mekanik besi dan paduannya dapat dievaluasi menggunakan berbagai uji, termasuk uji Brinell, uji Rockwell dan uji kekerasan Vickers. Data pada besi begitu konsisten sehingga sering digunakan untuk kalibrasi peralatan atau uji perbandingan.[7][8] Namun, sifat mekanik besi sangat dipengaruhi oleh kemurnian sampel: besi murni kristal tunggal untuk keperluan penenelitian faktanya lebih lunak daripada aluminium,[6] dan besi hasil produksi industri yang paling murni (99,99%) memiliki kekerasan 20–30 Brinell.[9] Kenaikan kandungan karbon dalam besi akan menyebabkan kenaikan yang signifikan pada kekerasan dan kekuatan tarik. Kekerasan maksimum 65 Rc dicapai dengan kadar karbon 0.6%, meskipun prosedur ini untuk logam dengan daya tarik rendah[10]
Karena signifikansinya untuk inti planet, sifat fisik besi pada tekanan dan suhu tinggi juga telah dipelajari secara mendalam. Bentuk besi yang stabil di bawah kondisi standar dapat mengalami tekanan hingga 15 GPa sebelum berubah menjadi bentuk tekanan tinggi, seperti yang dijelaskan pada bagian selanjutnya.
Diagram fasa dan alotrop
[sunting | sunting sumber]Besi merupakan contoh alotropi pada logam. Setidaknya ada empat bentuk alotrop besi, yang dikenal sebagai α, γ, δ, dan ε; pada tekanan yang sangat tinggi dengan volume yang rendah, beberapa bukti eksperimental yang kontroversial ada untuk fase β yang stabil pada tekanan dan suhu yang sangat tinggi.[11]
Besi cair dingin mengkristal pada 1538 °C ke alotrop δ, yang memiliki struktur kristal body-centered cubic (bcc). Setelah mendingin lebih lanjut menjadi 1394 °C, berubah menjadi besi alotrop γ, dengan struktur kristal face-centered cubic (fcc), atau austenit. Pada 912 °C atau lebih rendah, struktur kristal berubah kembali menjadi alotrop besi α bcc, atau ferit. Akhirnya, pada 770 °C (titik Curie, Tc) besi menjadi magnet. Ketika besi melewati suhu Curie tidak ada perubahan dalam struktur kristal, tetapi ada perubahan dalam "struktur domain", di mana setiap domain mengandung atom besi dengan spin elektron tertentu. Dalam besi non magnet, semua spin elektron dari atom dalam satu domain berada dalam arah yang sama, namun, domain sekitarnya menunjuk ke berbagai arah lain sehingga dengan demikian secara keseluruhan mereka menetralkan satu sama lain. Hasilnya, besi tidak bersifat magnet. Dalam besi magnet, spin elektron dari semua domain selaras, sehingga efek magnetik domain tetangga saling memperkuat. Meskipun setiap domain mengandung miliaran atom, ukuran mereka sangat kecil, hanya sekitar 10 mikrometer.[12] Pada tekanan di atas sekitar 10 GPa dan suhu beberapa ratus kelvin atau kurang, besi-α berubah menjadi struktur hexagonal close-packed (hcp), yang juga dikenal sebagai besi-ε; fase-γ yang temperaturnya lebih tinggi juga berubah menjadi besi-ε, tetapi tidak terjadi pada tekanan yang lebih tinggi. Fase-β, jika ada, akan muncul pada tekanan minimal 50 GPa dan suhu minimal 1.500 K; telah diperkirakan memiliki struktur ortorombik atau struktur hcp ganda.[11]
Besi sangat penting ketika dicampur dengan logam tertentu lainnya dan dengan karbon untuk membentuk baja. Ada banyak jenis baja, semua dengan sifat yang berbeda, dan pemahaman tentang sifat-sifat alotrop besi adalah kunci untuk pembuatan baja berkualitas baik.
Besi-α, juga dikenal sebagai ferit, adalah bentuk besi paling stabil pada temperatur normal. Ini adalah logam yang cukup lunak yang dapat larut hanya dengan konsentrasi kecil karbon (tidak lebih dari 0,021% massa pada 910 °C).[13]
Di atas 912 °C dan sampai 1400 °C besi-α mengalami transisi fasa dari bcc ke konfigurasi besi-γ fcc, juga disebut austenit. Logam Ini juga lunak tetapi dapat melarutkan jauh lebih banyak karbon (sebanyak 2,04% massa pada 1146 °C). Bentuk besi ini digunakan dalam jenis baja nirkarat yang digunakan untuk membuat peralatan makan, dan rumah sakit serta peralatan jasa layanan makanan.[12]
Besi fasa tekanan tinggi penting sebagai model untuk bagian-bagian padat pada inti planet. Inti dalam planet bumi umumnya diasumsikan terdiri dari paduan besi-nikel dengan struktur ε (atau β).
Titik lebur besi didefinisikan secara eksperimen dengan baik untuk tekanan sampai sekitar 50 GPa. Untuk tekanan yang lebih tinggi, studi yang berbeda menempatkan titik triple γ-ε cair pada tekanan yang berbeda hingga puluhan gigapascal dan menghasilkan perbedaan titik lebur lebih dari 1000 K. Secara umum, simulasi komputer dinamika molekuler pada besi yang sedang meleleh dan percobaan gelombang kejut memberikan titik leleh yang lebih tinggi dan kemiringan kurva lebur yang lebih curam daripada percobaan statis yang dilakukan dalam sel diamond anvil.[14]
Isotop
[sunting | sunting sumber]Besi alami terdiri dari empat isotop stabil: 5,845% 54Fe, 91,754% 56Fe, 2,119% 57Fe dan 0,282% 58Fe. Dari empat isotop stabil ini, hanya 57Fe yang mempunyai spin inti (−½). Nuklida 54Fe diperkirakan mengalami peluruhan beta ganda, tetapi proses ini belum pernah diteliti untuk nuklei ini, dan hanya batas bawah waktu paruh yang ditetapkan: t1/2>3,1×1022 tahun.
60Fe adalah radionuklida yang telah punah dengan waktu paruh panjang (2,6 juta tahun).[15] Ia tidak ditemukan di bumi, namun produk peluruhan utamanya adalah nuklida stabil nikel-60.
Banyak riset masa lalu tentang pengukuran komposisi isotop Fe telah difokuskan pada penentuan variasi 60Fe karena proses yang menyertai nukleosintesis (yaitu, studi meteorit) dan formasi bijih. Namun dalam dekade terakhir, perkembangan teknologi spektrometri massa telah memungkinkan untuk melakukan deteksi dan kuantifikasi renik, variasi rasio alami isotop stabil besi. Banyak dari penelitian ini telah didorong oleh komunitas ilmu bumi dan planet, meskipun aplikasi untuk sistem biologis dan industri mulai bermunculan.[16]
Isotop besi yang paling melimpah 56Fe merupakan daya tarik tersendiri bagi para ilmuwan nuklir karena merupakan titik akhir nukleosintesis yang paling umum.Hal ini sering dikutip, secara salah, sebagai isotop dengan energi ikatan tertinggi, perbedaan yang sebenarnya dimiliki nikel-62.[17] Karena 56Ni mudah dihasilkan dari inti yang lebih ringan dalam proses alfa pada reaksi nuklir di supernova (lihat proses pembakaran silikon), nikel-56 (14 partikel alfa) adalah titik akhir rantai fusi dalam bintang sangat besar, karena penambahan partikel alfa lain akan menghasilkan seng-60, yang membutuhkan lebih banyak energi. Oleh karena itu, nikel-56, dengan waktu paruh sekitar 6 hari, merupakan porsi terbesar dalam bintang-bintang ini, tetapi segera meluruh melalui emisi positron berturutan pada produk peluruhan supernova dalam awan gas sisa supernova. Peluruhan pertama membentuk kobalt-56, dan kemudian besi-56 yang stabil. Nuklida terakhir ini kemudian menjadi relatif mayoritas di jagat raya, dibandingkan dengan logam stabil lainnya dengan berat atom yang mendekati.
Dalam fase meteorit Semarkona dan Chervony Kut korelasi antara konsentrasi 60Ni, produk anang 60Fe, dan kelimpahan isotop besi yang stabil dapat ditemukan yang merupakan bukti keberadaan 60Fe pada saat pembentukan Sistem Tata Surya. Kemungkinan energi yang dilepaskan pada peluruhan 60Fe, bersama energi yang dilepaskan pada peluruhan radionuklida 26Al, memberikan kontribusi pada pelelehan kembali dan diferensiasi asteroid setelah pembentukannya 4,6 miliar tahun yang lalu. Kelimpahan 60Ni dalam materi ekstraterestrial juga memberikan wawasan lebih jauh ke dalam asal mula Sistem Tata Surya dan sejarah awalnya.[18]
Inti atom besi memiliki beberapa energi ikatan tertinggi per inti, hanya bisa diimbangi oleh isotop nikel 62Ni. Ini terbentuk melalui fusi nuklir pada bintang. Meskipun penambahan sedikit energi dapat diekstraksi melalui sintesis 62Ni, kondisi dalam bintang tidak cocok untuk proses ini. Distribusi unsur di Bumi lebih didominasi oleh besi daripada nikel, dan juga mungkin dalam produksi elemen supernova.[19]
Besi-56 adalah isotop stabil terberat yang diproduksi melalui proses alfa dalam nukleosintesis stellar; unsur yang lebih berat daripada besi adalah nikel memerlukan supernova untuk pembentukannya. Besi adalah unsur yang paling melimpah dalam inti raksasa merah, dan logam paling melimpah dalam meteorit besi dan dalam inti planet yang berupa logam padat seperti bumi.
Nukleosintesis
[sunting | sunting sumber]Besi dibentuk oleh bintang yang sangat besar dengan inti yang sangat panas (lebih dari 2,5 miliar kelvin) melalui proses pembakaran silikon. Ia merupakan unsur stabil terberat yang diproduksi dengan cara ini. Proses dimulai dari inti stabil kedua terbesar melalui pembakaran silikon, yaitu kalsium. Satu inti stabil kalsium mengalami fusi dengan satu inti helium, membentuk titanium yang tidak stabil. Sebelum titanium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk kromium yang tak stabil. Sebelum kromium meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk besi yang tak stabil. Sebelum besi meluruh, ia dapat berfusi dengan inti helium lainnya, membentuk nikel-56 yang tak stabil. Fusi nikel-56 lebih jauh memerlukan energi dan bukannya menghasilkan energi, sehingga setelah produksi nikel-56, bintang tidak lagi menghasilkan energi yang dibutuhkan untuk menjaga inti agar tidak runtuh. Akhirnya, nikel-56 meluruh menjadi kobalt-56 yang tak stabil, yang pada gilirannya meluruh menjadi besi-56 yang stabil. Ketika inti bintang runtuh, ia membentuk supernova. Supernova juga menciptakan bentuk-bentuk besi stabil tambahan melalui proses-r.
Keberadaan
[sunting | sunting sumber]Keberadaan di planet
[sunting | sunting sumber]Besi adalah unsur paling melimpah keenam di jagat raya, dan merupakan unsur refraktori yang paling umum.[20] Ia terbentuk sebagai tahap eksotermal terakhir nukleosintesis stelar, melalui fusi silikon dalam bintang besar.
