Logaritma

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Grafik fungsi logaritma dengan tiga bilangan pokok yang umum. Titik khusus blog b = 1 diperlihatkan oleh garis bertitik, dan semua kurva fungsi memotong di blog 1 = 0.

Dalam matematika, logaritma adalah fungsi invers dari eksponensiasi. Dengan kata lain, logaritma dari x adalah eksponen dengan bilangan pokok b yang dipangkatkan dengan bilangan konstan lain agar memperoleh nilai x. Kasus sederhana dalam logaritma adalah menghitung jumlah munculnya faktor yang sama dalam perkalian berulang. Sebagai contoh, 1000 = 10 × 10 × 10 = 103 dibaca, "logaritma 1000 dengan bilangan pokok 10 sama dengan 3" atau dinotasikan sebagai 10log (1000) = 3. Logaritma dari x dengan bilangan pokok b dilambangkan blog x. Terkadang logaritma dilambangkan sebagai logb (x) atau tanpa menggunakan tanda kurung, logbx, atau bahkan tanpa menggunakan bilangan pokok khusus, log x.

Ada tiga bilangan pokok logaritma yang umum beserta kegunaannya. Logaritma dengan bilangan pokok 10 (b = 10) disebut sebagai logaritma umum, yang biasanya dipakai dalam ilmu sains dan rekayasa. Logaritma dengan dengan bilangan pokok bilangan e (b ≈ 2.718) disebut sebagai logaritma alami, yang dipakai dengan luas dalam matematika dan fisika, karena dapat mempermudah perhitungan integral dan turunan. Logaritma dengan bilangan pokok 2 (b = 2) disebut sebagai logaritma biner, yang seringkali dipakai dalam ilmu komputer.

Logaritma diperkenalkan oleh John Napier pada tahun 1614 sebagai alat yang menyederhanakan perhitungan.[1] Logaritma dipakai lebih cepat dalam navigator, ilmu sains, rekayasa, ilmu ukur wilayah, dan bidang lainnya untuk lebih mempermudah perhitungan nilai yang sangat akurat. Dengan menggunakan tabel logaritma, cara yang membosankan seperti mengalikan digit yang banyak dapat digantikan dengan melihat tabel dan penjumlahan yang lebih mudah. Ini dapat dilakukan karena logaritma dari hasil kali bilangan merupakan logaritma dari jumlah faktor bilangan:

asalkan bahwa b, x dan y bilangan positif dan b ≠ 1. Mistar hitung yang juga berasal dari logaritma dapat mempermudah perhitungan tanpa menggunakan tabel, namun perhitungannya kurang akurat. Leonhard Euler mengaitkan gagasan logaritma saat ini dengan fungsi eksponensial pada abad ke-18, dan juga memperkenalkan huruf e sebagai bilangan pokok dari logaritma alami.[2]

Penerapan skala logaritmik dipakai dalam mengurangi kuantitas yang sangat besar menjadi lebih kecil. Sebagai contoh, desibel (dB) adalah satuan yang digunakan untuk menyatakan rasio sebagai logaritma, sebagian besar untuk kekuatan sinyal dan amplitudo (contoh umumnya pada tekanan suara). Dalam kimia, pH mengukur keasaman dari larutan berair melalui logaritma. Logaritma umumnya dipakai dalam rumus ilmiah, dalam pengukuran kompleksitas algoritma dan objek geometris yang disebut sebagai fraktal. Logaritma juga membantu untuk menjelaskan frekuensi rasio interval musik, ditemukan di rumus yang menghitung bilangan prima atau hampiran faktorial, memberikan gambaran dalam psikofisika, dan dapat membantu perhitungan akuntansi forensik.

Konsep logaritma sebagai invers dari eksponensiasi juga memperluas ke struktur matematika lain. Namun pada umumnya, logaritma cenderung merupakan fungsi bernilai banyak. Sebagai contoh, logaritma kompleks merupakan invers dari fungsi eksponensial pada bilangan kompleks. Mirip dengan contoh sebelumnya, logaritma diskret dalam grup hingga, merupakan invers fungsi eksponensial bernilai banyak yang memiliki kegunaan dalam kriptografi kunci publik.

Alasan[sunting | sunting sumber]

Grafik memperlihatkan kurva logaritmik yang memotong\ sumbu-x di dan mendekati negatif takhingga di sepanjang garis sumbu-y.
Gambar memperlihatkan grafik logaritma dengan bilangan pokok 2 memotong sumbu-x di x = 1 dan melalui titik (2, 1), (4, 2), dan (8, 3), sebagai contoh, log2(8) = 3 dan 23 = 8. Grafik tersebut dengan sembarang mendekati sumbu-y, namun tidak mendekati sumbu-x.

Operasi aritmetika yang paling dasar adalah penambahan, perkalian, dan eksponen. Kebalikan dari penambahan adalah pengurangan, dan kebalikan dari perkalian adalah pembagian. Mirip dengan contoh sebelumnya, logaritma merupakan kebalikan (atau invers) dari operasi eksponensiasi. Eksponensiasi adalah bilangan bilangan pokok b yang ketika dipangkatkan dengan y memberikan nilai x. Ini dirumuskan sebagai

Sebagai contoh, 2 pangkat 3 memberikan nilai 8. Secara matematis, .

Logaritma dengan bilangan pokok b adalah operasi invers yang menyediakan nilai keluaran y dari nilai masukan x. Hal ini mengartikan bahwa y = blog x ekuivalen dengan x = by, jika b bilangan real positif. (Jika b bukanlah bilangan real positif, eksponensiasi dan logaritma dapat terdefinisi tetapi membutuhkan beberapa nilai, sehingga definisi darinya semakin rumit.)

Salah satu alasan bersejarah utamanya dalam memperkenalkan logaritma adalah rumus

yang dapat mempermudah perhitungan nilai perkalian dan pembagian dengan penjumlahan, pengurangan, dan melihat tabel logaritma. Perhitungan ini dipakai sebelum komputer ditemukan.

Definisi[sunting | sunting sumber]

Diberikan bilangan real positif b sehingga b ≠ 1, maka logaritma dari bilangan real positif x terhadap bilangan pokok b[nb 1] adalah eksponen dengan bilangan pokok b yang dipangkatkan bilangan agar memperoleh nilai x. Dengan kata lain, logaritma bilangan pokok b dari x adalah bilangan real y sehingga by = x.[3] Logaritma dilambangkan sebagai blog x (dibaca "logaritma x dengan bilangan pokok b"). Terdapat definisi yang mirip dan lebih ringkas mengatakan bahwa fungsi blog invers dengan fungsi xbx.

Sebagai contoh, 2log 16 = 4, karena 24 = 2 × 2 × 2 × 2 = 16. Logaritma juga dapat bernilai negatif, contohnya 2log 12 = –1, karena 2–1 = 121 = 12. Logaritma juga berupa nilai desimal, sebagai contoh 10log 150 kira-kira sama dengan 2,176 karena terletak di antara 2 dan 3, dan begitupula 150 terletak antara 102 = 100 dan 103 = 1000. Adapun sifat logaritma bahwa untuk setiap b, blog b = 1 karena b1 = b, dan blog 1 = 0 karena b0 = 1.

Identitas logaritma[sunting | sunting sumber]

Ada beberapa rumus penting yang mengaitkan logaritma dengan yang lainnya.[4]

Hasil kali, hasil bagi, pangkat, dan akar[sunting | sunting sumber]

Logaritma dari hasil kali merupakan jumlah logaritma dari bilangan yang dikalikan, dan logaritma dari hasil bagi dari dua bilangan merupakan selisih logaritma. Logaritma dari bilangan pangkat ke-p sama dengan p dikali logaritma dari bilangan tersendiri, dan logaritma bilangan akar ke-p sama dengan logaritma dibagi dengan p. Tabel berikut memuat daftar sifat-sifat logaritma tersebut beserta contohnya. Masing-masing identitas ini diperoleh dari hasil substitusi dari definisi logaritma atau pada ruas kiri persamaan.

Rumus Contoh
Hasil kali
Hasil bagi
Pangkat
Akar

Mengubah bilangan pokok[sunting | sunting sumber]

Logaritma blog x dapat dihitung sebagai hasil bagi logaritma x dengan logaritma b terhadap bilangan pokok sembarang k. Secara matematis dirumuskan sebagai:

Bukti konversi antara logaritma dari bilangan pokok sembarang

Dimulai dari identitas berikut

ini dapat menerapkan klog pada kedua ruas sehingga memperoleh

.

Ketika mencari penyelesaian untuk blog x, maka menghasilkan persamaan:

.

Hal ini memperlihatkan faktor konversi dari nilai klog ke nilai blog yang serupa agar memperoleh bentuk 1klog b

Kalkulator ilmiah merupakan alat yang menghitung logaritma dengan bilangan pokok 10 dan e.[5] Logaritma terhadap setiap bilangan pokok b dapat ditentukan menggunakan kedua logaritma tersebut melalui rumus sebelumnya:

Diberikan suatu bilangan x dan logaritma y = blog x, dengan b adalah bilangan pokok yang tidak diketahui. Bilangan pokok tersebut dapat dinyatakan dengan

Rumus ini dapat diperlihatkan dengan mengambil persamaan yang mendefinisikan x = bblog x = by, lalu dipangkatkan dengan 1y.

