Lompat ke isi

Analisis matematis

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 15 Maret 2016 19.04 oleh Wagino Bot (bicara | kontrib) (Sejarah: minor cosmetic change)

Analisis matematis merupakan cabang ilmu matematika yang mencakup teori turunan, integral, ukuran, limit, deret,[1] dan fungsi analisis. Teori ini biasanya dipelajari dalam konteks bilangan riil dan bilangan kompleks dan fungsi. Analisis ini dikembangkan dari kalkulus, yang mencakup konsep dasar dan tehnik analisis. Analisis ini dapat dibedakan dari geometri. Namun, analisis ini dapat diterapkan di seluruh ruang objek matematika yang memiliki definisi kedekatan (ruang topologi) atau jarak tertentu di antara objek (ruang metrik).

Sejarah

Analisis matematis sudah ada sejak awal zaman matematika Yunani kuno. Sebagai contoh, suatu jumlah geometris yang terbatas tersirat dalam paradoks Zeno.[2] Menyusul matematikawan Yunani seperti Eudoxus and Archimedes menjadikannya lebih eksplisit, namun tidak formal, menggunakan konsep limit dan konvergensi saat mereka menggunakan metode untuk menghitung luas dan volume region dan padatan.[3] Di India, matematikawan abad ke-12 Bhāskara II memberi contoh tentang turunan dan menggunakan seperti yang sekarang dikenal dengan nama Teorema Rolle.

Pada abad ke-14, Madhava dari Sangamagrama mengembangkan deret tak hingga, seperti deret pangkat dan deret taylor sebagai fungsi seperti sinus, kosinus, tangen dan kotangen. Disamping pengembangan deret taylor dari fungsi trigonometrik, ia juga mengestimasikan besarnya galat yang dihasilkan dengan memotong deret dan memberikan perkiraan yang rasional pada sebuah deret tak tak hingga. Pengikutnya di mazhab astronomi dan matematika Kerala melanjutkan karnyanya hingga abad ke-16.

Di Eropa, pada akhir abad ke-17, Newton dan Leibniz secara independen mengembangkan kalkulus infinitesimal, yang berkembang, dengan stimulus kerja terapan yang terus berlanjut sampai abad ke-18, menjadi topik analisis seperti kalkulus variasi, persamaan diferensial biasa dan persamaan diferensial parsial, analisis fourier dan fungsi generator. Dalam periode ini, teknik kalkulus digunakan untuk memperkirakan masalah diskret melalui pendekatan numerik.

Pada abad ke-18, Euler memperkenalkan konsep fungsi matematika.[4] Analisis yang sesungguhnya mulai muncul sebagai subjek independen saat Bernard Bolzano memperkenalkan definisi kontinuitas pada tahun 1816,[5] tetapi hasil kerjanya tidak dikenal luas sampai tahun 1870. Pada 1821, Cauchy mulai menempatkan kalkulus pada landasan yang kuat dengan menolak prinsip aljabar umum yang secara luas digunakan dalam karya sebelumnya, terutama oleh Euler. Sebaliknya, Cauchy merumuskan kalkulus dalam bentuk ide geometris dan infinitesimal. Dengan demikian, apa yang ia definisikan sebagai kontinuitas memerlukan suatu perubahan kecil dalam "x" sesuai dengan perubahan kecil dalam "y". Ia juga memperkenalkan konsep urutan cauchy, dan memulai teori formal analisis kompleks. Poisson, Liouville, Fourier dan lainnya mempelajari persamaan diferensial parsial dan analisis harmonik. Kontribusi para matematikawan ini termasuk juga Weierstrass, mengembangkan pendekatan definisi limit (ε, δ) membuka babak baru bidang analisis matematis modern.

Pada pertengahan abad, Riemann memperkenalkan teorinya mengenai integral. Pada akhir abad ke-19 melihat analisis aritmetika oleh Weierstrass, yang berikir bahwa ada kekeliruan pemahaman mengenai penalaran geometris, dan ia memperkenalkan definisi limit (ε, δ) dari limit. Hal ini mengakibatkan matematikawan khawatir bahwa mereka mengasumsikan adanya kontinum bilangan riil tanpa bukti. Dedekind kemudian menyusun bilangan riil dengan potongan dedekind, dimana bilangan irasional didefinisikan secara formal, yang berfungsi untuk mengisi "celah" di antara bilangan rasional, sehingga menciptakan satu set kontinum bilangan riil yang telah dikembangkan oleh Simon Stevin.

Cabang

Analisis matematis mencakup cabang berikut:

Analisis klasik

Analisis klasik biasanya dipahami sebagai suatu analisis yang tidak menggunakan teknik analisis fungsional, serta menggunakan metode yang lebih tradisional. Studi tentang persamaan diferensial sekarang berbagi dengan bidang lain seperti teori sistem dinamis, meskipun overlapping dengan analisis konvensional masih cukup besar.

Aplikasi teknik analisis

Teknik dari analisis ini juga ditemukan di berbagai area seperti:

Referensi

  1. ^ Edwin Hewitt and Karl Stromberg, "Real and Abstract Analysis", Springer-Verlag, 1965
  2. ^ Stillwell (2004). "Infinite Series". hlm. 170. Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series 12 + 122 + 123 + 124 + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + 14 + 142 + 143 + ... = 43. Both these examples are special cases of the result we express as summation of a geometric series  Tidak memiliki atau tanpa |title= (bantuan)
  3. ^ (Smith, 1958)
  4. ^ Dunham, William (1999). Euler: The Master of Us All. The Mathematical Association of America. hlm. 17. 
  5. ^ *Cooke, Roger (1997). "Beyond the Calculus". The History of Mathematics: A Brief Course. Wiley-Interscience. hlm. 379. ISBN 0-471-18082-3. Real analysis began its growth as an independent subject with the introduction of the modern definition of continuity in 1816 by the Czech mathematician Bernard Bolzano (1781–1848) 

Pranala luar