Lompat ke isi

Pengguna:Dedhert.Jr/Uji halaman 17: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
Dedhert.Jr (bicara | kontrib)
Tag: Suntingan visualeditor-wikitext
 
(61 revisi perantara oleh 2 pengguna tidak ditampilkan)
Baris 1: Baris 1:
== Nature and influence of the problems ==
'''Kamus Besar Bahasa Indonesia''' (atau disingkat KBBI) adalah [[kamus]] ekabahasa resmi [[bahasa Indonesia]] yang disusun oleh [[Badan Pengembangan dan Pembinaan Bahasa]] dan diterbitkan oleh [[Balai Pustaka]]. Kamus ini menjadi acuan tertinggi bahasa Indonesia yang baku, karena merupakan kamus bahasa Indonesia terlengkap dan paling akurat yang pernah diterbitkan oleh penerbit yang memiliki hak paten dari pemerintah [[Republik Indonesia]] yang dinaungi oleh [[Kementerian Pendidikan dan Kebudayaan Indonesia]].
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the [[Riemann hypothesis]]), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, such as the 5th, experts have traditionally agreed on a single interpretation, and a solution to the accepted interpretation has been given, but closely related unsolved problems exist. Some of Hilbert's statements were not precise enough to specify a particular problem, but were suggestive enough that certain problems of contemporary nature seem to apply; for example, most modern [[number theorists]] would probably see the 9th problem as referring to the [[Conjecture|conjectural]] [[Langlands program|Langlands correspondence]] on representations of the absolute [[Galois group]] of a [[number field]].<ref name="Weinstein pp. 1–39">{{cite journal|last=Weinstein|first=Jared|date=2015-08-25|title=Reciprocity laws and Galois representations: recent breakthroughs|journal=Bulletin of the American Mathematical Society|publisher=American Mathematical Society (AMS)|volume=53|issue=1|pages=1–39|doi=10.1090/bull/1515|issn=0273-0979}}</ref> Still other problems, such as the 11th and the 16th, concern what are now flourishing mathematical subdisciplines, like the theories of [[Quadratic form|quadratic forms]] and [[Real algebraic curve|real algebraic curves]].


There are two problems that are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the [[Axiomatic system|axiomatization]] of [[physics]], a goal that 20th-century developments seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the [[foundations of geometry]], in a manner that is now generally judged to be too vague to enable a definitive answer.
Kamus dengan sejarah yang panjang ini, berasal dari empat sumber. Dimulai dari Kamus Indonesia yang disusun oleh [[E. St. Harahap]] pada tahun 1942, Kamus Moderen Bahasa Indonesia yang disusun oleh [[Sutan Muhammad Zain|Sutan Mohammad Zain]] pada tahun 1954, Kamus Umum Bahasa Indonesia yang disusun oleh [[W.J.S. Poerwadarminta]] pada tahun 1953, dan Kamus Besar Indonesia oleh [[Pusat Bahasa]] pada tahun 1969.<ref>{{Cite web|title=Mengenal Lebih Jauh KBBI, Dari Sejarah Sampai Proses Masuknya Sebuah Kata|url=https://www.tribunnews.com/pendidikan/2019/12/06/mengenal-lebih-jauh-kbbi-dari-sejarah-sampai-proses-masuknya-sebuah-kata|website=Tribunnews.com|language=id-ID|access-date=2022-03-04}}</ref><ref name=":0" />


The other 21 problems have all received significant attention, and late into the 20th century work on these problems was still considered to be of the greatest importance. [[Paul Cohen]] received the [[Fields Medal]] in 1966 for his work on the first problem, and the negative solution of the tenth problem in 1970 by [[Yuri Matiyasevich]] (completing work by [[Julia Robinson]], [[Hilary Putnam]], and [[Martin Davis (mathematician)|Martin Davis]]) generated similar acclaim. Aspects of these problems are still of great interest today.
KBBI memiliki banyak fungsi dalam kehidupan masyarakat saat ini, salah satunya adalah untuk memperkaya kosakata baru.