Bilangan pokok khusus[sunting | sunting sumber]

Grafik logaritma dengan bilangan pokok 0,5; 2; dan e

Secara khusus, terdapat tiga bilangan pokok yang umum di antara semua pilihan bilangan pokok pada logaritma. Ketiga bilangan pokok tersebut adalah b = 10, b = e (konstanta bilangan irasional yang kira-kira sama dengan 2,71828), dan b = 2 (logaritma biner). Dalam analisis matematika, logaritma dengan bilangan pokok e tersebar karena sifat analitik yang dijelaskan di bawah. Di sisi lain, logaritma dengan bilangan pokok 10 mudah dipakai dalam perhitungan manual dalam sistem bilangan desimal:[6]

Jadi, 10log x berkaitan dengan jumlah digit desimal dari bilangan bulat positif x: jumlah digitnya merupakan bilangan bulat terkecil yang lebih besar dari 10log x.[7] Sebagai contoh, 10log 1430 kira-kira sama dengan 3,15. Bilangan berikutnya merupakan jumlah digit dari 1430, yaitu 4. Dalam teori informasi, logaritma alami dipakai dalam nat dan logaritma dengan bilangan pokok 2 dipakai dalam bit sebagai satuan dasar informasi.[8] Logaritma biner juga dipakai dalam ilmu komputer, dengan sistem biner ditemukan dimana-mana. Dalam teori musik, rasio tinggi nada kedua (yaitu oktaf) ditemukan dimana-mana dan jumlah sen antara setiap dua tinggi nada dirumuskan sebagai konstanta 1200 dikali logaritma dari rasio (yaitu, 100 sen per setengah nada dengan temperamen sama). Dalam fotografi, logaritma dengan bilangan pokok dua dipakai untuk mengukur nilai pajanan, tingkatan cahaya, waktu eksposur, tingkap, dan kecepatan film dalam "stop".[9]

Tabel berikut memuat notasi-notasi umum mengenai bilangan pokok beserta bidang yang dipakai. Selain blog x, adapula notasi logaritma lain yang ditulis sebagai logbx, dan juga seperti log x. Pada kolom "Notasi ISO" memuat penamaan yang disarankan Organisasi Standardisasi Internasional, yakni ISO 80000-2.[10] Karena notasi log x telah dipakai untuk ketiga bilangan pokok di atas (atau ketika bilangan pokok belum ditentukan), bilangan pokok yang dimaksud harus sering diduga tergantung konteks atau bidangnya. Sebagai contoh, log biasanya mengacu pada 2log dalam ilmu komputer, dan log mengacu pada elog.[11] Dalam konteks lainnya, log seringkali mengacu pada 10log.[12]

Bilangan pokok

b

Nama blog x Notasi ISO Notasi lain Dipakai dalam bidang
2 logaritma biner lb x[13] ld x, log x, lg x,[14] 2log x ilmu komputer, teori informasi, bioinformatika, teori musik, fotografi
e logaritma alami ln x[nb 2] log x (dipakai dalam matematika[18] dan beberapa bahasa pemrograman lainnya[nb 3]), elog x matematika, fisika, kimia,

statistik, ekonomi, teori informasi, dan rekayasa

10 logaritma biasa lg x log x, 10log x

(dipakai dalam rekayasa, biologi, dan astronomi)

bidang berbagai rekayasa (lihat desibel dan lihat di bawah),

tabel logaritma, kalkulator genggam, spektroskopi

b logaritma dengan bilangan pokok b blog x matematika

Sejarah[sunting | sunting sumber]

Sejarah logaritma yang dimulai dari Eropa pada abad ketujuh belas merupakan penemuan fungsi terbaru yang memperluas dunia analisis di luar keterbatasan metode aljabar. Metode logaritma dikemukakan secara terbuka oleh John Napier pada tahun 1614, dalam bukunya yang berjudul Mirifici Logarithmorum Canonis Descriptio.[19][20] Namun, teknik-teknik lain sebelum penemuan Napier sudah ada dengan keterbatasan metode yang serupa, contohnya seperti prosthafaeresis atau penggunaan tabel barisan, yang dikembangkan dengan luas oleh Jost Bürgi sekitar tahun 1600.[21][22] Napier menciptakan istilah untuk logaritma dalam bahasa Latin Tengah, “logaritmus”, yang berasal dari gabungan dua kata Yunani, logos “proporsi, rasio, kata” + arithmos “bilangan”. Secara harfiah, "logaritmus" berarti “bilangan rasio”.

Logaritma umum dari bilangan adalah indeks dari perpangkatan sepuluh yang sama dengan bilangan tersebut.[23] Bilangan yang sangat membutuhkan banyak angka merupakan kiasan kasar untuk logaritma umum, dan Archimedes menyebutnya sebagai “orde bilangan”.[24] Logaritma real pertama adalah metode heuristik yang mengubah perkalian menjadi penjumlahan, sehingga memudahkan perhitungan yang cepat. Ada beberapa metode yang menggunakan tabel yang diperoleh dari identitas trigonometri,[25] dan metode tersebut dinamakan prosthafaeresis.

Penemuan fungsi yang dikenal saat ini sebagai logaritma alami, berawal dari saat Grégoire de Saint-Vincent mencoba menggambarkan kuadratur hiperbola persegi panjang. Archimedes menulis risalah yang berjudul The Quadrature of the Parabola pada abad ke-3 SM, tetapi kuadratur hiperbola menghindari semua upayanya hingga Saint-Vincent menerbitkan hasilnya pada tahun 1647. Logaritma yang mengaitkan barisan dan deret geometri dalam argumen dan nilai barisan dan deret aritmetika, meminta Antonio de Sarasa untuk mengaitkan kuadratur Saint-Vincent dan tradisi logaritma dalam prosthafaeresis sehingga mengarah ke sebuah persamaan kata untuk logaritma alami, yaitu "logaritma hiperbolik". Christiaan Huygens dan James Gregory mulai mengenali fungsi baru tersebut. Leibniz memakai notasi Log y pada tahun 1675,[26] dan tahun berikutnya ia mengaitkannya dengan integral

Sebelum Euler mengembangkan konsep modernnya tentang logaritma alami kompleks, Roger Cotes memperlihatkan hasil yang hampir sama pada tahun 1714 bahwa[27]

.

Tabel logaritma, mistar hitung, dan penerapan bersejarah[sunting | sunting sumber]

Penjelasan logaritma dalam Encyclopædia Britannica pada tahun 1797.

Dengan menyederhanakan perhitungan yang rumit sebelum adanya mesin hitung komputer, logaritma berkontribusi pada kemajuan pengetahuan, khususnya astronomi. Logaritma sangat penting terhadap kemajuan dalam survei, navigasi benda langit, dan cabang lainnya. Pierre-Simon Laplace menyebut logaritma sebagai

"...kecerdasan yang mengagumkan, [sebuah alat] yang mengurangi pekerjaan berbulan-bulan menjadi beberapa hari, menggandakan kehidupan astronom, dan menghindarinya dari kesalahan dan rasa jijik yang tak terpisahkan dari perhitungan yang panjang."[28]

Karena fungsi f(x) = bx adalah fungsi invers dari blog x, maka fungsi tersebut disebut sebagai antilogaritma.[29] Saat ini, antilogaritma lebih sering disebut fungsi eksponensial.

Tabel logaritma[sunting | sunting sumber]

Sebuah alat penting yang memungkinkan penggunaan logaritma adalah tabel logaritma.[30] Tabel logaritma pertama kali disusun oleh Henry Briggs pada tahun 1617 setelah penemuan Napier, tetapi penemuannya menggunakan 10 sebagai bilangan pokok. Tabel pertamanya memuat logaritma umum dari semua bilangan bulat yang berkisar antara 1 dengan 1000, dengan ketepatan yang dimiliki 14 digit, dan kemudian ia membuat tabel dengan kisaran yang besar. Tabel tersebut mencantumkan nilai untuk setiap bilangan dalam kisaran dan ketepatan tertentu. Karena bilangan yang berbeda dengan faktor 10 memiliki logaritma yang berbeda dengan bilangan bulat, logaritma dengan bilangan pokok 10 digunakan secara universal untuk perhitungan, sehingga disebut logaritma umum. Logaritma umum dari dipisahkan menjadi bagian bilangan bulat yang dikenal sebagai karakteristik, dan bagian pecahan (Inggris: fractional part) yang dikenal sebagai mantissa. Tabel logaritma hanya perlu menyertakan mantissa, karena karakteristik logaritma umum dapat dengan mudah ditentukan dengan menghitung angka dari titik desimal.[31] Karakteristik logaritma umum dari sama dengan satu ditambah karakteristik , dan mantissanya sama. Dengan menggunakan tabel logartima dengan tiga digit, nilai logaritma dari 3542 kira-kira sama dengan

Nilainya dengan ketepatan yang sangat tinggi dapat diperoleh melalui interpolasi:

Nilai dapat ditentukan dengan pencarian terbalik pada tabel yang sama, karena logaritma merupakan fungsi monoton.

Perhitungan[sunting | sunting sumber]

Hasil kali atau hasil bagi dari dua bilangan positif c dan d biasanya dihitung sebagai penambahan dan pengurangan logaritma. Hasil kali cd berasal dari antilogaritma dari penambahan dan hasil bagi cd berasal dari antilogaritma dari pengurangan, melalui tabel yang sama:

dan

Untuk perhitungan manual yang meminta ketelitian yang cukup besar, melakukan pencarian kedua logaritma, menghitung jumlah atau selisihnya, dan mencari antilogaritma jauh lebih cepat daripada menghitung perkalian dengan metode sebelumnya seperti prosthafaeresis, yang mengandalkan identitas trigonometri.

Perhitungan pangkat direduksi menjadi perkalian, dan sedangkan perhitungan akar direduksi menjadi pembagian. Pernyataan ini dapat dilihat sebagai

dan

Perhitungan trigonometri dilengkapi dengan tabel-tabel yang memuat logaritma umum dari fungsi trigonometri.

Mistar hitung[sunting | sunting sumber]

Penerapan penting lainnya adalah mistar hitung, sepasang skala yang dibagi secara logaritmik yang digunakan dalam perhitungan. Adapun skala logaritmik yang tidak memiliki sorong, mistar Gunter, ditemukan tak lama setelah penemuan Napier dan disempurnakan oleh William Oughtred untuk menciptakan sepasang skala logaritmik yang dapat dipindahkan terhadap satu sama lain, yaitu mistar hitung. Angka yang ditempatkan pada skala hitung pada jarak sebanding dengan selisih antara logaritmanya. Menggeser skala atas dengan tepat berarti menambahkan logaritma secara mekanis, seperti yang diilustrasikan berikut ini:

alt=A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6.
Penggambaran skema mengenai mistar hitung. Dimulai dari 2 pada skala di bawah, lalu tambahkan dengan jarak ke 3 pada skala atas agar mencapai hasil kali 6. Mistar hitung bekerja karena ditandai sedemikian rupa sehingga jarak dari 1 ke x sebanding dengan logaritma x.

Sebagai contoh, dengan menambahkan jarak dari 1 ke 2 pada skala di bagian bawah ke jarak dari 1 ke 3 pada skala di bagian atas menghasilkan hasil kali 6, yang dibacakan di bagian bawah. Mistar hitung adalah sebuah alat menghitung yang penting bagi para insinyur dan ilmuwan hingga tahun 1970-an, karena dengan mengorbankan ketepatan nilai memungkinkan perhitungan yang jauh lebih cepat daripada teknik berdasarkan tabel.[32]

Sifat analitik[sunting | sunting sumber]

Kajian yang lebih dalam mengenai logaritma memerlukan sebuah konsep yang disebut fungsi. Fungsi merupakan sebuah kaidah yang dipetakan suatu bilangan akan menghasilkan bilangan lain.[33] Contohnya seperti fungsi yang menghasilkan bilangan konstan b, yang dipangkatkan setiap bilangan real x. Fungsi ini secara matematis ditulis sebagai f(x) = bx. Ketika b positif dan tak sama dengan 1, maka f adalah fungsi terbalikkan ketika dianggap sebagai fungsi dengan interval dari bilangan real ke bilangan real positif.

