Lompat ke isi

Langley's Adventitious Angles: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
r template
Tag: Suntingan visualeditor-wikitext
Dedhert.Jr (bicara | kontrib)
pbtj
 
Baris 10: Baris 10:
}}
}}


'''''Langley’s Adventitious Angles''''' adalah sebuah teka-teki yang diusul [[Edward Mann Langley]] dalam jurnal akademik ''[[The Mathematical Gazette]]'' pada tahun 1922.{{r|p644}}{{r|darling}} Teka-teki ini diharuskan untuk menyimpulkan sebuah sudut dalam diagram geometrik dari sudut yang diberikan lainnya.
'''''Langley’s Adventitious Angles''''' adalah sebuah teka-teki yang diusul [[Edward Mann Langley]] dalam jurnal akademik ''[[The Mathematical Gazette]]'' pada tahun 1922.{{r|p644}}{{r|darling}} Teka-teki ini diharuskan untuk menyimpulkan suatu sudut di dalam diagram geometrik dengan sudut yang diketahui lainnya.


== Masalah ==
== Masalah ==

Revisi terkini sejak 9 Januari 2023 14.43


Teka-teki Langley’s Adventitious Angles
Solusi untuk masalah segitiga 80-80-20 Langley

Langley’s Adventitious Angles adalah sebuah teka-teki yang diusul Edward Mann Langley dalam jurnal akademik The Mathematical Gazette pada tahun 1922.[1][2] Teka-teki ini diharuskan untuk menyimpulkan suatu sudut di dalam diagram geometrik dengan sudut yang diketahui lainnya.

Masalah Langley's Adventitious Angles dalam bentuk aslinya mengatakan sebagai berikut:

ABC adalah segitiga sama kaki dengan CBA = ∠ACB = 80°. CF yang membentuk sudut 30° ke AC memotong AB di F. BE yang membentuk sudut 20° ke AB memotong AC di E. Buktikan BEF = 30°.[1][2][3]

Masalah menghitung sudut BEF merupakan penerapan masalah Hansen yang standar. Walaupun perhitungan tersebut dapat diperlihatkan bahwa BEF tepat bernilai 30°, perhitungan tersebut selalu meninggalkan keraguan mengenai nilai eksak yang hanya karena ketepatan nilai yang terbatas.

Pada tahun 1923, James Mercer mengembangkan bukti langsung menggunakan geometri klasik.[2] Solusinya melibatkan penggambaran sebuah garis tambahan, dan kemudian menggunakan fakta bahwa sudut dalam dari segitiga yang ditambahkan hingga 180° secara berulang. Hal ini bertujuan untuk membuktikan bahwa segitiga-segitiga yang terdapat di dalam segitiga yang besar adalah sama kaki.

  1. Gambar garis BG yang membentuk sudut 20° ke BC, memotong AC di G, dan gambar garis FG.
  2. Karena BCG = 80° dan CBG = 20°, maka BGC = 80°, dan segitiga BCG sama kaki dengan BC = BG.
  3. Karena BCF = 50° dan CBF = 80°, maka BFC = 50°, dan segitiga BCF sama kaki dengna BC = BF.
  4. Karena FBG = 60° dan BF = BG, maka BGF sama sisi.
  5. Karena BCE = 100° dan GBE = 40°, maka GEB = 40°, dan segitiga BGE sama kaki dengan GB = GE.
  6. Oleh karena itu, semua garis merah pada gambar adalah sama.
  7. Karena GE = GF, maka segitiga EFG adalah sama kaki dengan sudut GEF = 70°

Oleh karena itu, BEF = 30°.

  1. ^ a b Langley, E. M. (1922), "Problem 644", The Mathematical Gazette, 11: 173 
  2. ^ a b c Darling, David (2004), The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, hlm. 180, ISBN 9780471270478 
  3. ^ Tripp, Colin (1975), "Adventitious angles", The Mathematical Gazette, 59 (408): 98–106, doi:10.2307/3616644, JSTOR 3616644