Besi asli atau logam jarang ditemukan di permukaan bumi karena cenderung mengalami oksidasi, tetapi oksidanya menandakan dan mewakili bijih utamanya. Sementara kandungan besi pada kerak bumi hanya 5%, inti bumi bagian dalam dan luar diyakini memiliki kandungan paduan besi-nikel yang banyak, diperkirakan 35% dari keseluruhan massa bumi. Oleh karena itu, besi merupakan unsur paling melimpah di bumi, tetapi menduduki tempat keempat kelimpahan unsur di kerak bumi.[21][22] Sebagian besar besi pada kerak bumi ditemukan bersenyawa dengan oksigen sebagai mineral besi oksida seperti hematit (Fe) dan magnetit (Fe). Deposit besar besi ditemukan dalam banded iron formations. Formasi geologis ini adalah jenis batuan yang menandung lapisan-lapisan tipis besi oksida yang berulang (seperti pita-pita), dan diseling dengan lapisan serpih (bahasa Inggris: shale) dan rijang (bahasa Inggris: chert) yang miskin kandungan besinya. Banded iron formation terbentuk antara 3.700 juta tahun silam dan 1.800 juta tahun silam.[23][24]
Sekitar 1 dalam 20 meteorit mengandung mineral unik besi-nikel taenit (35–80% iron) dan kamasit (90–95% iron). Meskipun jarang, meteorit besi adalah bentuk utama besi logam alami di permukaan bumi.[25]
Warna merah permukaan Mars terbentuk dari regolit yang kaya besi oksida. Ini telah dibuktikan berdasarkan spektroskopi Mössbauer.[26]
Cadangan yang digunakan di masyarakat
[sunting | sunting sumber]Menurut Metal Stocks in Society report yang dikeluarkan oleh Panel Sumber Daya Internasional (bahasa Inggris: International Resource Panel), cadangan global besi yang digunakan di masyarakat adalah 2.200 kg (4.850 lb) per kapita. Sebagian besar adalah negara maju (7.000 kg (15.432 lb) – 14.000 kg (30.865 lb) per kapita) sedangkan negara yang kurang berkembang hanya 2.000 kg (4.409 lb) per kapita.
Kimia dan senyawa
[sunting | sunting sumber]Tingkat
oksidasi |
Contoh senyawa |
---|---|
−2 (d10) | Dinatrium tetrakarbonilferat (pereaksi Collman) |
−1 (d9) | Fe |
0 (d8) | Besi pentakarbonil |
1 (d7) | Siklopentadienilferum dikarbonil dimer ("Fp2") |
2 (d6) | Fero sulfat, ferosen |
3 (d5) | Feri klorida, ferosenium tetrafluoroborat |
4 (d4) | Barium ferat(IV), Fe(diars) |
5 (d3) | FeO |
6 (d2) | Kalium ferat |
Besi menunjukkan karakteristik sifat kimia logam transisi, misalnya kemampuan membentuk tingkat oksidasi yang bervariasi dan mampu membentuk ikatan koordinasi dan kimia organologam: memang penemuan senyawa besi, ferosen, yang memberi perubahan revolusioner pada bidang ini pada akhir 1950an.[27] Besi kadang-kadang dianggap sebagai prototipe untuk seluruh blok logam transisi, karena kelimpahannya dan perannya yang besar sekali dalam perkembangan teknologi kemanusiaan.[28] Keduapuluh enam elektronnya tertata dalam konfigurasi [Ar]3d64s2, yang elektron 3d dan 4s nya relatif memiliki energi yang berdekatan, sehingga dapat kehilangan elektron dalam jumlah yang bervariasi dan tidak ada titik yang jelas ionisasi lebih lanjut yang tidak menguntungkan.[29]
Besi membentuk senyawa utamanya dalam tingkat oksidasi +2 dan +3. Menurut tradisi, senyawa besi(II) disebut fero dan senyawa besi(III) disebut feri. Besi juga dapat memiliki tingkat oksidasi yang lebih tinggi, contohnya adalah kalium ferat (K2FeO4), berwarna ungu, yang mengandung besi dengan bilangan oksidasi +6. Besi(IV) adalah bentuk antara yang umum dalam banyak reaksi oksidasi biokimia.[30][31] Sejumlah senyawa organologam mengandung tingkat oksidasi formal +1, 0, −1, atau bahkan −2. Tingkat oksidasi dan sifat ikatan lainnya sering diuji menggunakan teknik spektroskopi Mössbauer.[32] Terdapat juga banyak senyawa valensi campuran yang berintikan besi(II) dan besi(III) sekaligus, seperti magnetit dan biru Prusia (Fe4(Fe[CN]6)3).[31] Senyawa yang disebutkan terakhir di atas digunakan sebagai "biru" tradisional dalam cetak biru.[33]
Besi adalah logam transisi pertama yang tidak dapat mencapai keadaan oksidasi golongannya (+8), meskipun kongenernya yang lebih berat ruthenium dan osmium bisa, ruthenium lebih sulit daripada osmium.[34] Ruthenium menunjukkan kimia kation akuatik pada tingkat oksidasi rendahnya mirip dengan besi, tetapi osmium tidak, sehingga lebih stabil pada tingkat oksidasi tinggi dengan membentuk kompleks anion.[34] Kenyataannya, pada paruh kedua dari deret transisi 3d ini, kemiripan vertikal golongan dari atas ke bawah bersaing dengan kemiripan horizontal besi dengan tetangganya kobalt dan nikel pada tabel periodik, yang juga feromagnetik pada suhu ruang dan berbagi kemiripan kimia. Dengan demikian, besi, kobalt, dan nikel kadang-kadang dikelompokkan sebagai triad besi[28]
Senyawa besi yang diproduksi dalam industri skala besar adalah besi(II) sulfat (FeSO4.7H2O) dan besi(III) klorida (FeCl3). Besi(II) sulfat adalah salah satu sumber besi(II) yang paling umum, tetapi kurang stabil terhadap oksidasi udara dibandingkan garam Mohr ((NH4)2Fe(SO4)2·6H2O). Senyawa besi(II) cenderung teroksidasi menjadi senyawa besi(III) di udara.[31]
Tidak seperti logam lainnya, besi tidak membentuk amalgam dengan raksa. Sebagai hasilnya, raksa diperdagangkan dalam botol besi berukuran 76 lb (34 kg).[35]
Sejauh ini besi adalah unsur yang paling reaktif dalam golongannya, bersifat piroforik ketika dihaluskan dan mudah larut dalam asam encer, membentuk Fe2+. Namun, besi tidak bereaksi dengan asam nitrat pekat dan asam oksidator, karena pembentukan lapisan oksida yang kuat yang dapat bereaksi dengan asam klorida.[34]
Senyawa biner
[sunting | sunting sumber]Besi bereaksi dengan oksigen di udara membentuk berbagai senyawa oksida dan hidroksida; yang paling umum adalah besi(II,III) oksida (Fe3O4), dan besi(III) oksida (Fe2O3). Besi(II) oksida juga ada, meskipun tidak stabil pada temperatur kamar. Oksida-oksida ini adalah bijih utama untuk produksi besi (lihat bloomery dan tanur tinggi). Mereka juga digunakan dalam produksi ferit, bermanfaat sebagai media penyimpanan magnetik di komputer, dan pigmen. Sulfida yang telah dikenal adalah besi pirit (FeS2), juga dikenal sebagai "emas bodoh" karena kilau keemasannya.[31]
Halida fero dan feri biner telah dikenal lama, dengan pengecualian feri iodida. Fero halida biasanya muncul dari pengolahan logam besi dengan asam halogen biner terkait untuk menghasilkan garam terhidrasi yang sesuai.[31]
Besi bereaksi dengan fluor, klorin, dan bromin menghasilkan feri halida yang sesuai. Feri klorida adalah yang paling umum:
Feri iodida adalah perkecualian, tidak stabil secara termodinamika karena sifat oksidator Fe3+ dan sifat reduktor I−:[36]
Namun, feri iodida dalam jumlah miligram, padatan hitam, tetap dapat dibuat melalui reaksi besi pentakarbonil dengan iodium dan karbon monoksida dengan adanya heksana dan cahaya pada suhu −20 °C. Perlu dipastikan bahwa sistem tertutup rapat agar terhindar dari udara dan air.[36]
Kimia larutan
[sunting | sunting sumber]Potensial reduksi standar dalam larutan asam untuk beberapa ion besi yang umum adalah sebagai berikut:[34]
Anion ferat(VI) yang berbentuk tetrahedral dan berwarna merah-ungu adalah oksidator kuat yang dapat mengoksidasi nitrogen dan amonia pada suhu kamar, dan bahkan air dalam larutan asam atau netral:[36]
Ion Fe3+ memiliki kimia kationik sederhana yang besar, meskipun ion heksaquo [Fe(H2O)6]3+ yang berwarna ungu pucat sangat mudah terhidrolisis ketika pH dinaikkan di atas 0 sebagai berikut:[37]
Ketika pH naik di atas 0 terbentuk spesies hasil hidrolisis yang berwarna kuning, dan ketika dinaikkan di atas 2-3 terbentuk endapan besi(III) oksida hidrat yang berwarna coklat kemerahan. Meskipun Fe3+ memiliki konfigurasi d5, spektrum serapannya tidak seperti Mn2+ dengan pita d-d spin terlarangnya yang lemah, karena Fe3+ memiliki muatan positif yang lebih tinggi dan lebih terpolarisasi. Ini melemahkan energi serapan transfer muatan ligan-ke-logam. Oleh karena itu, semua kompleks di atas memililki warna yang agak kuat, dengan satu perkecualian ion heksaquo - dan bahkan yang memiliki spektrum yang didominasi oleh transfer muatan di daerah ultraviolet dekat.[37] Sebaliknya, ion besi(II) heksaquo [Fe(H2O)6]2+ yang berwarna hijau pucat tidak mengalami hidrolisis. Karbon dioksida tidak muncul ketika ditambahkan anion karbonat, malah menghasilkan endapan putih besi(II) karbonat. Dalam kondisi karbon dioksida berlebih, ini membentuk bikarbonat yang sedikit larut, yang jamak terjadi dalam air tanah, tetapi dengan cepat teroksidasi di udara membentuk besi(III) oksida yang menyebabkan endapan coklat di banyak aliran air.[38]
Senyawa koordinasi dan organologam
[sunting | sunting sumber]Telah dikenal beberapa kompleks sianida. Contoh yang paling terkenal adalah biru Prusia, (Fe4(Fe[CN]6)3). Kalium ferisianida dan kalium ferosianida juga telah diketahui; pembentukan biru Prusia pada reaksi dengan besi(II) dan besi(III) merupakan dasar "uji kimia basah".[31] Biru Prusia juga digunakan sebagai antidot pada keracunan talium dan sesium radioaktif.[39][40] Biru Prusia dapat digunakan untuk mencuci pakaian guna menghilangkan noda kekuningan yang ditinggalkan oleh garam besi dalam air.