Keberadaan[sunting | sunting sumber]

Misalkan b adalah bilangan real positif yang tidak sama dengan 1 dan misalkan f(x) = bx. Pernyataan yang diikuti dari teorema nilai antara ini,[34] merupakan hasil standar dalam analisis real yang mengatakan bahwa setiap fungsi monoton sempurna dan kontinu merupakan fungsi bijektif antara ranah (Inggris: domain) dan kisarannya (Inggris: range). Pernyataan saat ini mengatakan bahwa f yang menaik sempurna (untuk b > 1), atau menurun sempurna (untuk 0 < b < 1)[35] merupakan fungsi kontinu, memiliki ranah dan memiliki kisaran . Oleh karena itu, f adalah fungsi bijeksi dari ke . Dengan kata lain, untuk setiap bilangan real positif y, terdapat setidaknya satu bilangan real x sehingga .

Misalkan yang menyatakan invers dari fungsi f. Dalam artian, blog y adalah bilangan real tunggal x sehingga . Fungsi ini disebut fungsi logaritma dengan bilangan pokok-b atau fungsi logaritmik (atau logaritma saja).

Karakterisasi melalui rumus hasil kali[sunting | sunting sumber]

Pada dasarnya, fungsi blog x juga dapat dikarakterisasikan melalui rumus hasil kali

Lebih tepatnya, logaritma untuk setiap bilangan pokok b > 1 yang hanya merupakan fungsi f naik dari bilangan real positif ke bilangan real memenuhi sifat bahwa f(b) = 1 dan[36]

Grafik fungsi logaritma[sunting | sunting sumber]

The graphs of two functions.
Grafik fungsi logaritma blog (x) (berwarna biru) diperoleh dengan mencerminkan grafik fungsi bx (berwarna merah) di garis diagonal(x = y).

Seperti yang dibahas sebelumnya, fungsi blog invers terhadap fungsi eksponensial . Karena itu, grafiknya berkorespondensi dengan satu sama lain saat menukar koordinat-x dan koordinat-y (atau saat melakukan pencerminan di garis diagonal x = y), seperti yang diperlihatkan sebagai berikut: sebuah titik (t, u = bt) pada grafik dari f menghasilkan sebuah titik (u, t = blog u) pada grafik logaritma dan sebaliknya. Akibatnya, blog (x) divergen menuju takhingga (dalam artian semakin besar dari setiap bilangan yang diberikan) jika x naik menuju takhingga, asalkan b lebih besar dari satu. Pada kasus tersebut, blog(x) merupakan fungsi menaik. Sedangkan untuk kasus b < 1, blog (x) cenderung menuju ke negatif takhingga. Ketika x mendekati nol, blog x menuju ke negatif takhingga untuk b > 1 dan menuju ke plus takhingga untuk b < 1.

Turunan dan antiturunan[sunting | sunting sumber]

Sebuah grafik fungsi logaritma dan sebuah garis yang menyinggungnya di sebuah titik.
Grafik fungsi logaritma alami (berwarna hijau) beserta garis singgungnya di x = 1,5 (berwarna hitam)

Sifat analitik tentang fungsi adalah melalui fungsi inversnya.[34] Jadi, ketika f(x) = bx adalah fungsi kontinu dan terdiferensialkan, maka blog y fungsi kontinu dan terdiferensialkan juga. Penjelasan kasarnya, sebuah fungsi kontinu adalah terdiferensialkan jika grafiknya tidak mempunyai "ujung" yang tajam. Lebih lanjut, ketika turunan dari f(x) menghitung nilai ln(b) bx melalui sifat-sifat fungsi eksponensial, aturan rantai menyiratkan bahwa turunan dari blog x dirumuskan sebagai [35][37]

Artinya, kemiringan dari garis singgung yang menyinggung grafik logaritma dengan bilangan pokok b di titik (x, blog (x)) sama dengan 1x ln(b).

Turunan dari ln(x) adalah 1x, yang berarti ini menyiratkan bahwa ln(x) adalah integral tunggal dari 1x yang mempunyai nilai 0 untuk x = 1. Hal ini merupakan rumus paling sederhana yang mendorong sifat "alami" pada logaritma alami, dan hal ini juga merupakan salah satu alasan pentingnya konstanta e.

Turunan dengan argumen fungsional rampat f(x) dirumuskan sebagai

Hasil bagi pada ruas kanan disebut turunan logaritmik dari f dan menghitung f'(x) melalui turunan dari ln(f(x)) dikenal sebagai pendiferensialan logaritmik.[38] Antiturunan dari logaritma alami ln(x) dirumuskan sebagai:[39]

Terdapat rumus yang berkaitan, seperti antiturunan dari logaritma dengan bilangan pokok lainnya dapat diperoleh dari persamaan ini dengan mengubah bilangan pokoknya.[40]

Representasi integral mengenai fungsi logaritma[sunting | sunting sumber]

A hyperbola with part of the area underneath shaded in grey.
Logaritma natural dari t adalah luas yang diwarnai di bawah grafik fungsi f(x) = 1x.

Logaritma alami dari t dapat didefinisikan sebagai integral tentu:

Definisi ini menguntungkan karena tidak bergantung pada fungsi eksponensial atau fungsi trigonometri apapun, dan definisi ini merupakan sebuah integral dari fungsi timbal balik sederhana. Penjelasan dalam integral, ln(t) sama dengan luas antara sumbu-x dan grafik fungsi 1x, yang berkisar dari x = 1 ke x = t. Penjelasan ini juga merupakan akibat dari teorema dasar kalkulus, dan bahkan turunan dari ln(x) sama dengan 1x. Rumus logaritma hasil kali dan pangkat dapat diperoleh melalui definisi ini.[41] Sebagai contoh, rumus hasil kali ln(tu) = ln(t) + ln(u) dapat disimpulkan sebagai:

Persamaan (1) membagi integral menjadi dua bagian, sementara (2) mengubah variabel w menjadi xt. Pada ilustrasi dibawah, pembagian integral tersebut dapat disamakan dengan pembagian luasnya menjadi bagian berwarna kuning dan biru. Dengan mengukur luas berwarna biru kembali secara vertikal melalui faktor t dan menyusutnya melalui faktor yang sama secara horizontal tidak mengubah ukuran luasnya. Dengan memindahkan daerah biru ke daerah kuning, luasnya menyesuaikan grafik fungsi f(x) = 1x lagi. Oleh karena itu, luas biru di sebelah kiri, yang merupakan integral dari fungsi f(x) dengan interval dari t hingga tu sama dengan integral dari fungsi yang sama dengan interval 1 hingga u. Hal ini membenarkan persamaan  (2) melalui bukti geometri lainnya.

Fungsi hiperbola digambarkan dua kali. Luas di bawah fungsi dibagi menjadi bagian yang berbeda.
Sebuah bukti visual tentang rumus hasil kali dari logaritma natural

Rumus pangkat ln(tr) = r ln(t) dapat real dalam cara yang serupa:

Persamaan kedua menggunakan perubahan variabel w = x1r melalui integral substitusi.

Jumlah keseluruhan timbal balik dari bilangan asli yang dirumuskan

disebut deret harmonik. Deret ini sangat terkait erat dengan logaritma alami, yang dinyatakan melalui pernyataan berikut: ketika n cenderung menuju takhingga, selisih dari

konvergen (yakni mendekati dengan sembarang) ke sebuah bilangan yang dikenal sebagai konstanta Euler–Mascheroni γ = 0,5772.... Kaitan antara deret harmonik dan logaritma natural membantu dalam menganalisis kinerja algoritma seperti quicksort.[42]

Transendensi logaritma[sunting | sunting sumber]

Bilangan real yang bukan merupakan bilangan aljabar disebut bilangan transendental[43]. Sebagai contoh, π dan e adalah bilangan transendental, sedangkan bukan. Hampir semua bilangan real adalah transendental. Logaritma merupakan sebuah contoh fungsi transendental. Teorema Gelfond–Schneider mengatakan bahwa logaritma biasanya memberikan nilai transendental.[44]

Perhitungan[sunting | sunting sumber]

Tombol logaritma (LOG sebagai bilangan pokok 10 dan LN sebagai bilangan pokok e) pada sebuah kalkulator grafik TI-83 Plus.

Logaritma merupakan alat hitung yang mudah pada beberapa kasus, seperti 10log 1000 = 3. Logaritma pada umumnya dapat dihitung melalui deret kuasa atau rata-rata aritmetika–geometrik, atau didapatkan kembali dari tabel logaritma (sebelum adanya perhitungan logaritma) yang menyediakan ketepatan nilai konstan.[45][46] Metode Newton, sebuah metode berulang yang menyelesaikan persamaan melalui hampiran, juga dapat dipakai untuk menghitung logaritma, karena fungsi inversnya (yaitu fungsi eksponensial), dapat dihitung dengan cepat.[47] Dengan melihat tabel logaritma, metode yang mirip dengan CORDIC dapat dipakai untuk menghitung logaritma hanya dengan menggunakan operasi penambahan dan geseran bit.[48][49] Terlebih lagi, algoritma dari logaritma biner menghitung lb(x) secara berulang berdasarkan penguadratan x yang berulang dan menggunakan ekspresi

Deret pangkat[sunting | sunting sumber]

Deret Taylor[sunting | sunting sumber]

An animation showing increasingly good approximations of the logarithm graph.
Deret Taylor dari ln(z) berpusat di z = 1. Animasi berikut memperlihatkan 10 hampiran pertama beserta dengan hampiran yang ke-99 dan yang ke-100. Hampiran tersebut tidak konvergen karena melebihi jarak 1 dari pusatnya.

Untuk setiap bilangan z yang memenuhi sifat 0 < z ≤ 2, maka berlaku rumus:[nb 4][50]

Pernyataan di atas merupakan tulisan singkat untuk mengatakan bahwa ln(z) dapat diaproksimasi sebagai bilangan yang lebih-lebih akurat lagi melalui ekspresi berikut:

Sebagai contoh, pendekatan ketiga saat z = 1,5 memberikan nilai 0,4167. Nilai tersebut kira-kira 0,011 lebih besar dari ln(1,5) = 0,405465. Deret ini yang mengaproksimasi ln(z) dengan ketepatan nilai sembarang, menyediakan jumlah dari nilai yang dijumlahkan cukup besar. Dalam kalkulus elementer, ln(z) adalah limit dari deret ini dan juga merupakan deret Taylor dari logaritma alami di z = 1. Deret Taylor dari ln(z) khususnya menyediakan alat yang berguna untuk mengaproksimasi ln(1 + z) ketika z bernilai kecil, |z| < 1:

Sebagai contoh, hampiran orde pertama memberikan nilai hampiran ln(1,1) ≈ 0,1 ketika z = 0,1, yang galatnya 5% lebih kecil dari nilai eksak 0,0953.