== Sejarah ==
== Ignorabimus ==
Following [[Gottlob Frege]] and [[Bertrand Russell]], Hilbert sought to define mathematics logically using the method of [[Formal system|formal systems]], i.e., [[Finitism|finitistic]] [[Mathematical proof|proofs]] from an agreed-upon set of [[Axiom|axioms]].<ref>{{cite book|year=1976|title=From Frege to Gödel: A source book in mathematical logic, 1879–1931|location=Cambridge MA|publisher=Harvard University Press|isbn=978-0-674-32449-7|editor-last=van Heijenoort|editor-first=Jean|edition=(pbk.)|pages=464ff|orig-year=1966}}''A reliable source of Hilbert's axiomatic system, his comments on them and on the foundational "crisis" that was on-going at the time (translated into English), appears as Hilbert's'' 'The Foundations of Mathematics' (1927).</ref> One of the main goals of [[Hilbert's program]] was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem.{{refn|See Nagel and Newman revised by Hofstadter (2001, p.&nbsp;107),<ref name=Hofstadter_2001>{{cite book |author1=Nagel, Ernest |author2=Newman, James R. |editor=Hofstadter, Douglas R. |editor-link=Douglas Hofstadter |year=2001 |title=Gödel's Proof |publisher=New York University Press |location=New York, NY |isbn=978-0-8147-5816-8}}</ref> footnote&nbsp;37: "Moreover, although most specialists in mathematical logic do not question the cogency of [Gentzen's] proof, it is not finitistic in the sense of Hilbert's original stipulations for an absolute proof of consistency." Also see next page: "But these proofs [Gentzen's et al.] cannot be mirrored inside the systems that they concern, and, since they are not finitistic, they do not achieve the proclaimed objectives of Hilbert's original program." Hofstadter rewrote the original (1958) footnote slightly, changing the word "students" to "specialists in mathematical logic". And this point is discussed again on page&nbsp;109<ref name=Hofstadter_2001/> and was not modified there by Hofstadter (p.&nbsp;108).<ref name=Hofstadter_2001/>|group=lower-alpha}}
Sejarah KBBI bermula dari Kamus Indonesia pada tahun 1942 yang disusun oleh [[E. St. Harahap]], karena pada masa itu terdapat larangan Jepang untuk menggunakan [[Kitab Arti Logat Melayu]].<ref>{{Cite journal|last=Lindayani|first=Lilik Rita|title=Pemanfaatan KBBI Online dan Upaya Menghindari
Kontroversi Pemaknaan Bahasa Tulis pada Media Sosial|url=https://journal.itk.ac.id/index.php/sepakat/article/download/529/231|journal=|pages=5}}</ref> Lalu pada tahun 1954, Kamus Moderen Bahasa Indonesia yang disusun oleh [[Sutan Muhammad Zain|Sutan Mohammad Zain]], seorang guru besar dari [[Universitas Nasional Jakarta]]. Kamus dengan tebal 896 halaman ini, diterbitkan oleh Penerbit Grafika Jakarta.<ref name=":0" />


However, [[Gödel's second incompleteness theorem]] gives a precise sense in which such a finitistic proof of the consistency of arithmetic is provably impossible. Hilbert lived for 12&nbsp;years after [[Kurt Gödel]] published his theorem, but does not seem to have written any formal response to Gödel's work.{{refn|Reid reports that upon hearing about "Gödel's work from Bernays, he was 'somewhat angry'. ... At first he was only angry and frustrated, but then he began to try to deal constructively with the problem. ... It was not yet clear just what influence Gödel's work would ultimately have" (p.&nbsp;198–199).<ref name=Reid_1996>{{cite book |first=Constance |last=Reid |year=1996 |title=Hilbert |publisher=Springer-Verlag |location=New York, NY |isbn=978-0387946740 |url-access=registration |url=https://archive.org/details/hilbert0000reid }}</ref> Reid notes that in two papers in 1931 Hilbert proposed a different form of induction called "unendliche Induktion" (p.&nbsp;199).<ref name=Reid_1996/>|group=lower-alpha}}{{refn|Reid's biography of Hilbert, written during the 1960s from interviews and letters, reports that "Godel (who never had any correspondence with Hilbert) feels that Hilbert's scheme for the foundations of mathematics 'remains highly interesting and important in spite of my negative results' (p.&nbsp;217). Observe the use of present tense – she reports that Gödel and Bernays among others "answered my questions about Hilbert's work in logic and foundations" (p.&nbsp;vii).<ref name=Reid_1996/>|group=lower-alpha}}
Lalu [[Kamus Umum Bahasa Indonesia]] (KUBI), karya [[W.J.S. Poerwadarminta|W.J.S. Poerwadarmin­ta]], diterbit pada tahun 1953.<ref>{{Cite book|last=Poerwadarminta;|first=W. J. S.|date=2005|url=https://elib.bapeten.go.id/index.php?p=show_detail&id=4939|title=Kamus Umum Bahasa Indonesia, Edisi Ketiga (2005)|publisher=Balai Pustaka|isbn=978-979-666-291-3|language=Indonesia}}</ref> Kamus ini diterbit oleh Lembaga Penyelidikan Bahasa dan Kebudayaan Universitas Indonesia, lembaga resmi yang mengurus masalah kebahasaan.<ref name=":0">{{Cite web|title=Sejarah Kamus Besar Bahasa Indonesia|url=https://badanbahasa.kemdikbud.go.id/lamanbahasa/artikel/3438/sejarah-kamus-besar-bahasa-indonesia|website=Badan Pengembangan dan Pembinaan Bahasa}} "Kamus Umum Bahasa Indonesia susunan W.J.S. Poerwadarminta terbit pertama kali tahun 1953."</ref> [[Lembaga Bahasa Nasional]] menyusun kamus bahasa Indonesia “generasi baru”, yaitu Kamus Bahasa Indonesia (KBI), disusun oleh tim perkamusan di bawah pimpinan Sri Sukesi Adiwimarta. Penyusunan kamus tersebut dimulai pada akhir tahun 1974 dan diterbitkan pada 1983.<ref name=":0" />