Telah dikenal beberapa senyawa karbonil besi. Senyawa besi(0) utama adalah besi pentakarbonil, Fe(CO)5, yang digunakan untuk memproduksi serbuk karbonil besi, bentuk yang sangat reaktif dari logam besi. Termolisis besi pentakarbonil menghasilkan gugus tiga-inti, triferum dodekakarbonil. Pereaksi Collman, dinatrium tetrakarbonilferat, adalah pereaksi yang digunakan dalam kimia organik. Pereaksi ini mengandung besi dengan tingkat oksidasi −2. Siklopentadienilferum dikarbonil dimer mengandung besi dengan tingkat oksidasi yang langka, yaitu +1.[41]
Ferosen (bahasa Inggris: Ferrocene) adalah kompleks yang sangat stabil. Senyawa sandwich pertama, yang mempunyai pusat besi(II) dengan dua ligan siklopentadienil yang terikat melalui kesepuluh atom karbonnya. Pengaturan ini adalah hal yang mengejutkan ketika pertama kali ditemukan,[42] tetapi penemuan ferosen memicu cabang baru kimia organologam. Ferosen sendiri dapat digunakan sebagai tulang punggung ligan, misalnya dppf. Ferosen dapat dioksidasi menjadi kation ferosenium (Fc+). Pasangan ferosen/ferosenium sering digunakan sebagai rujukan dalam elektrokimia.[43]
Sejarah
[sunting | sunting sumber]Besi tempa
[sunting | sunting sumber]Besi telah digarap, atau ditempa, selama beberapa milenium. Namun, objek besi berumur panjang jauh lebih jarang daripada objek yang dibuat dari emas atau perak karena besi mudah berkarat . Manik-manik yang terbuat dari besi meteor di 3500 SM atau sebelumnya ditemukan di Gerzah, Mesir oleh G.A. Wainwright.[44] Manik-manik mengandung 7,5% nikel, yang merupakan tanda bahwa berasal dari meteor karena hanya sedikit besi yang ditemukan pada kerak bumi dan tidak ada kandungan nikelnya. Besi meteorit sangat dihormati karena asal-usulnya di langit dan sering digunakan untuk menempa senjata dan alat-alat atau seluruh spesimen yang ditempatkan di gereja-gereja.[45] Barang-barang yang terbuat dari besi oleh bangsa Mesir bertanggal 2500 hingga 3000 SM.[44] Besi memiliki keuntungan pembeda dibandingkan perunggu untuk peralatan perang. Besi jauh lebih keras dan lebih awet dibandingkan perunggu, meskipun rentan terhadap karat . Namun, hal. ini telah ditentang. Hittitolog Trevor Bryce berargumentasi bahwa sebelum teknik pengolahan besi tingkat lanjut dikembangkan di India, senjata besi meteorit yang digunakan oleh tentara Mesopotamia awal memiliki kecenderungan mudah hancur dalam peperangan, karena kandungan karbonnya yang tinggi.[46]
Produksi besi pertama dimulai sejak Zaman Perunggu tengah tetapi memerlukan beberapa abad sebelum dapat menggantikan perunggu. Contoh leburan besi dari Asmar, Mesopotamia dan Tall Chagar Bazaar di Siria bagian utara dibuat antara 2.700 dan 3.000 SM.[47] Hittites tampaknya adalah yang pertama memahami produksi besi dari bijihnya dan sangat dihormati dalam masyarakat mereka. Mereka mulai melebur besi antara 1.500 dan 1.200 SM dan praktik ini tersebar ke Timur Dekat setelah kekaisaran mereka runtuk pada tahun 1.180 SM.[47] Periode berikutnya disebut Zaman Besi. Peleburan besi, oleh karenanya dinamakan Zaman Besi, mencapai Eropa dua ratus tahun kemudian dan tiba di Zimbabwe, Afrika pada abad ke-8.[47] Di China, besi hanya muncul sekitar tahun 700-500 SM.[48] Peleburan besi telah diperkenalkan kepada China melalui Asia Tengah.[49] Bukti awal penggunaan tanur tinggi di China berpenanggalan abad pertama setelah masehi,[50] dan tungku kubah (bahasa Inggris: cupola furnaces) digunakan pada awal periode perang (403–221 BCE).[51] Penggunaan tanur tinggi dan kubah tetap menyebar selama Dinasti Song dan Tang.[52]
Artifak besi lebur ditemukan di India berpenanggalan antara 1.800 hingga 1.200 SM,[53] dan di Levant sejak sekitar 1.500 SM (menunjukkan peleburan di Anatolia atau Kaukasus).[54][55]
Pengolahan besi masuk ke Yunani di akhir abad ke-11 SM.[56] Penyebaran pengolahan besi di Eropa Tengah dan Barat dihubungkan dengan ekspansi kaum Kelt. Menurut Gaius Plinius Secundus (Pliny the Elder) penggunaan besi adalah jamak pada era Romawi.[45] Produksi besi tahunan Kekaisaran Romawi diperkirakan 84.750 ton,[57] sementara China Han yang padat penduduk memproduksi sekitar 5.000 ton.[58]
Selama Revolusi Industri di Inggris, Henry Cort mulai memperhalus besi dari besi kasar (bahasa Inggris: pig iron) dan besi tempa (atau besi batang) menggunakan sistem produksi inovatif. Pada tahun 1783, ia mematenkan proses puddling untuk mengolah bijih besi. Proses ini kemudian disempurnakan oleh peneliti lain, termasuk Joseph Hall.
Besi tuang / besi cor
[sunting | sunting sumber]Besi tuang (atau besi cor) (bahasa Inggris: cast iron) pertama kali diproduksi di China selama abad ke-5 SM,[59] tetapi hampir tidak dikenal di Eropa sampai periode abad pertengahan.[60][61] Artifak besi tuang tertua ditemukan oleh arkeolog di tempat yang sekarang dikenal sebagai Luhe County, Jiangsu, China. Besi tuang digunakan oleh China kuno untuk peralatan perang, pertanian, dan arsitektur.[62] Selama periode abad pertengahan, di Eropa ditemukan sarana produksi besi tempa dari besi cor (dalam konteks ini dikenal sebagai besi kasar) dengan menggunakan finery forge. Pada seluruh proses ini, digunakan batu bara sebagai bahan bakar.
Tanur tinggi abad pertengahan mempunyai tinggi sekitar 10 kaki (3,0 m) dan terbuat dari bata tahan api; udara tekan diperoleh dari penghembus yang digerakkan oleh tangan.[61] Tanur tinggi modern jauh lebih besar.
Pada tahun 1709, Abraham Darby I membentuk tanur tinggi batu bara untuk memproduksi besi tuang. Ketersediaan besi murah adalah salah satu faktor yang menyebabkan Revolusi Industri. Menjelang akhir abad ke-18, besi tuang mulai menggantikan besi tempa untuk tujuan tertentu, karena harganya yang lebih murah. Kandungan karbon dalam besi tidak dilihat sebagai alasan untuk membedakan sifat besi tempa, besi tuang, dan baja hingga abad ke-18.[47]
Karena besi menjadi lebih murah dan lebih banyak, besi juga menjadi bahan struktural utama menyusul pembangunan inovatif jembatan besi pertama pada tahun 1778.
Tabel kualitas komparatif besi tuang
[sunting | sunting sumber]Besi tuang atau besi cor (bahasa Inggris: cast iron) adalah paduan besi-karbon dengan kandungan karbon lebih dari 2%.[63] Paduan besi dengan kandungan karbon kurang dari 2% disebut sebagai baja. Unsur paduan utama yang membentuk karakter besi tuang adalah karbon (C) antara 3-3,5% dan silikon (Si) antara 1,8-2,4%. Perbedaan kadar C dan Si menyebabkan titik lebur besi tuang lebih rendah dari baja, yakni sekitar 1.150 sampai 1.200 °C. Unsur paduan yang terkandung didalamnya mempengaruhi warna patahannya; besi tuang putih mengandung unsur karbida sedangkan besi tuang kelabu mengandung serpihan grafit.
Nama | Komposisi nominal [% berat] | Bentuk dan kondisi | Kekuatan hasil [ksi (0.2% offset)] | Kekuatan tarik [ksi] | Perpanjangan [%] | Kekerasan [Brinell scale] | Penggunaan |
---|---|---|---|---|---|---|---|
Besi cor kelabu (ASTM A48) | C 3.4, Si 1.8, Mn 0.5 | Cast | — | 50 | 0.5 | 260 | Blok silinder mesin, roda gila, kotak roda gigi, alas alat mesin |
Besi cor putih | C 3.4, Si 0.7, Mn 0.6 | Cast (as cast) | — | 25 | 0 | 450 | Permukaan bantalan bearing |
Besi lunak (ASTM A47) | C 2.5, Si 1.0, Mn 0.55 | Cast (annealed) | 33 | 52 | 12 | 130 | Bantalan bearing gandar, roda track, poros engkol otomotif |
Besi ulet atau nodular | C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06 | Cast | 53 | 70 | 18 | 170 | Roda gigi, poros bubungan, poros engkol |
Besi ulet atau nodular (ASTM A339) | — | Cast (quench tempered) | 108 | 135 | 5 | 310 | — |
Ni-keras tipe 2 | C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0 | Sand-cast | — | 55 | — | 550 | Aplikasi kekuatan tinggi |
Ni-resist tipe 2 | C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5 | Cast | — | 27 | 2 | 140 | Ketahanan terhadap panas dan korosi |
Baja
[sunting | sunting sumber]Baja (dengan kandungan karbon yang lebih kecil daripada besi kasar tetapi lebih banyak daripada besi tempa) pertama kali diproduksi menggunakan bloomery. Pandai besi di Luristan, Iran bagian barat membuat baja yang bagus pada 1.000 SM.[47] Kemudian, versi pengembagannya adalah, baja Wootz oleh India dan baja Damaskus dikembangkan sekitar 300 SM dan 500 setelah masehi. Metode ini adalah spesialisasi, dan oleh karenanya baja tiak menjadi komoditas utama hingga tahun 1850an.[65]
Metode produksi baru adalah melalui karburasi besi batangan dalam proses sementasi ditemukan pada abad ke-17. Pada Revolusi Industri, metode baru memproduksi besi batangan tanpa batu bara ditemukan dan hal ini kemudian digunakan untuk memproduksi baja. Pada akhir 1850an, Henry Bessemer menciptakan proses pembuatan baja baru, melibatkan penghembusan udara melalui lelehan besi kasar untuk memproduksi baja lunak. Hal ini membuat baja jauh lebih ekonomis, oleh karena itu besi tempa tidak lagi diproduksi.[66]
Baja tahan karat
[sunting | sunting sumber]Baja tahan karat adalah istilah yang umum untuk semua jenis baja yang merupakan produk dari proses peleburan khusus, memiliki tingkat kemurnian yang tinggi, dan bereaksi merata terhadap panas yang diberikan. Berdasarkan definisi ini, baja stainless tidak harus selalu merupakan baja alloy atau baja alloy tinggi. Dalam uraian ini akan dibatasi pada baja stainless alloy tinggi dengan kandungan kromium setidaknya 10,5%. Berdasarkan strukturnya, baja stainless alloy tinggi dapat dikelompokkan ke dalam kategori berikut:
- baja tahan karat feritik
- baja tahan karat martensitik
- baja tahan karat austenitik
- baja tahan karat feritik-austenitik (baja dupleks)
- Baja tahan karat feritik
- Baja tahan karat feritik dibagi menjadi dua kelompok
- dengan kromium (CR) sekitar 11 hingga 13%
- dengan kromium (CR) sekitar 17%
Baja tahan karat dengan kandungan kromium sebesar 10,5% hingga 13% dikategorikan sebagai lembam korosi karena kandungan kromiumnya yang rendah. Baja ini digunakan jika kriteria yang diutamakan adalah masa pakai, keamanan, dan tingkat perawatan yang rendah dan tidak ada kriteria spesifik yang dibutuhkan. Bidang aplikasi yang umum menggunakannya misalnya konstruksi kontainer, konstruksi gerbong, dan konstruksi kendaraan.
- Baja tahan karat martensitik
Baja tahan karat martensitik dengan kandungan kromium 12 hingga 18% dan kandungan karbon melebihi 0,1% akan berubah menjadi austenitik pada temperatur di atas 950 - 1050°C. Pendinginan cepat (quenching) akan menghasilkan struktur martensitik. Struktur ini, terutama jika dikeraskan dan didinginkan, akan menghasilkan kekuatan yang tinggi dan bahkan meningkatkan kandungan karbon. Baja tahan karat martensitik digunakan misalnya untuk produksi pisau silet, pisau, atau gunting.
- Baja tahan karat austenitik
Baja tahan karat austenitik (disebut juga: baja kromium-nikel) dengan kandungan nikel di atas 8% merupakan kombinasi yang ideal untuk aplikasi praktis yang terkait pemrosesan, ketahanan terhadap korosi, dan karakteristik mekanisnya. Karakteristik utama dari jenis baja stainless ini adalah ketahanan yang tinggi terhadap korosi. Atas dasar itu, baja stainless austenitik diterapkan di area dengan media yang agresif, misalnya kontak dengan air laut yang mengandung klorida dan dalam industri kimia dan makanan.