Deret lebih efisien[sunting | sunting sumber]

Deret lainnya berasal dari fungsi tangen hiperbolik invers:

untuk setiap bilangan real z > 0.[nb 5][50] Dengan menggunakan notasi Sigma, ruas kanan pada rumus di atas juga dapat ditulis sebagai

Deret ini dapat diturunkan dari deret Taylor di atas, yang konvergen lebih cepat daripada deret Taylor, khususnya jika z mendekati 1. Sebagai contoh, untuk z = 1,5, tiga suku pertama dari deret kedua memberikan nilai hampiran ln(1,5) dengan galatnya sekitar 3×10−6. Kekonvergenan cepat untuk z yang mendekati 1 dapat dimanfaatkan sebagai berikut: diberikan sebuah hampiran dengan tingkat akurat yang rendah y ≈ ln(z) dan memasukkan ke rumus

maka logaritma dari z dirumuskan:

Hampiran awalan y yang lebih baik adalah dengan membuat nilai A mendekati ke 1, sehingga nilai logaritma dapat dihitung lebih efisien. Nilai A dapat dihitung melalui deret eksponensial sehingga nilainya konvergen dengan cepat, asalkan nilai y tidak terlalu besar. Dengan menghitung logaritma dari z yang lebih besar dapat direduksi menjadi nilai z yang lebih kecil dengan menulis z = a · 10b, sehingga ln(z) = ln(a) + b · ln(10).

Terdapat metode yang sangat berkaitan dengannya dapat dipakai untuk menghitung logaritma dari bilangan bulat. Dengan memasukkan pada deret di atas, maka deret tersebut dapat ditulis sebagai berikut:

Jika diketahui logaritma dari suatu bilangan bulat  n yang lebih besar, maka deret tersebut menghasilkan sebauah deret yang konvergen dengan cepat untuk log(n+1), dengan laju konvergensi dari .

Hampiran purata aritmetika-geometrik[sunting | sunting sumber]

Purata aritmetika–geometrik atau rata-rata aritmetika–geometrik menghasilkan hampiran dari logaritma natural dengan tingkatan ketepatan yang tinggi. Pada tahun 1982, Sasaki dan Kanada memperlihatkan bahwa purata ini sangat cepat untuk ketepatan di antara 400 dan 1000 letak desimal, sementara metode deret Taylor biasanya lebih cepat ketika membutuhkan nilai yang kurang akurat. Dalam karyanya, ln(x) kira-kira sama dengan ketepatan dari 2p (atau p bit yang tepat) melalui rumus berikut (karena Carl Friedrich Gauss):[51][52]

Notasi M(x, y) menyatakan rata-rata aritmetika–geometrik dari x dan y. Purata ini didapatkan dengan menghitung rerata (x + y)/2 (purata aritmetika) dan (purata geometrik) dari x dan y secara berulang, lalu misalkan kedua bilangan tersebut merupakan bilangan x dan y selanjutnya. Kedua bilangan tersebut konvergen dengan cepat menuju ke limit yang sama, yaitu M(x, y). Agar pasti bahwa nilai yang diperlukan tepat, maka pilih m sehingga

Bilangan m yang lebih besar membuat perhitungan M(x, y), dengan nilai awal x dan y yang merupakan nilai yang sangat jauh, mengambil langkah lebih lanjut agar nilainya konvergen, tetapi memberikan nilai yang lebih tepat. Konstanta seperti π dan ln(2) dapat dihitung melalui deret yang konvergen dengan cepat.

Algoritma Feynman[sunting | sunting sumber]

Richard Feynman, yang mengerjakan proyek Manhattan di Los Alamos National Laboratory, mengembangkan sebuah algoritma pengolahan bit untuk menghitung nilai logaritma. Algoritma tersebut menyerupai pembagian panjang, dan kemudian dipakai dalam sebuah anggota dari rangkaian subkomputer, Connection Machine. Bahkan bahwa setiap bilangan real 1 < x < 2 yang dapat direpresentasikan sebagai hasil kali dari faktor yang berbeda dari bentuk 1 + 2k, dipakai dalam algoritma ini. Algoritma ini dibangun secara berurutan bahwa hasil kali P, yang dimulai dengan P = 1 dan k = 1, mengatakan bahwa jika P · (1 + 2k) < x, maka P berubah menjadi P · (1 + 2k), sehingga membuat nilai menaik. Algoritma tersebut berhenti ketika k cukup besar memberikan nilai akurat yang diinginkan. Karena log(x) adalah jumlah dari suku berbentuk log(1 + 2k) yang berpadanan dengan nilai k dan faktor 1 + 2k adalah hasil kali dari  P, maka log(x) dapat dihitung melalui operasi penambahan yang sederhana, yaitu menggunakan tabel dari log(1 + 2k) untuk semua k. Setiap bilangan pokok dapat dipakai untuk tabel logaritma.[53]

Penerapan[sunting | sunting sumber]

A photograph of a nautilus' shell.
Sebuah cangkang nautilus yang menampilkan bentuk spiral logaritmik.

Logaritma memiliki banyak penerapan di dalam maupun di luar matematika. Ada beberapa kejadian penerapan logaritma yang berkaitan dengan gagasan kekararan skala. Sebagai contoh, setiap ruangan yang terdapat di dalam sebuah cangkang nautilus memiliki kira-kira sama dengan jumlah salinan dari ruang selanjutnya, yang ditimbang melalui faktor konstanta. Contoh tersebut menyerupai bentuk spiral logaritmik.[54] Hukum Benford mengenai distribusi dari angka yang ditunjuk juga dapat dijelaskan melalui kekeraran skala.[55] Logaritma juga berkaitan dengan benda yang memiliki kemiripan terhadap diri sendiri. Sebagai contoh, logaritma muncul dalam analisis tentang algoritma yang menyelesaikan masalah dengan membaginya menjadi dua masalah lebih kecil yang serupa dan memotong kecil penyelesaiannya.[56] Dimensi dari bentuk geometrik menyerupai diri sendiri, dalam artian bahwa bentuk yang bagiannya menyerupai gambarnya secara keseluruhan juga dirumuskan melalui logaritma. Skala logaritmik berguna untuk mengukur perubahan relatif nilai daripada selisih mutlaknya. Terlebih lagi, karena fungsi logaritmik log(x) menaik sangat lambat untuk nilai besarx, skala logaritmik biasanya menekan data ilmiah yang berskala besar. Logaritma juga muncul dalam rumus ilmiah numerik, seperti persamaan roket Tsiolkovsky, persamaan Fenske, atau persamaan Nernst.

Penerapannya dalam skala logaritmik[sunting | sunting sumber]

Grafik yang menggambarkan nilai dari waktu ke waktu. Melalui skala logaritma, garis pada grafik memperlihatkan nilainya yang menaik dengan cepat.
Grafik logaritma memperlihatkan kenaikan harga mata uang goldmark di Papiermark selama berlangsungnya hiperinflasi di Jerman pada tahun 1920-an

Satuan kuantitas dalam ilmiah seringkali dinyatakan sebagai logaritma dari kuantitas lain, dengan menggunakan skala logaritmik. Sebagai contoh, desibel merupakan satuan pengukuran yang dikaitkan dengan perhitungan dari kuantitas skala logaritmik. Penguat desibel memberikan 10 kalinya logaritma biasa dari rasio daya atau 20 kalinya logaritma biasa dari rasio tegangan. Satuan inilah yang dipakai untuk mengukur rugi tingkatan ketegangan saat mentransmisi sinyal elektrik,[57] yang bertujuan untuk menjelaskan tingkatan kekuatan aras daya suara dalam akustik,[58] serta mengukur penyerapan cahaya dalam bidang spektrometri dan optika. Selain itu, desibel juga dipakai dalam nisbah sinyal-derau yang menjelaskan seberapa banyak derau dibandingkan dengan sinyal yang berguna.[59] Mirip dengan tadi, nisbah puncak sinyal-derau biasanya dipakai menilai kualitas suara dan metode pemampatan citra melalui logaritma.[60]

Kekuatan gempa bumi diukur dengan mengambil logaritma umum dari energi yang dipancarkan saat terjadinya gempa dalam satuan skala magnitudo momen atau skala magnitudo Ritcher. Sebagai contoh, gempa berkekuatan 5,0 melepaskan 32 kali (101,5) dan gempa berkekuatan 6,0 melepaskan 1000 kali(103) energi berkekuatan 4,0.[61] Skala logaritmik juga dipakai dalam magnitudo kentara untuk mengukur kecerahan bintang.[62] Dalam kimia, negatif dari logaritma desimal, yang disebut sebagai kologaritma desimal, ditunjukkan dengan huruf "p".[63] Sebagai contoh, pH merupakan kologaritma desimal dari keaktifan dari ion berbentuk hidrogen H+ yang terbentuk dari air, hidronium.[64] Keaktifan dari ion hidronium dalam air yang netral bernilai 10−7 mol·L−1, sehingga nilai pH adalah 7. Contoh lainnya, nilai pH dari asam cuka biasanya sekitar 3. Perbedaan nilai sebesar 4 sesuai dengan rasio 104 berdasarkan aktivitasnya, yaitu nilai dari aktivitas ion hidronium cuka sekitar 10−3 mol·L−1.

Konsep skala logaritmik dapat dipakai dalam grafik (log-linear) semilog bertujuan untuk memberikan visual terkait satu sumbu, yang biasanya berupa sumbu vertikal, diukur menggunakan perhitungan logaritma. Contohnya seperti grafik disamping menjelaskan nilai yang menaik dengan tajam dari 1 juta hingga 1 triliun ke dalam ruang yang sama (pada sumbu vertikal) saat grafiknya menaik dari 1 hingga 1 juta. Pada grafik tersebut, fungsi eksponensial f(x) = a · bx muncul sebagai garis lurus dengan kemiringan yang sama dengan logaritma dari b. Selain itu, skala logaritma yang dapat dipakai dalam grafik log-log untuk mengukur sumbu vertikal dan horizontal, sehingga menyebabkan fungsi f(x) = a · xk digambarkan sebagai garis lurus yang mempunyai kemiringan yang sama dengan bilangan yang dipangkat dengan k, diterapkan pada saat memberikan visual dan menganalisis hukum pangkat.[65]

Penerapannya dalam psikologi[sunting | sunting sumber]

Penerapan logaritma juga terdapat dalam beberapa hukum yang menjelaskan tentang persepsi manusia.[66][67] Sebagai contoh, hukum Hick menjelaskan kaitan logaritmik antara waktu saat orang mengambil keputusan beserta jumlah keputusan yang dimiliki.[68] Hukum lainnya adalah hukum Fitts, yang memprediksi bahwa waktu yang diperlukan saat bergerak ke daerah target dengan cepat sama dengan fungsi logaritmik dari jarak dan ukuran target.[69] Dalam psikofisika, hukum Weber–Fechner mengatakan kaitan logaritmik dengan stimulus dan sensasi yang dirasakan, contohnya seperti saat orang sedang membawa berat benda yang sesungguhnya dengan yang dirasakan.[70] (Namun, "hukum" ini kurang realistis dengan model belakangan ini, seperti hukum perpangkatan Stevens.[71])

Studi psikologi menemukan bahwa orang yang sedikit mempunyai pemahaman matematika cenderung mengestimasi nilai kuantitas dengan logaritma, atau dengan kata lain, bilangannya ditempatkan pada garis yang tidak ditandai berdasarkan perhitungan logaritma, sehingga 10 yang ditempatkan mendekati 100 dianggap sebagai 100 yang ditempatkan mendekati 1000. Orang yang memiliki pemahaman yang lebih tinggi memandang hal tersebut sebagai linear yang mengestimasi (letak angka 1000 yang berjarak 10 kali lebih jauh) pada beberapa kasus, namun logaritma dipakai pada saat memplot bilangan-bilangan yang sulit untuk diplotkan secara linear.[72][73]

Penerapannya dalam teori peluang dan statistika[sunting | sunting sumber]

Tiga kurva fungsi kepadatan probabilitas yang asimetrik
Tiga fungsi kepadatan probabilitas (PDF) dari variabel acak dengan sebaran log-normal. Parameter lokasi  μ yang bernilai nol untuk semua tiga fungsi tersebut, merupakan purata logaritma dari variabel acak, bukan purata dari variabel tersendiri.
A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion
Sebaran digit pertama (dalam bentuk persentase, dengan batang berwarna merah) dalam jumlah populasi dari 237 negara di dunia. Titik berwarna hitam menunjukkan sebaran yang diprediksi menurut hukum Benford.

Dalam teori probabilitas, hukum bilangan besar mengatakan bahwa, untuk sebuah mata uang seimbang, ketika jumlah pelemparan koin naik menuju takhingga, maka kesebandingan dari gambar kepala (atau ekor) yang diamati mendekati satu setengah. Fluktuasi dari nilai kesebandingan yang bernilai satu setengah dijelaskan melalui hukum yang menggunakan logaritma, yaitu hukum logaritma teriterasi.[74]

Logaritma muncul pula dalam sebaran log-normal. Ketika logaritma dari variabel acak mempunyai sebaran normal, maka variabel dikatakan mempunyai sebaran log-normal.[75] Sebaran log-normal ditemukan dalam banyak bidang, dengan suatu variabel dibentuk sebagai hasil kali dari banyaknya variabel acak indenpenden bernilai positif. Contohnya seperti dalam mempelajari turbulensi.[76]

Logaritma dipakai untuk menghitung estimasi kemungkinan maksimum dari model statistika parametrik. Fungsi kemungkinan pada model tersebut bergantung setidaknya satu parameter yang harus diestimasi. Nilai maksimum dari fungsi kemungkinan muncul di nilai parameter yang sama sebagai nilai maksimum logaritma kemungkinan (atau disebut log likelihood), karena logaritma merupakan fungsi menaik. Log-likelihood adalah teknik yang memaksimumkan fungsi dengan mudah, khususnya untuk kemungkinan yang dikali mengenai variabel acak independen.[77]

Hukum Benford menjelaskan kemungkinan digit dalam himpunan data yang banyak, contohnya seperti tinggi bangunan. Menurut hukum Benford, kemungkinan bahwa digit desimal pertama suatu item dalam sampel data adalah d (yang berkisar dari 1 hingga 9) sama dengan 10log (d + 1) − 10log (d), tanpa memperhatikan satuan pengukuran.[78] Jadi, sekitar 30% data dapat diduga mempunyai 1 sebagai digit pertama, 18% dimulai dengan 2, dst. Penyimpangan dari hukum Benford dihitung oleh para akuntan untuk membantu mendeteksi penipuan data akuntansi.[79]

Penerapannya dalam kompleksitas perhitungan[sunting | sunting sumber]

Cabang dalam ilmu komputer yang mempelajari performa dari suatu algoritma dalam menyelesaikan persoalan atau masalah tertentu disebut analisis algoritma.[80] Logaritma sangat penting dalam menjelaskan algoritma tersebut dengan membagi suatu masalah menjadi lebih kecil, serta menghubungkan penyelesaian dari submasalah.[81]

Sebagai contoh, cara algoritma pencarian biner (Inggris: binary searching algorithm) dalam mencari bilangan dalam daftar yang tersortir adalah dengan memeriksa entri tengah dan meneruskannya di sebagian sebelum atau sesudah entri tengah jika tidak ditemukan bilangannya. Umumnya, algoritma ini memerlukan perbandingan 2log (N), dengan N adalah panjang daftar.[82] Mirip dengan sebelumnya, algoritma urut gabungan menyortir daftar yang belum tersortir dengan membagi daftar menjadi setengah bagian dan mengurutkan daftar-daftar tersebut dahulu sebelum menggabungkan hasilnya. Algoritma urut gabungan biasanya memerlukan waktu yang kira-kira sebanding dengan N · log(N).[83] Bilangan pokok logaritma tidak dijelaskan secara spesifik, karena hasilnya hanya berubah oleh faktor konstanta saat ada bilangan pokok lain yang sedang dipakai. Faktor konstanta biasanya diabaikan dalam analisis algoritma dalam model biaya seragam (Inggris: uniform cost model) yang standar.[84]

Suatu fungsi f(x) dikatakan bertumbuh secara logaritmik jika f(x) (setidaknya atau kira-kira) sebanding dengan logaritma dari x, namun istilah ini dipakai sebagai fungsi eksponensial dalam menjelaskan pertumbuhan organisme secara biologis.[85] Sebagai contoh, setiap bilangan asli N dapat direpresentasikan dalam bentuk bilangan biner yang tidak lebih dari 2log N + 1 bit. Dengan kata lain, jumlah memori diperlukan untuk menyimpan N pertumbuhan secara logaritmik dengan N.

Penerapannya dalam entropi dan ketidakteraturan[sunting | sunting sumber]

Trayektori dua partikel berbentuk oval
Bola biliar di atas meja biliar oval. Dua partikel yang bermula pada pusat meja dengan sudut luncur yang berbeda satu derajat, akan memiliki jalur yang amat berbeda karena pemantulan pada pinggir meja biliar

Entropi secara umum adalah ukuran dari ketidakteraturan dari suatu sistem. Dalam termodinamika statistik, sebuah entropi, disimbolkan dengan S, dari sebuah sistem, didefinisikan dengan:

Hasilnya adalah seluruh kondisi i yang mungkin dari sistem yang dimaksud, contoh posisi dari partikel gas di dalam sebuah tangki. Lebih lanjut lagi, pi adalah kemungkinan bahwa kondisi i telah tercapai dan k adalah konstanta Boltzmann. Sama halnya dengan entropi dalam teori informasi yang mengukur kuantitas dari informasi. Jika penerima pesan mengharapkan sejumlah N pesan yang mungkin diterima dengan besar kemungkinan masing-masing yang setara, maka sejumlah informasi yang tersampaikan oleh pesan tersebut dapat dikuantifikasi dengan bit 2log N.[86]

Eksponen Lyapunov menggunakan logaritma untuk mengukur derajat ketidakteraturan dari sistem yang dinamis. Contoh partikel yang bergerak di meja biliar oval, di mana bahkan perubahan sekecil apapun dari kondisi awal dapat memberikan hasil, yaitu jalur yang dilalui, yang sangat berbeda. Sistem yang dimaksud disebut dengan kekacauan di dalam sistem deterministik karena galat yang kecil namun terukur dari kondisi awal dapat diprediksi akan memberikan hasil akhir yang sangat berbeda.[87] Setidaknya satu eksponen Lyapunov dari sistem kekacauan yang deterministik akan bernilai positif.

Penerapannya dalam bangunan fraktal[sunting | sunting sumber]

Parts of a triangle are removed in an iterated way.
Segitiga Sierpinski (di sebelah kanan) dibangun dengan menggantikan segitiga sama sisi secara berulang dengan tiga salinan dirinya yang lebih kecil.

Logaritma muncul dalam definiisi dimensi fraktal.[88] Fraktal merupakan benda-benda geometri yang menyerupai dirinya, dalam artian bahwa benda geometri tersebut mereproduksi dirinya lebih kecil, penjelasan kasarnya, di seluruh strukturnya. Contohnya seperti segitiga Sierpiński, dengan dimensi Hausdorffnya adalah ln(3)ln(2) ≈ 1,58, dapat diliputi dengan tiga salinan dirinya, masing-masing sisinya dibagi menjadi setengah dari panjang awalnya. Adapula gagasan dimensi fraktal berdasarkan logaritma lainnya diperoleh dengan menghitung jumlah kotak yang diperlukan untuk meliputi frakal dalam himpunan.

Penerapannya dalam musik[sunting | sunting sumber]

Empat oktaf yang berbeda diperlihatkan pada skala linear.
Empat oktaf yang berbeda diperlihatkan pada skala logaritmik.
Empat oktaf yang berbeda diperlihatkan pada skala linear, lalu diperlihatkan pada skala logaritmik (saat mendengarkannya dengan menggunakan telinga).