- Baja tahan karat feritik-austenitik
Baja tahan karat feritik-austenitik seringkali disebut juga baja dupleks karena merupakan komposit yang terbentuk dari dua struktur ini. Karena baja ini memiliki tingkat fleksibilitas yang tinggi dan juga memiliki ketahanan yang lebih baik terhadap korosi, baja jenis ini terutama cocok untuk penggunaan pada teknik lepas pantai.
SAE steel grades
[sunting | sunting sumber]Sistem nilai baja steel grades SAE adalah sistem penomoran paduan standar (SAE J1086 - Numbering Metals and Alloys) untuk nilai baja yang dikelola oleh SAE International.
Penamaan | Komposisi menurut berat (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SAE | UNS | Cr | Ni | C | Mn | Si | P | S | N | Lainnya |
Austenitik | ||||||||||
201 | S20100 | 16–18 | 3.5–5.5 | 0.15 | 5.5–7.5 | 0.75 | 0.06 | 0.03 | 0.25 | - |
202 | S20200 | 17–19 | 4–6 | 0.15 | 7.5–10.0 | 0.75 | 0.06 | 0.03 | 0.25 | - |
205 | S20500 | 16.5–18 | 1–1.75 | 0.12–0.25 | 14–15.5 | 0.75 | 0.06 | 0.03 | 0.32–0.40 | - |
254[68] | S31254 | 20 | 18 | 0.02 max. | - | - | - | - | 0.20 | 6 Mo; 0.75 Cu; "Super austenitic"; All values nominal |
301 | S30100 | 16–18 | 6–8 | 0.15 | 2 | 0.75 | 0.045 | 0.03 | - | - |
302 | S30200 | 17–19 | 8–10 | 0.15 | 2 | 0.75 | 0.045 | 0.03 | 0.1 | - |
302B | S30215 | 17–19 | 8–10 | 0.15 | 2 | 2.0–3.0 | 0.045 | 0.03 | - | - |
303 | S30300 | 17–19 | 8–10 | 0.15 | 2 | 1 | 0.2 | 0.15 min. | - | Mo 0.60 (optional) |
303Se | S30323 | 17–19 | 8–10 | 0.15 | 2 | 1 | 0.2 | 0.06 | - | 0.15 Se min. |
304 | S30400 | 18–20 | 8–10.50 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.1 | - |
304L | S30403 | 18–20 | 8–12 | 0.03 | 2 | 0.75 | 0.045 | 0.03 | 0.1 | - |
304Cu | S30430 | 17–19 | 8–10 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | - | 3–4 Cu |
304N | S30451 | 18–20 | 8–10.50 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.10–0.16 | - |
305 | S30500 | 17–19 | 10.50–13 | 0.12 | 2 | 0.75 | 0.045 | 0.03 | - | - |
308 | S30800 | 19–21 | 10–12 | 0.08 | 2 | 1 | 0.045 | 0.03 | - | - |
309 | S30900 | 22–24 | 12–15 | 0.2 | 2 | 1 | 0.045 | 0.03 | - | - |
309S | S30908 | 22–24 | 12–15 | 0.08 | 2 | 1 | 0.045 | 0.03 | - | - |
310 | S31000 | 24–26 | 19–22 | 0.25 | 2 | 1.5 | 0.045 | 0.03 | - | - |
310S | S31008 | 24–26 | 19–22 | 0.08 | 2 | 1.5 | 0.045 | 0.03 | - | - |
314 | S31400 | 23–26 | 19–22 | 0.25 | 2 | 1.5–3.0 | 0.045 | 0.03 | - | - |
316 | S31600 | 16–18 | 10–14 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.10 | 2.0–3.0 Mo |
316L | S31603 | 16–18 | 10–14 | 0.03 | 2 | 0.75 | 0.045 | 0.03 | 0.10 | 2.0–3.0 Mo |
316F | S31620 | 16–18 | 10–14 | 0.08 | 2 | 1 | 0.2 | 0.10 min. | - | 1.75–2.50 Mo |
316N | S31651 | 16–18 | 10–14 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.10–0.16 | 2.0–3.0 Mo |
317 | S31700 | 18–20 | 11–15 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.10 max. | 3.0–4.0 Mo |
317L | S31703 | 18–20 | 11–15 | 0.03 | 2 | 0.75 | 0.045 | 0.03 | 0.10 max. | 3.0–4.0 Mo |
321 | S32100 | 17–19 | 9–12 | 0.08 | 2 | 0.75 | 0.045 | 0.03 | 0.10 max. | Ti 5(C+N) min., 0.70 max. |
329 | S32900 | 23–28 | 2.5–5 | 0.08 | 2 | 0.75 | 0.04 | 0.03 | - | 1–2 Mo |
330 | N08330 | 17–20 | 34–37 | 0.08 | 2 | 0.75–1.50 | 0.04 | 0.03 | - | - |
347 | S34700 | 17–19 | 9–13 | 0.08 | 2 | 0.75 | 0.045 | 0.030 | - | Nb + Ta, 10 × C min., 1 max. |
348 | S34800 | 17–19 | 9–13 | 0.08 | 2 | 0.75 | 0.045 | 0.030 | - | Nb + Ta, 10 × C min., 1 max., but 0.10 Ta max.; 0.20 Ca |
384 | S38400 | 15–17 | 17–19 | 0.08 | 2 | 1 | 0.045 | 0.03 | - | - |
Penamaan | Komposisi menurut berat (%) | |||||||||
SAE | UNS | Cr | Ni | C | Mn | Si | P | S | N | Lainnya |
Feritik | ||||||||||
405 | S40500 | 11.5–14.5 | - | 0.08 | 1 | 1 | 0.04 | 0.03 | - | 0.1–0.3 Al, 0.60 max. |
409 | S40900 | 10.5–11.75 | 0.05 | 0.08 | 1 | 1 | 0.045 | 0.03 | - | Ti 6 × (C + N) [69] |
429 | S42900 | 14–16 | 0.75 | 0.12 | 1 | 1 | 0.04 | 0.03 | - | - |
430 | S43000 | 16–18 | 0.75 | 0.12 | 1 | 1 | 0.04 | 0.03 | - | - |
430F | S43020 | 16–18 | - | 0.12 | 1.25 | 1 | 0.06 | 0.15 min. | - | 0.60 Mo (optional) |
430FSe | S43023 | 16–18 | - | 0.12 | 1.25 | 1 | 0.06 | 0.06 | - | 0.15 Se min. |
434 | S43400 | 16–18 | - | 0.12 | 1 | 1 | 0.04 | 0.03 | - | 0.75–1.25 Mo |
436 | S43600 | 16–18 | - | 0.12 | 1 | 1 | 0.04 | 0.03 | - | 0.75–1.25 Mo; Nb+Ta 5 × C min., 0.70 max. |
442 | S44200 | 18–23 | - | 0.2 | 1 | 1 | 0.04 | 0.03 | - | - |
446 | S44600 | 23–27 | 0.25 | 0.2 | 1.5 | 1 | 0.04 | 0.03 | - | - |
Penamaan | Komposisi menurut berat (%) | |||||||||
SAE | UNS | Cr | Ni | C | Mn | Si | P | S | N | Lainnya |
Martensitik | ||||||||||
403 | S40300 | 11.5–13.0 | 0.60 | 0.15 | 1 | 0.5 | 0.04 | 0.03 | - | - |
410 | S41000 | 11.5–13.5 | 0.75 | 0.15 | 1 | 1 | 0.04 | 0.03 | - | - |
414 | S41400 | 11.5–13.5 | 1.25–2.50 | 0.15 | 1 | 1 | 0.04 | 0.03 | - | - |
416 | S41600 | 12–14 | - | 0.15 | 1.25 | 1 | 0.06 | 0.15 min. | - | 0.060 Mo (optional) |
416Se | S41623 | 12–14 | - | 0.15 | 1.25 | 1 | 0.06 | 0.06 | - | 0.15 Se min. |
420 | S42000 | 12–14 | - | 0.15 min. | 1 | 1 | 0.04 | 0.03 | - | - |
420F | S42020 | 12–14 | - | 0.15 min. | 1.25 | 1 | 0.06 | 0.15 min. | - | 0.60 Mo max. (optional) |
422 | S42200 | 11.0–12.5 | 0.50–1.0 | 0.20–0.25 | 0.5–1.0 | 0.5 | 0.025 | 0.025 | - | 0.90–1.25 Mo; 0.20–0.30 V; 0.90–1.25 W |
431 | S41623 | 15–17 | 1.25–2.50 | 0.2 | 1 | 1 | 0.04 | 0.03 | - | - |
440A | S44002 | 16–18 | - | 0.60–0.75 | 1 | 1 | 0.04 | 0.03 | - | 0.75 Mo |
440B | S44003 | 16–18 | - | 0.75–0.95 | 1 | 1 | 0.04 | 0.03 | - | 0.75 Mo |
440C | S44004 | 16–18 | - | 0.95–1.20 | 1 | 1 | 0.04 | 0.03 | - | 0.75 Mo |
Penamaan | Komposisi menurut berat (%) | |||||||||
SAE | UNS | Cr | Ni | C | Mn | Si | P | S | N | Lainnya |
Tahan panas | ||||||||||
501 | S50100 | 4–6 | - | 0.10 min. | 1 | 1 | 0.04 | 0.03 | - | 0.40–0.65 Mo |
502 | S50200 | 4–6 | - | 0.1 | 1 | 1 | 0.04 | 0.03 | - | 0.40–0.65 Mo |
Pengerasan presipitasi martensit | ||||||||||
630 | S17400 | 15–17 | 3–5 | 0.07 | 1 | 1 | 0.04 | 0.03 | - | Cu 3–5, Ta 0.15–0.45 [70] |
Dasar kimia modern
[sunting | sunting sumber]Pada tahun 1774, Antoine Lavoisier mereaksikan uap air dengan besi logam di dalam tabung besi pijar untuk menghasilkan hidrogen dalam percobaan yang mengarah ke demonstrasi konservasi massa, yang mengubah instrumentasi kimia dari ilmu kualitatif menjadi kuantitatif. Oksidasi anaerobik besi pada temperatur tinggi secara skematis dapat ditunjukkan oleh reaksi berikut:
Produksi besi logam
[sunting | sunting sumber]Jalur industri
[sunting | sunting sumber]Produksi besi atau baja adalah suatu proses dengan dua tahapan utama, kecuali produk yang diinginkan adalah besi tuang. Tahap pertama adalah produksi besi kasar (pig iron) dalam tanur tinggi. Cara lain, reduksi langsung. Tahap kedua, besi kasar diubah menjadi besi tempa atau baja.
Untuk beberapa fungsi terbatas seperti inti elektromagnet, besi murni diproduksi dengan cara elektrolisis larutan fero sulfat.