Logaritma berkaitan dengan bunyi nada dan interval dalam musik. Dalam temperamen sama, perbandingan frekuensi bergantung pada interval di antara dua nada saja, bukan pada frekuensi yang spesifik atau tinggi dari nada tunggal. Sebagai contoh, nada A mempunyai frekuensi 440 Hz dan B-flat mempunyai frekuensi 466 Hz. Interval antara nada A dengan B-flat ini digolongkan sebagai semi-nada, karena intervalnya berada di antara B-flat dan B (yang mempunyai frekuensi 493 Hz). Maka, perbandingan frekuensinya adalah:

Peran logaritma dalam musik dapat dipakai untuk menjelaskan interval berikut: suatu interval diukur dalam semi-nada dengan mengambil logaritma dengan bilangan pokok-21/12 dari perbandingan frekuensi, sedangkan logaritma dengan bilangan pokok-21/1200 dari perbandingan frekuensi menyatakan interval dalam sen, ratusan semi-nada. Logaritma yang terakhir dipakai untuk pengodean yang lebih halus, karena diperlukan untuk temperamen tak sama.[89]

Interval (dua bunyi nada yang dimainkan dalam waktu yang sama) Bunyi nada 1/12 play Semi-nada play Just major third play Major third play Tritone play Oktaf play
Rasio frekuensi r
Jumlah semi-nada yang sama
Jumlah sen yang sama

Penerapannya dalam teori bilangan[sunting | sunting sumber]

Logaritma alami sangat berkaitan dengan salah satu topik dalam teori bilangan, yaitu menghitung bilangan prima. Untuk setiap bilangan bulat x, jumlah bilangan prima kurang dari sama dengan x dinyatakan sebagai π(x). Teorema bilangan prima mengatakan bahwa π(x) kira-kira sama dengan

yang berarti bahwa fungsi pencacahan bilangan prima kira-kira sama dengan perbandingan dari π(x) dan pecahan yang mendekati 1 ketika x menuju ke takhingga.[90] Akibatnya, peluang dari bilangan yang dipilih secara acak di antara 1 dan x adalah bilangan prima berbanding terbalik dengan jumlah digit desimal x. Pendekatan π(x) yang lebih baik merupakan fungsi integral Euler Li(x), yang didefinisikan sebagai

Hipotesis Riemann, yang merupakan salah satu konjektur matemtika terbuka yang paling terlama, dapat dinyatakan dalam bentuk perbandingan π(x) dan Li(x).[91] Teorema Erdős–Kac mengatakan bahwa jumlah faktor bilangan prima yang berbeda juga melibatkan logaritma alami.

Logaritma dari n faktorial, n! = 1 · 2 · ... · n, dirumuskan sebagai

Rumus di atas dapat dipakai utnuk memperoleh sebuah hampiran dari n! untuk setiap bilangan n yang lebih besar, yaitu rumus Stirling.[92]

Perumuman[sunting | sunting sumber]

Logaritma kompleks[sunting | sunting sumber]

Semua bilangan kompleks a yang menyelesaikan persamaan

disebut logaritma kompleks dari z, ketika z (dianggap sebagai) bilangan kompleks. Bilangan kompleks biasanya dinyatakan sebagai z = x + iy, dengan x dan y adalah bilangan real dan i adalah satuan imajiner (satuan yang dikuadratkan memberikan nilai −1). Bilangan kompleks dapat divisualisasikan melalui sebuah titik dalam bidang kompleks, seperti yang diperlihatkan pada gambar berikut. Bentuk polar menulis bilangan kompleks tak-nol z melalui titik nilai mutlak, yang berarti jarak yang berupa bilangan bernilai real dan positif r sama dengan titik z ke titik asalnya. Bentuk polar juga menulis sebuah sudut antara bilangan real pada sumbu-Re (yakni sumbu-x)  Re dan garis yang melalui titik asal dan titik z. Sudut tersebut disebut sebagai argumen dari z.

Sebuah ilustrasi mengenai bentuk polar: sebuah titik yang dijelaskan melalui sebuah panah atau secara ekuivalen melalui panjang dan sudutnya ke sumbu-x.
Bentuk polar dari z = x + iy. φ dan φ' adalah argumen dari z.

Nilai mutlak r dari z dinyatakan sebagai

Dengan menggunakan pandangan geometris pada fungsi sinus dan kosinus beserta periodisitasnya dalam 2π, setiap bilangan kompleks z dapat dinyatakan sebagai

untuk setiap bilangan bulat k. Nyatanya, argumen dari z tidak dijelaskan secara unik, yakni: bilangan φ dan φ' = φ + 2kπ adalah argumen valid dari z untuk semua bilangan bulat k, karena menambahkan 2kπ radian atau k⋅360°[nb 6] ke bilangan φ berpadanan dengan "lilitan" di sekitar titik asal yang berputar berlawanan arah jarum jam sebanyak k putaran. Hasil bilangan kompleks selalu z, seperti yang diilustrasikan pada gambar untuk k = 1. Setidaknya ada salah satu dari argumen z yang mungkin disebut sebagai argumen prinsip, yang dilambangkan Arg(z), dipilih dengan memerlukan putaran φ di selang (−π, π][93] atau [0, 2π).[94] Daerah-daerah tersebut, dengan argumen z ditentukan sekali disebut cabang dari fungsi argumen.

Rumus Euler mengaitkan fungsi trigonometri sinus dan kosinus dengan eksponensial kompleks:

Dengan menggunakan rumus di atas, dan periodisitasnya lagi, maka berlaku identitas berikut:[95]

dengan ln(r) adalah fungsi logaritma real tunggal, ak menyatakan logaritma kompleks dari z, dan k bilangan bulat sembarang. Karena itu, logaritma kompleks dari z, yang semua bilangan kompleks ak untuk e pangkat ak sama dengan z, mempunyai tak berhingga banyaknya nilai

untuk bilangan bulat sembarang k.
A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise.
Cabang prinsip (-π, π) dari prinsip logaritma kompleks, Log(z). Titik berwarna hitam di z = 1 berpadanan dengan nilai titik nol dan warna yang lebih cerah mengacu pada nilai mutlak lebih besar. Rona dari warna mengkodekan argumen dari Log(z).

Dengan mengambil k sehingga φ + 2kπ ada di dalam selang yang ditentukan untuk argumen prinsip, maka ak disebut nilai prinsip dari logaritma, dinotasikan sebagai Log(z). Argumen prinsip setiap bilangan real positif  x bernilai 0, jadi Log(x) adalah sebuah bilangan real yang sama dengan logaritma (alami). Akan tetapi, rumus logaritma tentang darab dan perpangkatan bilangan di atas tidak memberikan perumuman terkait nilai prinsip dari logaritma kompleks.[96]

Ilustrasi tersebut menggambarkan Log(z), membatasi argumen z dengan interval (−π, π]. Cara memadankan cabang dari logaritma kompleks mempunyai ketakkontinuan di sepanjang sumbu-x real negatif, seperti yang dapat dilihat pada lompatan hue di gambar. Saat melintasi batas, ketakkontinuan tersebut dimulai dari lompatan hingga batas lain yang ada di cabang yang sama, dalam artian bahwa tiada perubahan dengan nilai-k dari cabang tetangga kontinu yang berpadanan. Lokus tersebut dinamakan potongan cabang. Dengan menghapus perbatasan argumen, maka relasi "argumen dari z" dan "logaritma dari z" menjadi fungsi bernilai banyak.

Kebalikan dari fungsi eksponensial lainnya[sunting | sunting sumber]

Eksponensiasi muncul dalam cabang matematika dan fungsi inversnya seringkali mengacu pada logaritma. Sebagai contoh, logaritma matriks merupakan fungsi invers (bernilai banyak) dari eksponensial matriks.[97] Contohnya lain seperti fungsi logaritma p-adic, fungsi invers dari fungsi eksponensial p-adic. Kedua fungsi tersebut didefinisikan melalui deret Taylor yang analog dengan kasus bilangan real.[98] Dalam konteks geometri diferensial, peta eksponensial memetakan ruang garis singgung di sebuah titik lipatan ke lingkungan titik tersebut. Kebalikannya juga disebut peta logaritma.[99]

Dalam konteks grup hingga, eksponensiasi dinyatakan dengan mengalikan satu anggota grup b dengan dirinya secara berulang. Logaritma diskret merupakan bilangan bulat n yang menyelesaikan persamaan

dengan x adalah anggota dari grup. Mengerjakan solusi eksponensiasi dapat dilakukan dengan efisien, namun logaritma diskret dipercayai bahwa sangat sulit untuk menghitungnya dalam beberapa grup. Asimetri dari grup tersebut mempunyai penerapan penting dalam kriptografi kunci publik, contohnya seperti pertukaran kunci Diffie–Hellman, sebuah pertukaran kunci sehari-hari yang memungkinkan pertukaran kunci kriptografi terhadap saluran informasi yang tidak diamankan.[100] Logaritma Zech berkaitan dengan logaritma diskret dalam grup perkalian anggota taknol dari medan hingga.[101]

Adapun fungsi invers berupa logaritma lainnya. Fungsi tersebut di antaranya: logaritma ganda ln(ln(x)) yang merupakan kebalikan dari fungsi eksponensial ganda, superlogaritma yang merupakan kebalikan dari tetrasi, fungsi Lambert W yang merupakan kebalikan dari fungsi f(w) = wew,[102] dan logit yang merupakan kebalikan dari fungsi logistik.[103]

Konsep yang berkaitan[sunting | sunting sumber]

Berdasarkan sudut pandang teori grup, identitas log(cd) = log(c) + log(d) menyatakan isomorfisme grup antara bilangan riil positif terhadap perkalian bilangan riil positif terhadap penambahan. Fungsi logaritmik hanya isomorfisme kontinu antara grup.[104] Berdasarkan pengertian isomorfisme tersebut, ukuran Haar (ukuran Lebesguedx pada riil berpadanan dengan ukuran Haar dxx pada bilangan real positif.[105] Bilangan riil taknegatif tidak hanya terhadap operasi perkalian, namun juga terhadap operasi penambahan, dan bilangan riil taknegatif membentuk semigelanggang, yang disebut sebagai semigelanggang probabilitas, bahkan membentuk semigelanggang. Maka logaritma yang mengambil perkalian dengan penambahan (perkalian logaritma), dan mengambil penambahan dengan penambahan logaritma, memberikan isomorfisme semigelanggang di antara semigelanggang probabilitas dan semigelanggang logaritma.

Konsep ini juga terdapat di dalam analisis kompleks dan geometri aljabar, yang logaritmik satu bentuk df/f adalah bentuk diferensial dengan pole logaritmik.[106]

Selain itu, terdapat polilogaritma, sebuah fungsi yang didefinisikan sebagai

Fungsi ini mempunyai kaitan dengan logaritma alami dengan Li1 (z) = −ln(1 − z). Terlebih lagi, ketika z = 1, nilai dari Lis (1) sama dengan fungsi zeta Riemann, yang dinyatakan sebagai ζ(s).[107]

Lihat pula[sunting | sunting sumber]

Catatan[sunting | sunting sumber]

  1. ^ Perbatasan x dan b dijelaskan pada bagian "Sifat analitik".
  2. ^ Beberapa para matematikawan menolak notasi ini. Dalam otobiografinya pada tahun 1985, Paul Halmos mengkritik bahwa "notasi ln bersifat kekanak-kanakan", karena menurutnya para matematikawan menggunakan notasi tersebut.[15] Notasi tersebut ditemukan oleh seorang matematikawan bernama Irving Stringham.[16][17]
  3. ^ Contohnya seperti C, Java, Haskell, and BASIC.
  4. ^ Deret yang sama berlaku untuk nilai utama dari logaritma kompleks untuk bilangan kompleks z yang memenuhi |z − 1| < 1.
  5. ^ Deret yang sama berlaku untuk nilai utama dari logaritma kompleks untuk bilangan kompleks z dengan bagian real positif.
  6. ^ Lihat radian untuk konversi antara 2π dengan 360 derajat.