Bijih besi terdiri atas oksigen dan atom besi yang berikatan bersama dalam molekul. Besi sendiri biasanya didapatkan dalam bentuk magnetit (Fe3O4), hematit (Fe2O3), goethit, limonit atau siderit. Bijih besi biasanya kaya akan besi oksida dan beragam dalam hal warna, dari kelabu tua, kuning muda, ungu tua, hingga merah karat. Saat ini, cadangan biji besi tampak banyak, namun seiring dengan bertambahnya penggunaan besi secara eksponensial berkelanjutan, cadangan ini mulai berkurang, karena jumlahnya tetap. Sebagai contoh, Lester Brown dari Worldwatch Institute telah memperkirakan bahwa bijih besi bisa habis dalam waktu 64 tahun berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.[71][72]
- Tabel kandungan mineral besi
Mineral | Rumus kimia | Kandungan besi teoritis dalam mineral (dalam%) | Kandungan besi teoritis setelah kalsinasi (dalam%) |
---|---|---|---|
Hematit | Fe2O3 | 69,96 | 69,96 |
Magnetit | Fe3O4 | 72,4 | 72,4 |
Magnesioferrite | MgOFe2O3 | 56-65 | 56-65 |
Goetit | Fe2O3H2O | 62,9 | 70 |
Hydrogœthite | 3Fe2O34H2O | 60,9 | 70 |
Limonit | 2Fe2O33H2O | 60 | 70 |
Siderite | FeCO3 | 48,3 | 70 |
Pirit | FeS2 | 46,6 | 70 |
Pyrrhotite | Fe1-xS | 61,5 | 70 |
Ilmenit | FeTiO3 | 36,8 | 36,8 |
Proses tanur tinggi
[sunting | sunting sumber]Produksi besi industri dimulai dari bijih besi, biasanya hematit, dengan rumus Fe2O3, dan magnetit, dengan rumus Fe3O4. Bijih ini direduksi menjadi logam dalam suatu reaksi karbotermal, yaitu diberi perlakuan dengan karbon. Konversi ini biasa dilakukan dalam tanur tinggi pada temperatur sekitar 2000 °C. Karbon dipasok dalam bentuk kokas. Process ini juga mengandung fluks seperti limestone, yang digunakan untuk menghilangkan mineral silika dalam bijih, yang dapat menyimbat tanur. Kokas dan gamping dimasukkan melalui puncak tanur, ketika tengah terjadi ledakan hebat saat pemanasan udara, sekitar 4 ton per ton besi,[61] yang dipompa ke dalam tanur melalui bagian bawah.
Di dalam tanur, kokas bereaksi dengan oksigen dalam ledakan udara menghasilkan karbon monoksida:
Karbon monoksida yang mereduksi bijih besi (sesuai persamaan reaksi di bawah, hematite) menjadi lelehan besi, berubah menjadi karbon dioksida sesuai proses:
Beberapa besi dalam temperatur tinggi di bagian-bagian tanur yang lebih dingin bereaksi langsung dengan kokas:
Fluks yang berguna untuk melelehkan ketakmurnian dalam bijih biasanya adalah batu gamping (bahasa Inggris: limestone) (kalsium karbonat) dan dolomit (kalsium-magnesium karbonat). Fluks khusus lainnya digunakan bergantung pada karakteristik bijih. Panas di dalam tungku mengakibatkan fluks batu gamping terdekomposisi menjadi kalsium oksida (dikenal juga sebagai tawas):
Kemudian kalsium oksida bereaksi dengan silikon dioksida membentuk slag.
Slag meleleh karena panas tanur. Pada dasar tanur, lelehan slag mengapung di atas lelehan besi yang lebih padat, dan tingkap di bagian samping tanur dibuka untuk mengalirkan dan memisahkan besi dengan slag. Besi, ketika telah dingin, disebut besi kasar (pig iron), sementara slag dapat digunakan sebagai bahan konstruksi jalan atau bahan pengaya tanah yang miskin mineral untuk pertanian.[61]
Reduksi besi langsung
[sunting | sunting sumber]Karena masalah lingkungan, telah dikembangkan metode alternatif pengolahan besi. "Reduksi besi langsung" mereduksi bijih besi menjadi serbuk yang dinamakan besi "karang" atau besi "langsung" yang cocok untuk pembuatan baja.[61] Dua reaksi utama pada proses reduksi langsung:
- Gas alam dioksidasi sebagian (dengan panas dan katalis):
- Gas-gas ini kemudian diberi perlakuan dengan bijih besi dalam tanur, menghasilkan besi karang padat:
Silika dihilangkan dengan penambahan fluks gamping seperti telah dijelaskan di atas.
Metode laboratorium
[sunting | sunting sumber]Besi logam secara umum diproduksi di laboratorium melalui dua metode. Pertama adalah elektrolisis fero klorida pada katode besi. Metode kedua melibatkan reduksi besi oksida dengan gas hidrogen pada temperatur sekitar 500 °C.[73]
Aplikasi
[sunting | sunting sumber]Metalurgi
[sunting | sunting sumber]Negara | Bijih besi | Besi kasar | Besi reduksi | Baja |
---|---|---|---|---|
Cina | 1.114,9 | 549.4 | 573.6 | |
Australia | 393,9 | 4.4 | 5.2 | |
Brazil | 305,0 | 25.1 | 0.011 | 26.5 |
Jepang | 66.9 | 87.5 | ||
India | 257,4 | 38.2 | 23.4 | 63.5 |
Rusia | 92,1 | 43.9 | 4.7 | 60.0 |
Ukraina | 65,8 | 25.7 | 29.9 | |
Korea
Selatan |
0,1 | 27.3 | 48.6 | |
Jerman | 0,4 | 20.1 | 0.38 | 32.7 |
Dunia | 1.594,9 | 914.0 | 64.5 | 1,232.4 |
Besi adalah logam yang paling banyak digunakan, mencakup 92% dari produksi logam dunia.[n 1] Biayanya yang rendah dan kekuatannya yang tinggi membuatnya sangat diperlukan dalam aplikasi teknik seperti pembangunan mesin dan peralatan mesin, mobil, lambung kapal-kapal besar, dan komponen struktur bangunan. Karena besi murni cukup lunak, hal ini paling sering dikombinasikan dengan unsur paduan untuk membuat baja.
Besi yang tersedia untuk komersial diklasifikasikan berdasarkan kemurnian dan kandungan aditifnya. Pig iron memiliki 3,5-4,5% karbon[75] dan mengandung berbagai jumlah kontaminan seperti belerang, silikon dan fosfor. Pig iron bukan produk komersial, melainkan tahap antara dalam produksi besi tuang dan baja. Pengurangan kontaminan dalam pig iron yang berpengaruh negatif kepada sifat materi, seperti belerang dan fosfor, menghasilkan besi tuang yang mengandung 2–4% karbon, 1–6% silikon, dan sejumlah kecil mangan. Ia memiliki titik leleh di kisaran 1420-1470 K, lebih rendah daripada salah satu dari dua komponen utama, dan membuatnya produk pertama yang akan meleleh ketika karbon dan besi dipanaskan bersama-sama. Sifat mekaniknya sangat bervariasi dan bergantung pada bentuk karbon dalam paduan.
Besi tuang "putih" mengandung karbon dalam bentuk sementit, atau besi-karbida. Senyawa keras dan rapuh ini mendominasi sifat mekanik besi tuang putih ini, sehingga tetap keras, tetapi tidak tahan kejut. Permukaan besi tuang putih yang rusak penuh goresan halus pecahan besi-karbida, suat bahan mengkilap, keperakan dan sangat pucat.
Dalam besi abu-abu, karbon berbentuk serpihan halus grafit terpisah, dan juga membuat bahan rapuh karena serpihannya bermata tajam yang menghasilkan alokasi konsentrasi tegangan dalam materi. Varian baru dari besi abu-abu, disebut sebagai besi elastis yang diberi perlakuan khusus dengan magnesium dalam jumlah renik untuk mengubah bentuk grafit menjadi sferoid, atau nodul, mengurangi konsentrasi tegangan serta meningkatkan ketangguhan dan kekuatan material.
Besi tempa mengandung kurang dari 0,25% karbon, tetapi mengandung terak dalam jumlah besar sehingga memberikan karakteristik berserat.[75] Ini adalah produk keras, dapat ditempa, tetapi tidak mudah dilebur seperti pig iron. Ia juga mudah diasah Besi tempa ditandai oleh adanya serat terak halus yang terperangkap dalam logam. Besi tempa lebih tahan korosi daripada baja. Produk blacksmithing dan "besi tempa" tradisional dan telah hampir sepenuhnya digantikan oleh baja ringan.
Baja ringan lebih mudah berkarat daripada besi tempa, tetapi lebih murah dan lebih banyak tersedia. Baja karbon mengandung 2,0% karbon atau kurang,[76] ditambah sedikit mangan, belerang, fosfor, dan silikon. Baja paduan mengandung bervariasi jumlah karbon dan logam lain, seperti kromium, vanadium, molibdenum, nikel, wolfram, dan sebagainya. Kandungan paduannya mendongkrak biaya, sehingga biasanya hanya digunakan untuk keperluan khusus. Satu baja paduan umum, adalah baja nirkarat. Recent Perkembangan terkini dalam metalurgi besi telah menghasilkan berbagai baja paduan mikro, yang disebut juga baja 'HSLA' (singkatan dari bahasa Inggris: High Strength Low Alloy), mengandung sedikit tambahan untuk menghasilkan kekuatan tinggi dan biasanya ketangguhan spektakuler dengan biaya minimal.
Terlepas dari aplikasi tradisional, besi juga digunakan untuk perlindungan dari radiasi pengion. Meskipun lebih ringan daripada bahan perlindungan tradisional lainnya, yaitu timbal, ini jauh lebih kuat secara mekanis. Atenuasi radiasi sebagai fungsi energi ditunjukkan dalam grafik.
Kerugian utama besi dan baja adalah bahwa besi murni, dan sebagian besar paduannya, dapat membentuk karat jika tidak dilindungi. Pengecatan, galvanisasi, pasivasi, pelapisan plastik dan pembiruan semua digunakan untuk melindungi besi dari karat dengan menghalangi masuknya air dan oksigen atau dengan proteksi katodik.
Senyawa besi
[sunting | sunting sumber]Meskipun peran metalurgi dominan dalam hal jumlah, senyawa besi banyak digunakan oleh baik industri maupun kegunaan lainnya. Katalis besi secara tradisional digunakan dalam proses Haber-Bosch untuk produksi amonia dan proses Fischer-Tropsch untuk konversi karbon monoksida menjadi hidrokarbon untuk bahan bakar dan pelumas.[77] Serbuk besi dalam pelarut asam digunakan dalam reduksi Bechamp yaitu reduksi nitrobenzena menjadi anilin.[78]
Besi(III) klorida digunakan untuk pemurnian air dan pengolahan limbah, untuk mewarnai tekstil, sebagai pewarna cat, sebagai aditif pakan ternak, dan sebagai etchant untuk tembaga dalam pabrikasi PCB.[79] Ini bisa juga dilarutkan dalam alkohol untuk membuat besi tincture. Halida lainnya cenderung memiliki penggunaan yang terbatas di laboratorium.
Besi(II) sulfat digunakan sebagai prekursor untuk senyawa besi lainnya. Ini juga digunakan untuk mereduksi kromat dalam semen. Ini digunakan untuk memfortifikasi makanan dan mengobati anemia defisiensi besi. Hal di atas adalah kegunaan utamanya. Besi(III) sulfat digunakan dalam pengendapan partikel limbah dalam air tangki. Besi(II) klorida digunakan sebagai pereduksi flokulator, dalam pembentukan kompleks besi dan besi oksida magnetik, serta sebagai reduktor dalam sintesis organik.
Korosi dan pencegahannya
[sunting | sunting sumber]Korosi besi memerlukan oksigen dan air. Berbagai jenis logam contohnya seng dan magnesium dapat melindungi besi dari korosi. Cara-cara pencegahan korosi besi yang akan dibahas berikut ini didasarkan pada dua sifat tersebut. Proses korosi besi disebut juga dengan perkaratan.
- Pengecatan. Jembatan, pagar, dan railing biasanya dicat. Cat menghindarkan kontak dengan udara dan air. Cat yang mengandung timbel dan zink (seng) akan lebih baik, karena keduanya melindungi besi terhadap korosi.
- Pelumuran dengan oli atau gemuk. Cara ini diterapkan untuk berbagai perkakas dan mesin. Oli dan gemuk mencegah kontak dengan air.