Referensi[sunting | sunting sumber]

  1. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614; a lecture, University of California Libraries, Cambridge : University Press 
  2. ^ Remmert, Reinhold. (1991), Theory of complex functions, New York: Springer-Verlag, ISBN 0387971955, OCLC 21118309 
  3. ^ Kate, S.K.; Bhapkar, H.R. (2009), Basics Of Mathematics, Pune: Technical Publications, ISBN 978-81-8431-755-8 [pranala nonaktif permanen], chapter 1
  4. ^ Semua pernyataan di bagian ini dapat ditemukan pada Shailesh Shirali 2002, bagian 4. Sebagai contoh, (Douglas Downing 2003, hlm. 275), atau Kate & Bhapkar 2009, hlm. 1-1.
  5. ^ Bernstein, Stephen; Bernstein, Ruth (1999), Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-005023-5 , hlm. 21
  6. ^ Downing, Douglas (2003), Algebra the Easy Way, Barron's Educational Series, Hauppauge, NY: Barron's, ISBN 978-0-7641-1972-9 , chapter 17, hlm. 275
  7. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , hlm. 20
  8. ^ Van der Lubbe, Jan C. A. (1997), Information Theory, Cambridge University Press, hlm. 3, ISBN 978-0-521-46760-5 
  9. ^ Allen, Elizabeth; Triantaphillidou, Sophie (2011), The Manual of Photography, Taylor & Francis, hlm. 228, ISBN 978-0-240-52037-7 
  10. ^ Quantities and units–Part 2: Mathematics (ISO 80000-2:2019); EN ISO 80000-2
  11. ^ Goodrich, Michael T.; Tamassia, Roberto (2002), Algorithm Design: Foundations, Analysis, and Internet Examples, John Wiley & Sons, hlm. 23 

    One of the interesting and sometimes even surprising aspects of the analysis of data structures and algorithms is the ubiquitous presence of logarithms ... As is the custom in the computing literature, we omit writing the base b of the logarithm when b = 2.

    Terjemahan:

    Salah satu hal yang menarik dan terkadang yang paling mengejutkan dalam aspek dari analisis struktur data beserta algoritma adalah bahwa keberadaan logaritma ada dimana-mana ... Menjadi kebiasaan dalam literatur komputer, kita menghilangkan penulisan bilangan pokok b dari logaritma ketika b = 2.

  12. ^ Parkhurst, David F. (2007), Introduction to Applied Mathematics for Environmental Science (edisi ke-illustrated), Springer Science & Business Media, hlm. 288, ISBN 978-0-387-34228-3 
  13. ^ Gullberg, Jan (1997), Mathematics: from the birth of numbers.Perlu mendaftar (gratis), New York: W. W. Norton & Co, ISBN 978-0-393-04002-9 
  14. ^ See footnote 1 in Perl, Yehoshua; Reingold, Edward M. (December 1977), "Understanding the complexity of interpolation search", Information Processing Letters, 6 (6): 219–22, doi:10.1016/0020-0190(77)90072-2 
  15. ^ Paul Halmos (1985), I Want to Be a Mathematician: An Automathography, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96078-4 
  16. ^ Irving Stringham (1893), Uniplanar algebra: being part I of a propædeutic to the higher mathematical analysis, The Berkeley Press, hlm. xiii 
  17. ^ Roy S. Freedman (2006), Introduction to Financial Technology, Amsterdam: Academic Press, hlm. 59, ISBN 978-0-12-370478-8 
  18. ^ Lihat Teorema 3.29 di Rudin, Walter (1984), Principles of mathematical analysis (edisi ke-3rd ed., International student), Auckland: McGraw-Hill International, ISBN 978-0-07-085613-4 
  19. ^ Napier, John (1614), Mirifici Logarithmorum Canonis Descriptio [The Description of the Wonderful Rule of Logarithms] (dalam bahasa Latin), Edinburgh, Scotland: Andrew Hart 
  20. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614, Cambridge: The University Press 
  21. ^ Folkerts, Menso; Launert, Dieter; Thom, Andreas (2016), "Jost Bürgi's method for calculating sines", Historia Mathematica, 43 (2): 133–147, arXiv:1510.03180alt=Dapat diakses gratis, doi:10.1016/j.hm.2016.03.001, MR 3489006 
  22. ^ O'Connor, John J.; Robertson, Edmund F., "Jost Bürgi (1552–1632)", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  23. ^ William Gardner (1742) Tables of Logarithms
  24. ^ Pierce, R. C. Jr. (January 1977), "A brief history of logarithms", The Two-Year College Mathematics Journal, 8 (1): 22–26, doi:10.2307/3026878, JSTOR 3026878 
  25. ^ Enrique Gonzales-Velasco (2011) Journey through Mathematics–Creative Episodes in its History, §2.4 Hyperbolic logarithms, hlm. 117, Springer ISBN 978-0-387-92153-2
  26. ^ Florian Cajori (1913) "History of the exponential and logarithm concepts", American Mathematical Monthly 20: 5, 35, 75, 107, 148, 173, 205.
  27. ^ Stillwell, J. (2010), Mathematics and Its History (edisi ke-3), Springer 
  28. ^ Bryant, Walter W. (1907), A History of Astronomy, London: Methuen & Co , hlm. 44
    Teks asli:

    "...[a]n admirable artifice which, by reducing to a few days the labour of many months, doubles the life of the astronomer, and spares him the errors and disgust inseparable from long calculations."