- Pembalutan dengan Plastik. Berbagai macam barang, misalnya rak piring dan keranjang sepeda dibalut dengan plastik. Plastik mencegah kontak dengan udara dan air.
- Tin plating (pelapisan dengan timah). Kaleng-kaleng kemasan terbuat dari besi yang dilapisi dengan timah. Pelapisan dilakukan secara elektrolisis, yang disebut tin plating. Timah tergolong logam yang tahan karat. Akan tetapi, lapisan timah hanya melindungi besi selama lapisan itu utuh (tanpa cacat). Apabila lapisan timah ada yang rusak, misalnya tergores, maka timah justru mendorong/mempercepat korosi besi. Hal itu terjadi karena potensial reduksi besi lebih negatif daripada timah. Oleh karena itu, besi yang dilapisi dengan timah akan membentuk suatu sel elektrokimia dengan besi sebagai anode. Dengan demikian, timah mendorong korosi besi. Akan tetapi hal ini justru yang diharapkan, sehingga kaleng-kaleng bekas cepat hancur.
- Galvanisasi (pelapisan dengan seng). Pipa besi, tiang telepon dan berbagai barang lain dilapisi dengan zink. Berbeda dengan timah, zink dapat melindungi besi dari korosi sekalipun lapisannya tidak utuh. Hal ini terjadi karena suatu mekanisme yang disebut perlindungan katode. Oleh karena potensial reduksi besi lebih positif daripada zink, maka besi yang kontak dengan zink akan membentuk sel elektrokimia dengan besi sebagai katode. Dengan demikian besi terlindungi dan zink yang mengalami oksidasi (berkarat). Badan mobil-mobil baru pada umumnya telah digalvanisasi, sehingga tahan karat.
- Chromium Plating (pelapisan dengan kromium). Besi atau baja juga dapat dilapisi dengan kromium untuk memberi lapisan pelindung yang mengkilap, misalnya untuk bumper mobil. Cromium plating juga dilakukan dengan elektrolisis. Sama seperti zink, kromium dapat memberi perlindungan sekalipun lapisan kromium itu ada yang rusak.
- Sacrificial Protection (pengorbanan anode). Magnesium adalah logam yang jauh lebih aktif (berarti lebih mudah berkarat) daripada besi. Jika logam magnesium dikontakkan dengan besi, maka magnesium itu akan berkarat tetapi besi tidak. Cara ini digunakan untuk melindungi pipa baja yang ditanam dalam tanah atau badan kapal laut. Secara periodik, batang magnesium harus diganti.
Peran biologi
[sunting | sunting sumber]Besi melimpah dalam biologi.[80][81] Besi-protein ditemukan dalam semua organisme mulai dari yang promotif archaea hingga manusia. Warna darah disebabkan oleh hemoglobin, suatu protein yang mengandung besi. Seperti dalam hemoglobin, besi sering kali terikat pada kofaktor, misalnya dalam heme. Gugus besi-belerang adalah penyusun nitrogenase, suatu enzim yang bertanggung jawab pada fiksasi nitrogen biologis. Pengaruh teori evolusi memberikan peran pada besi sulfida dalam teori besi-belerang dunia.
Besi adalah unsur renik penting yang ditemukan di hampir semua organisme hidup. Enzim dan protein mengandung besi, sering kali mengandung gugus prostetik heme, yang berperan besar dalam oksidasi dan transportasi biologis. Contoh protein yang ditemukan dalam organisme tingkat tinggi antara lain hemoglobin, sitokrom (lihat besi valensi tinggi), dan katalase.[82]
Senyawa bioanorganik
[sunting | sunting sumber]Senyawa besi "bioanorganik" (yaitu senyawa besi yang digunakan dalam biologi) yang paling banyak diketahui adalah protein heme: contohnya: hemoglobin, myoglobin, dan sitokrom P450. Senyawa-senyawa ini dapat melakukan transportasi gas, membuat enzim, dan digunakan dalam transfer elektron. Metaloprotein adalah gugus protein dengan ion logam kofaktor. Beberapa contoh besi metaloprotein adalah feritin dan rubredoksin. Banyak enzim vital untuk kehidupan mengandung besi, seperti katalase, lipoksigenase, dan IRE-BP.
Kesehatan dan diet
[sunting | sunting sumber]Besi memang melimpah, tetapi sumber zat besi utama antara lain daging merah, kacang-kacangan, kacang, daging unggas, ikan, sayuran hijau, selada air, tahu, buncis, kacang polong, roti yang difortifikasi, dan sereal yang difortifikasi. Besi dalam jumlah kecil ditemukan dalam molases, tef, dan tepung kentang (farina). Besi dalam daging (besi heme) lebih mudah diserap daripada besi dalam sayuran.[83] Meskipun sejumlah studi menyebutkan bahwa heme/hemoglobin dari daging merah mempunyai efek yang dapat meningkatkan kemungkinan kanker usus besar,[84][85] tetapi tetap ada sejumlah kontroversi,[86] dan bahkan ada beberapa studi yang menyatakan bahwa tidak ada bukti cukup yang mendukung klaim semacam itu.[87]
Besi yang ada dalam suplemen makanan sering kali ditemukan sebagai besi(II) fumarat, meskipun besi sulfat lebih murah dan dapat diserap cukup baik. Unsur besi, meski efisiensi penyerapannya hanya ⅓ relatif dari besi sulfat,[88] sering ditambahkan dalam makanan seperti sereal dan tepung terigu. Besi yang paling mudah diserap tubuh apabila di-khelat-kan dengan asam amino[89] dan juga tersedia sebagai suplemen besi. Seringkali asam amino yang dipilih adalah yang termurah dan paling umum yaitu glisin, dalam bentuk suplemen "besi glisinat".[90] Angka Kecukupan Gizi (AKG) yang dianjurkan (bahasa Inggris: Recommended Dietary Allowance (RDA)) untuk besi beragam sesuai umur, jenis kelamin, dan sumber zat besi (besi berbasis heme memiliki bioavilabilitas yang lebih tinggi).[91] Bayi memerlukan suplemen besi jika mengkonsumsi susu formula.[92] Pendonor darah dan wanita hamil berisiko mengalami kekurangan besi dan sering kali dianjurkan untuk mengkonsumsi suplemen besi.[93]
Penyerapan dan penyimpanan
[sunting | sunting sumber]Akuisisi besi menghadapi masalah bagi organisme aerobik, karena ion feri sukar larut pada pH mendekati netral. Oleh karena itu, bakteri telah melibatkan senyawa sekuestor yang disebut siderofora (bahasa Inggris: siderophore).[94][95][96]
Setelah diserap, dalam sel, penyimpanan besi diatur dengan hati-hati; ion besi "bebas" tidak tersedia begitu saja. Komponen utama yang mengatur ini adalah protein transferin, yang mengikat ion besi yang diserap dari duodenum dan mengangkutnya melalui aliran arah menuju sel.[97] Pada hewan, tumbuhan, dan jamur, besi sering kali berupa ion yang berbentuk kompleks heme. Heme adalah komponen esensial protein sitokrom, yang mengatur reaksi redoks, dan komponen esensial protein pengangkut oksigen seperti hemoglobin, myoglobin, dan leghemoglobin.
Besi anorganik berkontribusi pada reaksi redoks dalam gugus besi-belerang enzim, seperti nitrogenase (terlibat dalam sintesis amonia dari nitrogen dan hidrogen) serta hidrogenase. Protein besi non-heme meliputi enzim metana monooksigenase (mengoksidasi metana menjadi metanol), ribonukleotida reduktase (mereduksi ribosa menjadi deoksiribosa; biosintesis DNA), hemertrin (transpor oksigen dan fiksasi dalam invertebrata laut) serta asam fosfatase ungu (hidrolisis ester fosfat).
Distribusi besi sangat diatur dalam mamalia, terutama karena ion besi berpotensi tinggi pada toksisitas biologis.[98]
Pengaturan asupan
[sunting | sunting sumber]Asupan besi diatur ketat oleh tubuh manusia, yang tidak memiliki pengaturan fisiologis ekskresi besi. Hanya sejumlah kecil besi yang hilang setiap hari karena peluruhan sel mukosa dan epitel kulit, sehingga pengendalian level besi sangat diatur dari asupannya.[99] Pengaturan asupan besi tidak berlangsung sempurna pada beberapa orang akibat dari cacat genetik yang memetakan region gen HLA-H pada kromosom 6. Pada orang-orang ini, kelebihan asupan dapat mengakibatkan kelainan akibat kelebihan besi (bahasa Inggris: iron overload disorder), seperti hemokromatosis. Banyak orang memiliki kerentanan genetik terhadap kelebihan zat besi tanpa menyadarinya atau menyadari masalah sejarah keluarga. Berdasarkan alasan tersebut, disarankan untuk tidak mengkonsumsi suplemen besi kecuali mengalami defisiensi besi dan telah berkonsultasi dengan dokter. Hemokromatosis diperkirakan menyebabkan penyakit antara 0,3 dan 0,8% di kalangan ras kaukasia.[100]
MRI menemukan bahwa besi terakumulasi dalam hipokampus otak pada penderita Alzheimer dan dalam substansia nigra pada penderita Parkinson.[101]
Bioremediasi
[sunting | sunting sumber]Bakteri pemakan besi hidup di lambung kapal karam seperti Titanic.[102] Bakteti asidofil Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, Sulfolobus spp., Acidianus brierleyi and Sulfobacillus thermosulfidooxidans dapat mengoksidasi enzimatis besi fero.[103] Sample jamur Aspergillus niger ditemukan tumbuh dari larutan penambangan emas, dan ditemukan mengandung kompleks sianologam seperti emas, perak, tembaga, besi dan seng. Jamur juga berperan dalam kemudahlarutan sulfida logam berat.[104]
Hambatan permeabel reaktif
[sunting | sunting sumber]Besi zerovalen adalah materi reaktif utama pada hambatan permeabel reaktif.[105]
Toksisitas
[sunting | sunting sumber]Mencerna besi dalam jumlah besar dapat menyebabkan kelebihan kadar besi dalam darah. Kadar besi fero yang tinggi dalam darah bereaksi dengan peroksida membentuk radikal bebas, yang sangat reaktif dan dapat merusak DNA, protein, lemak, dan komponen sel lainnya. Oleh karena itu, toksisitas besi muncul ketika besi bebas dalam sel, yang biasanya terjadi ketika kadar besi melebihi kemampuan transferin mengikat besi. Kerusakan pada sel saluran pencernaan dapat juga menghambat pengaturan asupan besi yang berakibat pada peningkatan lebih lanjut kadar besi darah. Besi umumnya merusak sel dalam jantung, liver dan lainnya, yang dapat menyebabkan efek parah, termasuk koma, asidosis metabolik, syok, kegagalan liver, koagulopati, sindrom distres pernapasan dewasa (bahasa Inggris: adult respiratory distress syndrome), kerusakan organ jangka panjang, dan bahkan kematian.[106] Manusia mengalami keracunan besi di atas 20 miligram besi per kilogram berat badan, dan 60 miligram per kilogram adalah dosis letal.[107] Asupan besi berlebihan, sering kali akibat dari konsumsi berlebih tablet fero sulfat pada anak-anak tetapi dengan dosis dewasa. Ini adalah salah satu keracunan umum yang menyebabkan kematian pada anak-anak usia di bawah enam tahun.[107] Standar Asupan Gizi (bahasa Inggris: Dietary Reference Intake (DRI)) mencantumkan Batas Atas Toleransi (bahasa Inggris: Tolerable Upper Intake Level (UL)) untuk dewasa adalah 45 mg/hari. Untuk anak-anak di bawah empat belas tahun, UL-nya 40 mg/hari.
Pengelolaan medis keracunan besi adalah rumit, dan dapat berupa penggunaan zat pengkhelat yang disebut deferoksamina untuk mengikat dan mengeluarkan kelebihan besi dari dalam tubuh.[106][108][109]
Lihat pula
[sunting | sunting sumber]- Baja
- Besi dalam cerita rakyat
- Besi (metafora)
- Besi nirkarat
- Daftar negara berdasarkan produksi besi
- El Mutún di Bolivia, penyumbang 10% dari bijih besi dunia.
- Fertilisasi besi – usulan fertilisasi samudera untuk merangsang pertumbuhan fitoplankton
- Pelletizing – proses pembuatan pelet bijih besi
Referensi
[sunting | sunting sumber]- ^ (Indonesia) "Besi". KBBI Daring. Diakses tanggal 17 Juli 2022.
- ^ Ram, R. S.; Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ–a4Δ system of FeCl". Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
- ^ Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
- ^ Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
- ^ "Salinan arsip" (PDF). Diarsipkan dari versi asli (PDF) tanggal 2015-08-22. Diakses tanggal 2016-01-11.
- ^ a b Kohl, Walter H. (1995). Handbook of materials and techniques for vacuum devices. Springer. hlm. 164–167. ISBN 1-56396-387-6.
- ^ a b Kuhn, Howard and Medlin, Dana (prepared under the direction of the ASM International Handbook Committee), ed. (2000). ASM Handbook – Mechanical Testing and Evaluation (PDF). 8. ASM International. hlm. 275. ISBN 0-87170-389-0.
- ^ "Hardness Conversion Chart". Maryland Metrics. Diarsipkan dari versi asli tanggal 2015-06-18. Diakses tanggal 23 May 2010.
- ^ Takaji, Kusakawa; Toshikatsu, Otani (1964). "Properties of Various Pure Irons: Study on pure iron I". Tetsu-to-Hagane. 50 (1): 42–47.
- ^ Raghavan, V. (2004). Materials Science and Engineering. PHI Learning Pvt. Ltd. hlm. 218. ISBN 81-203-2455-2.
- ^ a b Boehler, Reinhard (2000). "High-pressure experiments and the phase diagram of lower mantle and core materials". Review of Geophysics. American Geophysical Union. 38 (2): 221–245. Bibcode:2000RvGeo..38..221B. doi:10.1029/1998RG000053.
- ^ a b Bramfitt, B. L.; Benscoter, Arlan O. (2002). "The Iron Carbon Phase Diagram". Metallographer's guide: practice and procedures for irons and steels. ASM International. hlm. 24–28. ISBN 978-0-87170-748-2.
- ^ Martin, John Wilson (2007). Concise encyclopedia of the structure of materials. Elsevier. hlm. 183. ISBN 0-08-045127-6.
- ^ Boehler, Reinhard; Ross, M. (2007). "Properties of Rocks and Minerals_High-Pressure Melting". Mineral Physics. Treatise on Geophysics. 2. Elsevier. hlm. 527–541. doi:10.1016/B978-044452748-6.00047-X.
- ^ Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. (2009). "New Measurement of the 60Fe Half-Life". Physical Review Letters. 103 (7). doi:10.1103/PhysRevLett.103.072502. ISSN 0031-9007.
- ^ Dauphas, N.; Rouxel, O. (2006). "Mass spectrometry and natural variations of iron isotopes" (PDF). Mass Spectrometry Reviews. 25 (4): 515–550. doi:10.1002/mas.20078. PMID 16463281. Diarsipkan dari versi asli (PDF) tanggal 2010-06-10. Diakses tanggal 2016-01-11.
- ^ Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
- ^ Mostefaoui, S.; Lugmair, G.W.; Hoppe, P.; El Goresy, A. (2004). "Evidence for live 60Fe in meteorites". New Astronomy Reviews. 48: 155. Bibcode:2004NewAR..48..155M. doi:10.1016/j.newar.2003.11.022.
- ^ Bautista, Manuel A.; Pradhan, Anil K. (1995). "Iron and Nickel Abundances in H~II Regions and Supernova Remnants". Bulletin of the American Astronomical Society. 27: 865. Bibcode:1995AAS...186.3707B.
- ^ McDonald, I.; Sloan, G. C.; Zijlstra, A. A.; Matsunaga, N.; Matsuura, M.; Kraemer, K. E.; Bernard-Salas, J.; Markwick, A. J. (2010). "Rusty Old Stars: A Source of the Missing Interstellar Iron?". The Astrophysical Journal Letters. 717 (2): L92–L97. arXiv:1005.3489 . Bibcode:2010ApJ...717L..92M. doi:10.1088/2041-8205/717/2/L92.
- ^ "Iron: geological information". WebElements. Diakses tanggal 23 May 2010.
- ^ John W. Morgan & Edward Anders (1980). "Chemical composition of Earth, Venus, and Mercury". Proc. Nat. Acad. Sci. 77 (12): 6973–6977. Bibcode:1980PNAS...77.6973M. doi:10.1073/pnas.77.12.6973. PMC 350422 . PMID 16592930.
- ^ Lyons, T. W.; Reinhard, CT (2009). "Early Earth: Oxygen for heavy-metal fans". Nature. 461 (7261): 179–181. Bibcode:2009Natur.461..179L. doi:10.1038/461179a. PMID 19741692.
- ^ Cloud, P. (1973). "Paleoecological Significance of the Banded Iron-Formation". Economic Geology. 68 (7): 1135–1143. doi:10.2113/gsecongeo.68.7.1135.
- ^ Emiliani, Cesare (1992). "Planet earth: cosmology, geology, and the evolution of life and environment". Cambridge University Press: 152. ISBN 978-0-521-40949-0. Parameter
|chapter=
akan diabaikan (bantuan) - ^ Klingelhöfer, G.; Morris, R. V.; Souza, P. A.; Rodionov, D.; Schröder, C. (2007). "Two earth years of Mössbauer studies of the surface of Mars with MIMOS II". Hyperfine Interactions. 170: 169–177. Bibcode:2006HyInt.170..169K. doi:10.1007/s10751-007-9508-5.
- ^ Greenwood and Earnshaw, p. 905
- ^ a b Greenwood and Earnshaw, p. 1070
- ^ Greenwood and Earnshaw, pp. 1074–5
- ^ Nam, Wonwoo (2007). "High-Valent Iron(IV)–Oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions". Accounts of Chemical Research. 40 (7): 522–531. doi:10.1021/ar700027f. PMID 17469792.
- ^ a b c d e f Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Iron". Lehrbuch der Anorganischen Chemie (dalam bahasa German) (edisi ke-91–100). Walter de Gruyter. hlm. 1125–1146. ISBN 3-11-007511-3.
- ^ Reiff, William Michael; Long, Gary J. (1984). "Mössbauer Spectroscopy and the Coordination Chemistry of Iron". Mössbauer spectroscopy applied to inorganic chemistry. Springer. hlm. 245–283. ISBN 978-0-306-41647-7.
- ^ Ware, Mike (1999). "An introduction in monochrome". Cyanotype: the history, science and art of photographic printing in Prussian blue. NMSI Trading Ltd. hlm. 11–19. ISBN 978-1-900747-07-3.
- ^ a b c d Greenwood and Earnshaw, pp. 1075–9
- ^ Gmelin, Leopold (1852). "Mercury and Iron". Hand-book of chemistry. 6. Cavendish Society. hlm. 128–129.
- ^ a b c Greenwood and Earnshaw, p. 1082–4
- ^ a b Greenwood and Earnshaw, p. 1088–91
- ^ Greenwood and Earnshaw, p. 1091–7
- ^ "Questions and Answers on Prussian Blue". Diakses tanggal 6 June 2009.
- ^ Thompson, D. F; Callen, ED (2004). "Soluble or Insoluble Prussian Blue for Radiocesium and Thallium Poisoning?". Annals of Pharmacotherapy. 38 (9): 1509–1514. doi:10.1345/aph.1E024. PMID 15252192.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. hlm. 1282–86. ISBN 0-08-022057-6..
- ^ Laszlo, P; Hoffmann, R (2000). "Ferrocene: Ironclad History of Rashomon Tale?" (PDF). Angewandte Chemie (International ed. in English). 39 (1): 123–124. doi:10.1002/(SICI)1521-3773(20000103)39:1<123::AID-ANIE123>3.0.CO;2-Z. PMID 10649350. Diarsipkan dari versi asli (PDF) tanggal 2012-06-28. Diakses tanggal 2016-01-11.
- ^ Federman Neto, Alberto; Pelegrino, Alessandra Caramori; Darin, Vitor Andre (2004). "Ferrocene: 50 Years of Transition Metal Organometallic Chemistry—From Organic and Inorganic to Supramolecular Chemistry". ChemInform. 35 (43). doi:10.1002/chin.200443242.
- ^ a b Weeks 1968, hlm. 29.
- ^ a b Weeks 1968, hlm. 31.
- ^ Bryce, Trevor (2007). Hittite Warrior. Osprey Publishing. hlm. 22–23. ISBN 978-1-84603-081-9.[pranala nonaktif permanen]
- ^ a b c d e Weeks 1968, hlm. 32.
- ^ Sawyer, Ralph D. and Mei-chün Sawyer. The Seven Military Classics of Ancient China. Boulder: Westview, (1993), p. 10.
- ^ Pigott, Vincent C. (1999). p. 8.
- ^ Peter J. Golas (25 February 1999). Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 13, Mining. Cambridge University Press. hlm. 152. ISBN 978-0-521-58000-7.
earlist blast furnace discovered in China from about the first century AD
- ^ Pigott, Vincent C. (1999). The Archaeometallurgy of the Asian Old World. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 0-924171-34-0, p. 191.
- ^ The Coming of the Ages of Steel. Brill Archive. 1961. hlm. 54. GGKEY:DN6SZTCNQ3G.
- ^ Tewari, Rakesh. "The origins of Iron Working in India: New evidence from the Central Ganga plain and the Eastern Vindhyas" (PDF). State Archaeological Department. Diakses tanggal 23 May 2010.
- ^ Photos, E. (1989). "The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results". World Archaeology. Taylor & Francis, Ltd. 20 (3): 403–421. doi:10.1080/00438243.1989.9980081. JSTOR 124562.
- ^ Muhly, James D. (2003). "Metalworking/Mining in the Levant". Dalam Lake, Richard Winona. Near Eastern Archaeology IN: Eisenbrauns. 180. hlm. 174–183.
- ^ Riederer, Josef; Wartke, Ralf-B.: "Iron", Cancik, Hubert; Schneider, Helmuth (eds.): Brill's New Pauly, Brill 2009
- ^ Craddock, Paul T. (2008): "Mining and Metallurgy", in: Oleson, John Peter (ed.): The Oxford Handbook of Engineering and Technology in the Classical World, Oxford University Press, ISBN 978-0-19-518731-1, p. 108
- ^ Wagner, Donald B.: "The State and the Iron Industry in Han China", NIAS Publishing, Copenhagen 2001, ISBN 87-87062-77-1, p. 73
- ^ Wagner, Donald B. (2003). "Chinese blast furnaces from the 10th to the 14th century". Historical Metallurgy. 37 (1): 25–37. originally published in Wagner, Donald B. (2001). "Chinese blast furnaces from the 10th to the 14th century". West Asian Science, Technology, and Medicine. 18: 41–74.
- ^ Giannichedda, Enrico (2007): "Metal production in Late Antiquity", in Technology in Transition AD 300–650 Lavan, L.; Zanini, E. and Sarantis, A.(eds.), Brill, Leiden; ISBN 90-04-16549-5, p. 200.
- ^ a b c d e Biddle, Verne; Parker, Gregory. Chemistry, Precision and Design. A Beka Book, Inc.
- ^ Donald B. Wagner (1993). Iron and Steel in Ancient China. BRILL. hlm. 335–340. ISBN 978-90-04-09632-5.