  29. ^ Abramowitz, Milton; Stegun, Irene A., ed. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (edisi ke-10th), New York: Dover Publications, ISBN 978-0-486-61272-0 , bagian 4.7., hlm. 89
  30. ^ Campbell-Kelly, Martin (2003), The history of mathematical tables: from Sumer to spreadsheets, Oxford scholarship online, Oxford University Press, ISBN 978-0-19-850841-0 , bagian 2
  31. ^ Spiegel, Murray R.; Moyer, R.E. (2006), Schaum's outline of college algebra, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-145227-4 , hlm. 264
  32. ^ Maor, Eli (2009), E: The Story of a Number, Princeton University Press, bagian 1, 13, ISBN 978-0-691-14134-3 
  33. ^ Devlin, Keith (2004), Sets, functions, and logic: an introduction to abstract mathematics, Chapman & Hall/CRC mathematics (edisi ke-3rd), Boca Raton, Fla: Chapman & Hall/CRC, ISBN 978-1-58488-449-1 , atau lihat referensinya di fungsi.
  34. ^ a b Lang, Serge (1997), Undergraduate analysis, Undergraduate Texts in Mathematics (edisi ke-2nd), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2698-5, ISBN 978-0-387-94841-6, MR 1476913 , bagian III.3
  35. ^ a b Lang 1997, bagian IV.2
  36. ^ Dieudonné, Jean (1969), Foundations of Modern Analysis, 1, Academic Press, hlm. 84  item (4.3.1)
  37. ^ "Calculation of d/dx(Log(b,x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 Maret 2011 
  38. ^ Kline, Morris (1998), Calculus: an intuitive and physical approach, Dover books on mathematics, New York: Dover Publications, ISBN 978-0-486-40453-0 , hlm. 386
  39. ^ "Calculation of Integrate(ln(x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 Maret 2011 
  40. ^ Abramowitz & Stegun, eds. 1972, hlm. 69
  41. ^ Courant, Richard (1988), Differential and integral calculus. Vol. I, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-60842-4, MR 1009558 , bagian III.6
  42. ^ Havil, Julian (2003), Gamma: Exploring Euler's Constant, Princeton University Press, ISBN 978-0-691-09983-5 , bagian 11.5 dan 13.8
  43. ^ Nomizu, Katsumi (1996), Selected papers on number theory and algebraic geometry, 172, Providence, RI: AMS Bookstore, hlm. 21, ISBN 978-0-8218-0445-2 
  44. ^ Baker, Alan (1975), Transcendental number theory, Cambridge University Press, ISBN 978-0-521-20461-3 , hlm. 10
  45. ^ Muller, Jean-Michel (2006), Elementary functions (edisi ke-2nd), Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4372-0 , bagian 4.2.2 (hlm. 72) dan 5.5.2 (hlm. 95)
  46. ^ Hart; Cheney; Lawson; et al. (1968), Computer Approximations, SIAM Series in Applied Mathematics, New York: John Wiley , bagian 6.3, hlm. 105–11
  47. ^ Zhang, M.; Delgado-Frias, J.G.; Vassiliadis, S. (1994), "Table driven Newton scheme for high precision logarithm generation", IEE Proceedings - Computers and Digital Techniques, 141 (5): 281–92, doi:10.1049/ip-cdt:19941268, ISSN 1350-2387 , bagian 1 for an overview
  48. ^ Meggitt, J.E. (April 1962), "Pseudo Division and Pseudo Multiplication Processes", IBM Journal of Research and Development, 6 (2): 210–26, doi:10.1147/rd.62.0210 
  49. ^ Kahan, W. (20 May 2001), Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials 
  50. ^ a b Abramowitz & Stegun, eds. 1972, hlm. 68
  51. ^ Sasaki, T.; Kanada, Y. (1982), "Practically fast multiple-precision evaluation of log(x)", Journal of Information Processing, 5 (4): 247–50, diakses tanggal 30 Maret 2011 
  52. ^ Ahrendt, Timm (1999), "Fast Computations of the Exponential Function", Stacs 99, Lecture notes in computer science, 1564, Berlin, New York: Springer, hlm. 302–12, doi:10.1007/3-540-49116-3_28, ISBN 978-3-540-65691-3 
  53. ^ Hillis, Danny (15 January 1989), "Richard Feynman and The Connection Machine", Physics Today, 42 (2): 78, Bibcode:1989PhT....42b..78H, doi:10.1063/1.881196 
  54. ^ Maor 2009, hlm. 135
  55. ^ Frey, Bruce (2006), Statistics hacks, Hacks Series, Sebastopol, CA: O'Reilly, ISBN 978-0-596-10164-0 , bab 6, bagian 64
  56. ^ Ricciardi, Luigi M. (1990), Lectures in applied mathematics and informatics, Manchester: Manchester University Press, ISBN 978-0-7190-2671-3 , hlm. 21, bagian 1.3.2
  57. ^ Bakshi, U.A. (2009), Telecommunication Engineering, Pune: Technical Publications, ISBN 978-81-8431-725-1 [pranala nonaktif permanen], bagian 5.2
  58. ^ Maling, George C. (2007), "Noise", dalam Rossing, Thomas D., Springer handbook of acoustics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-30446-5 , bagian 23.0.2
  59. ^ Tashev, Ivan Jelev (2009), Sound Capture and Processing: Practical Approaches, New York: John Wiley & Sons, hlm. 98, ISBN 978-0-470-31983-3 
  60. ^ Chui, C.K. (1997), Wavelets: a mathematical tool for signal processing, SIAM monographs on mathematical modeling and computation, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-384-8 
  61. ^ Crauder, Bruce; Evans, Benny; Noell, Alan (2008), Functions and Change: A Modeling Approach to College Algebra (edisi ke-4th), Boston: Cengage Learning, ISBN 978-0-547-15669-9 , bagian 4.4.
  62. ^ Bradt, Hale (2004), Astronomy methods: a physical approach to astronomical observations, Cambridge Planetary Science, Cambridge University Press, ISBN 978-0-521-53551-9 , bagian 8.3, hlm. 231
  63. ^ Nørby, Jens (2000). "The origin and the meaning of the little p in pH". Trends in Biochemical Sciences. 25 (1): 36–37. doi:10.1016/S0968-0004(99)01517-0. PMID 10637613. 
  64. ^ IUPAC (1997), A. D. McNaught, A. Wilkinson, ed., Compendium of Chemical Terminology ("Gold Book") (edisi ke-2nd), Oxford: Blackwell Scientific Publications, doi:10.1351/goldbookalt=Dapat diakses gratis, ISBN 978-0-9678550-9-7 
  65. ^ Bird, J.O. (2001), Newnes engineering mathematics pocket book (edisi ke-3rd), Oxford: Newnes, ISBN 978-0-7506-4992-6 , bagian 34
  66. ^ Goldstein, E. Bruce (2009), Encyclopedia of Perception, Encyclopedia of Perception, Thousand Oaks, CA: Sage, ISBN 978-1-4129-4081-8 , hlm. 355–56
  67. ^ Matthews, Gerald (2000), Human Performance: Cognition, Stress, and Individual Differences, Hove: Psychology Press, ISBN 978-0-415-04406-6 , hlm. 48
  68. ^ Welford, A.T. (1968), Fundamentals of skill, London: Methuen, ISBN 978-0-416-03000-6, OCLC 219156 , hlm. 61
  69. ^ Paul M. Fitts (June 1954), "The information capacity of the human motor system in controlling the amplitude of movement", Journal of Experimental Psychology, 47 (6): 381–91, doi:10.1037/h0055392, PMID 13174710  , reprinted in Paul M. Fitts (1992), "The information capacity of the human motor system in controlling the amplitude of movement" (PDF), Journal of Experimental Psychology: General, 121 (3): 262–69, doi:10.1037/0096-3445.121.3.262, PMID 1402698, diakses tanggal 30 March 2011 
  70. ^ Banerjee, J.C. (1994), Encyclopaedic dictionary of psychological terms, New Delhi: M.D. Publications, hlm. 304, ISBN 978-81-85880-28-0, OCLC 33860167 
  71. ^ Nadel, Lynn (2005), Encyclopedia of cognitive science, New York: John Wiley & Sons, ISBN 978-0-470-01619-0 , lemmas Psychophysics and Perception: Overview
  72. ^ Siegler, Robert S.; Opfer, John E. (2003), "The Development of Numerical Estimation. Evidence for Multiple Representations of Numerical Quantity" (PDF), Psychological Science, 14 (3): 237–43, CiteSeerX 10.1.1.727.3696alt=Dapat diakses gratis, doi:10.1111/1467-9280.02438, PMID 12741747, diarsipkan dari versi asli (PDF) tanggal 17 May 2011, diakses tanggal 7 January 2011 
  73. ^ Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008), "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures", Science, 320 (5880): 1217–20, Bibcode:2008Sci...320.1217D, CiteSeerX 10.1.1.362.2390alt=Dapat diakses gratis, doi:10.1126/science.1156540, PMC 2610411alt=Dapat diakses gratis, PMID 18511690 
  74. ^ Breiman, Leo (1992), Probability, Classics in applied mathematics, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-296-4 , bagian 12.9
  75. ^ Aitchison, J.; Brown, J.A.C. (1969), The lognormal distribution, Cambridge University Press, ISBN 978-0-521-04011-2, OCLC 301100935 
  76. ^ Jean Mathieu and Julian Scott (2000), An introduction to turbulent flow, Cambridge University Press, hlm. 50, ISBN 978-0-521-77538-0 
  77. ^ Rose, Colin; Smith, Murray D. (2002), Mathematical statistics with Mathematica, Springer texts in statistics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95234-5 , bagian 11.3
  78. ^ Tabachnikov, Serge (2005), Geometry and Billiards, Providence, RI: American Mathematical Society, hlm. 36–40, ISBN 978-0-8218-3919-5 , bagian 2.1
  79. ^ Durtschi, Cindy; Hillison, William; Pacini, Carl (2004), "The Effective Use of Benford's Law in Detecting Fraud in Accounting Data" (PDF), Journal of Forensic Accounting, V: 17–34, diarsipkan dari versi asli (PDF) tanggal 29 Agustus 2017, diakses tanggal 28 Mei 2018 
  80. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , hlm. 1–2
  81. ^ Harel, David; Feldman, Yishai A. (2004), Algorithmics: the spirit of computing, New York: Addison-Wesley, ISBN 978-0-321-11784-7 , hlm. 143
  82. ^ Knuth, Donald (1998), The Art of Computer Programming, Reading, MA: Addison-Wesley, ISBN 978-0-201-89685-5 , bagian 6.2.1, hlm. 409–26
  83. ^ Donald Knuth 1998, bagian 5.2.4, hlm. 158–68
  84. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, hlm. 20, ISBN 978-3-540-21045-0 
  85. ^ Mohr, Hans; Schopfer, Peter (1995), Plant physiologyPerlu mendaftar (gratis), Berlin, New York: Springer-Verlag, ISBN 978-3-540-58016-4 , bab 19, hlm. 298
  86. ^ Eco, Umberto (1989), The open work, Harvard University Press, ISBN 978-0-674-63976-8 , bagian III.I
  87. ^ Sprott, Julien Clinton (2010), "Elegant Chaos: Algebraically Simple Chaotic Flows", Elegant Chaos: Algebraically Simple Chaotic Flows. Edited by Sprott Julien Clinton. Published by World Scientific Publishing Co. Pte. Ltd, New Jersey: World Scientific, Bibcode:2010ecas.book.....S, doi:10.1142/7183, ISBN 978-981-283-881-0 , bagian 1.9
  88. ^ Helmberg, Gilbert (2007), Getting acquainted with fractals, De Gruyter Textbook, Berlin, New York: Walter de Gruyter, ISBN 978-3-11-019092-2 
  89. ^ Wright, David (2009), Mathematics and music, Providence, RI: AMS Bookstore, ISBN 978-0-8218-4873-9 , bab 5
  90. ^ Bateman, P.T.; Diamond, Harold G. (2004), Analytic number theory: an introductory course, New Jersey: World Scientific, ISBN 978-981-256-080-3, OCLC 492669517 , teorema 4.1
  91. ^ P. T. Bateman & Diamond 2004, Teoerma 8.15
  92. ^ Slomson, Alan B. (1991), An introduction to combinatorics, London: CRC Press, ISBN 978-0-412-35370-3 , bab 4
  93. ^ Ganguly, S. (2005), Elements of Complex Analysis, Kolkata: Academic Publishers, ISBN 978-81-87504-86-3 , Definisi 1.6.3
  94. ^ Nevanlinna, Rolf Herman; Paatero, Veikko (2007), "Introduction to complex analysis", London: Hilger, Providence, RI: AMS Bookstore, Bibcode:1974aitc.book.....W, ISBN 978-0-8218-4399-4 , bagian 5.9
  95. ^ Moore, Theral Orvis; Hadlock, Edwin H. (1991), Complex analysis, Singapore: World Scientific, ISBN 978-981-02-0246-0 , bagian 1.2
  96. ^ Wilde, Ivan Francis (2006), Lecture notes on complex analysis, London: Imperial College Press, ISBN 978-1-86094-642-4 , teorema 6.1.
  97. ^ Higham, Nicholas (2008), Functions of Matrices. Theory and Computation, Philadelphia, PA: SIAM, ISBN 978-0-89871-646-7 , bab 11.
  98. ^ Neukirch, Jürgen (1999), Algebraische Zahlentheorie, Grundlehren der mathematischen Wissenschaften, 322, Berlin: Springer-Verlag, ISBN 978-3-540-65399-8, MR 1697859, Zbl 0956.11021 , bagian II.5.
  99. ^ Hancock, Edwin R.; Martin, Ralph R.; Sabin, Malcolm A. (2009), Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings, Springer, hlm. 379, ISBN 978-3-642-03595-1 
  100. ^ Stinson, Douglas Robert (2006), Cryptography: Theory and Practice (edisi ke-3rd), London: CRC Press, ISBN 978-1-58488-508-5 
  101. ^ Lidl, Rudolf; Niederreiter, Harald (1997), Finite fieldsPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-39231-0 
  102. ^ Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, Donald (1996), "On the Lambert W function" (PDF), Advances in Computational Mathematics, 5: 329–59, doi:10.1007/BF02124750, ISSN 1019-7168, diarsipkan dari versi asli (PDF) tanggal 14 Desember 2010, diakses tanggal 13 Februari 2011 
  103. ^ Cherkassky, Vladimir; Cherkassky, Vladimir S.; Mulier, Filip (2007), Learning from data: concepts, theory, and methods, Wiley series on adaptive and learning systems for signal processing, communications, and control, New York: John Wiley & Sons, ISBN 978-0-471-68182-3 , hlm. 357
  104. ^ Bourbaki, Nicolas (1998), General topology. Chapters 5–10, Elements of Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-64563-4, MR 1726872 , bagian V.4.1
  105. ^ Ambartzumian, R.V. (1990), Factorization calculus and geometric probabilityPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-34535-4 , bagian 1.4
  106. ^ Esnault, Hélène; Viehweg, Eckart (1992), Lectures on vanishing theorems, DMV Seminar, 20, Basel, Boston: Birkhäuser Verlag, CiteSeerX 10.1.1.178.3227alt=Dapat diakses gratis, doi:10.1007/978-3-0348-8600-0, ISBN 978-3-7643-2822-1, MR 1193913 , bagian 2
  107. ^ Apostol, T.M. (2010), "Logaritma", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 

Pranala luar[sunting | sunting sumber]