- ^ Campbell, F.C. (2008). Elements of Metallurgy and Engineering Alloys. Materials Park, Ohio: ASM International. hlm. 453. ISBN 978-0-87170-867-0.
- ^ Lyons, William C. and Plisga, Gary J. (eds.) Standard Handbook of Petroleum & Natural Gas Engineering, Elsevier, 2006
- ^ Spoerl, Joseph S. A Brief History of Iron and Steel Production Diarsipkan 2010-06-02 di Wayback Machine.. Saint Anselm College
- ^ Enghag, Per (8 January 2008). Encyclopedia of the Elements: Technical Data - History - Processing - Applications. hlm. 190–191. ISBN 9783527612345.
- ^ Oberg 2004, hlm. 448–49.
- ^ "What is Stainless Steel?". Nickel Institute. Diarsipkan dari versi asli tanggal 2005-12-31. Diakses tanggal 2007-08-13.
- ^ "section 2, part A:Standard specification for chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications". ASTM A SA-240/SA-540M. 2007. hlm. 385.
- ^ "Precipitation-Hardening Stainless Steel Type 17-4PH (S17400)" (PDF).
- ^ "Iron Ore – Hematite, Magnetite & Taconite". Mineral Information Institute. Diarsipkan dari versi asli tanggal 17 April 2006. Diakses tanggal 7 April 2006.
- ^ Goldstein, J.I.; Scott, E.R.D.; Chabot, N.L. (2009). "Iron meteorites: Crystallization, thermal history, parent bodies, and origin". Geochemistry (dalam bahasa Inggris). 69 (4): 293–325. Bibcode:2009ChEG...69..293G. doi:10.1016/j.chemer.2009.01.002.
- ^ H. Lux "Metallic Iron" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 2. p. 1490-1..
- ^ Steel Statistical Yearbook 2010 Diarsipkan 2012-07-01 di Wayback Machine.. World Steel Association
- ^ a b Camp, James McIntyre; Francis, Charles Blaine (1920). The Making, Shaping and Treating of Steel. Pittsburgh: Carnegie Steel Company. hlm. 173–174. ISBN 1-147-64423-3.
- ^ "Classification of Carbon and Low-Alloy Steels". Diakses tanggal 5 January 2008.
- ^ Kolasinski, Kurt W. (2002). "Where are Heterogenous Reactions Important". Surface science: foundations of catalysis and nanoscience. John Wiley and Sons. hlm. 15–16. ISBN 978-0-471-49244-3.
- ^ McKetta, John J. (1989). "Nitrobenzene and Nitrotoluene". Encyclopedia of Chemical Processing and Design: Volume 31 – Natural Gas Liquids and Natural Gasoline to Offshore Process Piping: High Performance Alloys. CRC Press. hlm. 166–167. ISBN 978-0-8247-2481-8.
- ^ Wildermuth, Egon; Stark, Hans; Friedrich, Gabriele; Ebenhöch, Franz Ludwig; Kühborth, Brigitte; Silver, Jack; Rituper, Rafael (2000). "Ullmann's Encyclopedia of Industrial Chemistry". doi:10.1002/14356007.a14_591. ISBN 3527306730. Parameter
|chapter=
akan diabaikan (bantuan) - ^ Dlouhy, Adrienne C.; Outten, Caryn E. (2013). "Chapter 8 The Iron Metallome in Eukaryotic Organisms". Dalam Banci, Lucia. Metallomics and the Cell. Metal Ions in Life Sciences. 12. Springer. doi:10.1007/978-94-007-5561-1_8. ISBN 978-94-007-5560-4. electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
- ^ Yee, Gereon M.; Tolman, William B. (2015). "Chapter 5 Transition Metal Complexes and the Activation of Dioxygen". Dalam Peter M.H. Kroneck and Martha E. Sosa Torres. Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences. 15. Springer. hlm. 131–204. doi:10.1007/978-3-319-12415-5_5.
- ^ Lippard, S. J.; Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley: University Science Books. ISBN 0-935702-73-3.
- ^ Food Standards Agency – Eat well, be well – Iron deficiency Diarsipkan 2006-08-08 di Wayback Machine.. Eatwell.gov.uk (5 March 2012). Retrieved on 27 June 2012.
- ^ Sesink, Aloys L. A.; T; K; V (1999). "Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme". Cancer Research. 59 (22): 5704–9. PMID 10582688.
- ^ Glei, M.; Klenow, S.; Sauer, J.; Wegewitz, U.; Richter, K.; Pool-Zobel, B. L. (2006). "Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes". Mutat. Res. 594 (1–2): 162–171. doi:10.1016/j.mrfmmm.2005.08.006. PMID 16226281.
- ^ Sandhu, M. S.; White, I. R.; McPherson, K. (2001). "Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach". Cancer Epidemiology, Biomarkers & Prevention. 10 (5): 439–46. PMID 11352852.
- ^ "Eating Red Meat Will Not Increase Colorectal Cancer Risk, Study Suggests". ScienceDaily. 13 June 2007. Diakses tanggal 23 May 2010.
- ^ Hoppe, M.; Hulthén, L.; Hallberg, L. (2005). "The relative bioavailability in humans of elemental iron powders for use in food fortification". European Journal of Nutrition. 45 (1): 37–44. doi:10.1007/s00394-005-0560-0. PMID 15864409.
- ^ Pineda, O.; Ashmead, H. D. (2001). "Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate". Nutrition. 17 (5): 381–4. doi:10.1016/S0899-9007(01)00519-6. PMID 11377130.
- ^ Ashmead, H. DeWayne (1989). Conversations on Chelation and Mineral Nutrition. Keats Publishing. ISBN 0-87983-501-X.
- ^ "Dietary Reference Intakes: Elements" (PDF). The National Academies. 2001. Diarsipkan dari versi asli (PDF) tanggal 2008-05-27. Diakses tanggal 21 May 2008.
- ^ "Iron Deficiency Anemia". MediResource. Diarsipkan dari versi asli tanggal 2022-01-30. Diakses tanggal 17 December 2008.
- ^ Milman, N (1996). "Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy". International Journal of Hematology. 63 (2): 103–35. doi:10.1016/0925-5710(95)00426-2. PMID 8867722.
- ^ Neilands, JB (1995). "Siderophores: structure and function of microbial iron transport compounds". The Journal of Biological Chemistry. 270 (45): 26723–6. doi:10.1074/jbc.270.45.26723. PMID 7592901.
- ^ Neilands, J B (1981). "Microbial Iron Compounds". Annual Review of Biochemistry. 50 (1): 715–31. doi:10.1146/annurev.bi.50.070181.003435. PMID 6455965.
- ^ Boukhalfa, Hakim; Crumbliss, Alvin L. (2002). "Chemical aspects of siderophore mediated iron transport". BioMetals. 15 (4): 325–39. doi:10.1023/A:1020218608266. PMID 12405526.
- ^ Rouault, Tracey A. (2003). "How Mammals Acquire and Distribute Iron Needed for Oxygen-Based Metabolism". PLoS Biology. 1 (3): e9. doi:10.1371/journal.pbio.0000079. PMC 212690 . PMID 14551907.
- ^ Nanami, M.; Ookawara, T; Otaki, Y; Ito, K; Moriguchi, R; Miyagawa, K; Hasuike, Y; Izumi, M; Eguchi, H; Suzuki, K; Nakanishi, T (2005). "Tumor necrosis factor-α-induced iron sequestration and oxidative stress in human endothelial cells". Arteriosclerosis, thrombosis, and vascular biology. 25 (12): 2495–2501. doi:10.1161/01.ATV.0000190610.63878.20. PMID 16224057.
- ^ Ramzi S. Cotran; Vinay Kumar; Tucker Collins; Stanley Leonard Robbins (1999). Robbins pathologic basis of disease. Saunders. ISBN 978-0-7216-7335-6. Diakses tanggal 27 June 2012.
- ^ Durupt, S; Durieu, I; Nové-Josserand, R; Bencharif, L; Rousset, H; Vital Durand, D (2000). "Hereditary hemochromatosis". Rev Med Interne. 21 (11): 961–71. doi:10.1016/S0248-8663(00)00252-6. PMID 11109593.
- ^ Brar, S; Henderson, D; Schenck, J; Zimmerman, EA (2009). "Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism". Archives of neurology. 66 (3): 371–4. doi:10.1001/archneurol.2008.586. PMID 19273756.[pranala nonaktif permanen]
- ^ Ward, Greg (2012). The Rough Guide to the Titanic. London: Rough Guides Ltd. hlm. 171. ISBN 978-1-4053-8699-9.
- ^ Geoffrey Michael Gadd (March 2010). "Metals, minerals and microbes: geomicrobiology and bioremediation". Microbiology. 156 (3): 609–643. doi:10.1099/mic.0.037143-0. PMID 20019082. Diarsipkan dari versi asli tanggal 2014-10-25. Diakses tanggal 2016-01-11.
- ^ Harbhajan Singh. Mycoremediation: Fungal Bioremediation. hlm. 509.
- ^ Roehl, K.E.; Meggyes, T; Simon, F.G.; Stewart, D.I. (27 April 2005). Long-Term Performance of Permeable Reactive Barriers. hlm. 5. ISBN 9780080535616.
- ^ a b Cheney, K.; Gumbiner, C.; Benson, B.; Tenenbein, M. (1995). "Survival after a severe iron poisoning treated with intermittent infusions of deferoxamine". J Toxicol Clin Toxicol. 33 (1): 61–6. doi:10.3109/15563659509020217. PMID 7837315.
- ^ a b "Toxicity, Iron". Medscape. Diakses tanggal 23 May 2010.
- ^ Tenenbein, M (1996). "Benefits of parenteral deferoxamine for acute iron poisoning". J Toxicol Clin Toxicol. 34 (5): 485–489. doi:10.3109/15563659609028005. PMID 8800185.
- ^ Wu H, Wu T, Xu X, Wang J, Wang J. (May 2011). "Iron toxicity in mice with collagenase-induced intracerebral hemorrhage". J Cereb Blood Flow Metab. 31 (5): 1243–50. doi:10.1038/jcbfm.2010.209. PMC 3099628 . PMID 21102602.
Catatan kaki
[sunting | sunting sumber]- ^ Data UGSG menyatakan produksi besi termsuk daur ulang adalah 998Mt, aluminium (39Mt), tembaga (18Mt), seng (11Mt) dan timbal (8,6Mt)
Daftar pustaka
[sunting | sunting sumber]- Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (edisi ke-2), Oxford: Butterworth-Heinemann, ISBN 0-7506-3365-4
- Weeks, Mary Elvira; Leichester, Henry M. (1968). "Elements Known to the Ancients". Discovery of the Elements. Easton, PA: Journal of Chemical Education. hlm. 29–40. ISBN 0-7661-3872-0. LCCN 68-15217.
Bacaan lanjutan
[sunting | sunting sumber]- H.R. Schubert (1957), History of the British Iron and Steel Industry... to 1775 AD, London: Routledge.
- R.F. Tylecote (1992), History of Metallurgy, London: Institute of Materials.
- R.F. Tylecote (1991), "Iron in the Industrial Revolution", dalam J. Day; R.F. Tylecote, The Industrial Revolution in Metals, Institute of Materials, hlm. 200–60.
Pranala luar
[sunting | sunting sumber]- WebElements.com – Iron
- It's Elemental – Iron
- The Most Tightly Bound Nuclei
- Crystal structure of iron
- Steel Plate Supplier Surabaya[pranala nonaktif permanen]
- Chemistry in its element podcast (MP3) from the Royal Society of Chemistry's Chemistry World: Iron
- Iron at The Periodic Table of Videos (University of Nottingham)
- Metallurgy for the non-Metallurgist
(besar) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
|