Hilbert's tenth problem does not ask whether there exists an [[algorithm]] for deciding the solvability of [[Diophantine equations]], but rather asks for the ''construction'' of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in [[Rational integer|rational integers]]." That this problem was solved by showing that there cannot be any such algorithm contradicted Hilbert's philosophy of mathematics.
Kamus Bahasa Indonesia awalnya ingin dijadikan sebagai kamus besar atau kamus baku oleh para ahli bahasa Indonesia, namun belum dianggap memenuhi kriteria.<ref name=":0" /> Oleh karena itu, [[Pusat Bahasa]] membentuk sebuah tim yang dipimpin oleh [[Anton M. Moeliono]] sebagai penyunting penyelia, bertugas untuk menyusun sebuah kamus besar. Penerbitan KBBI dilakukan saat [[Kongres Bahasa Indonesia]] V pada 28 Oktober 1988.<ref name=":1">{{Cite web|last=Liputan6.com|date=2017-04-08|title=KOLOM BAHASA: Sejarah Perkembangan KBBI|url=https://www.liputan6.com/citizen6/read/2912856/kolom-bahasa-sejarah-perkembangan-kbbi|website=liputan6.com|language=id|access-date=2022-03-04}}</ref>


In discussing his opinion that every mathematical problem should have a solution, Hilbert allows for the possibility that the solution could be a proof that the original problem is impossible.<ref group="lower-alpha">This issue that finds its beginnings in the "foundational crisis" of the early 20th&nbsp;century, in particular the controversy about under what circumstances could the [[Law of Excluded Middle]] be employed in proofs. See much more at [[Brouwer–Hilbert controversy]].</ref> He stated that the point is to know one way or the other what the solution is, and he believed that we always can know this, that in mathematics there is not any "[[Ignoramus et ignorabimus|ignorabimus]]" (statement whose truth can never be known).<ref group="lower-alpha">"This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no ''ignorabimus.''" (Hilbert, 1902, p.&nbsp;445.)</ref> It seems unclear whether he would have regarded the solution of the tenth problem as an instance of ignorabimus: what is proved not to exist is not the integer solution, but (in a certain sense) the ability to discern in a specific way whether a solution exists.
=== Terbitan ===
Ada lima edisi pada KBBI. KBBI Edisi pertama merupakan edisi paling awal, tepat ketika KBBI diterbitkan untuk pertama kalinya saat [[Kongres Bahasa Indonesia]] V pada tahun 28 Oktober 1998,<ref name=":1" /> memuat kurang lebih 62.000 lema. Kamus ini dicetak sekaligus direvisi sebanyak empat kali, yakni pada tahun 1988, 1989, 1990, dan 1990.<ref name=":1" /> Hingga pada tahun 1991, KBBI revisi untuk pertama kali, yaitu KBBI Edisi kedua yang memuat 72.000 lema.<ref name=":2" />


On the other hand, the status of the first and second problems is even more complicated: there is not any clear mathematical consensus as to whether the results of Gödel (in the case of the second problem), or Gödel and Cohen (in the case of the first problem) give definitive negative solutions or not, since these solutions apply to a certain formalization of the problems, which is not necessarily the only possible one.{{refn|Nagel, Newman and Hofstadter discuss this issue: "The possibility of constructing a finitistic absolute proof of consistency for a formal system such as ''Principia Mathematica'' is not excluded by Gödel's results. ... His argument does not eliminate the possibility ... But no one today appears to have a clear idea of what a finitistic proof would be like that is ''not'' capable of being mirrored inside ''Principia Mathematica'' (footnote&nbsp;39, page&nbsp;109). The authors conclude that the prospect "is most unlikely."<ref name=Hofstadter_2001/>|group=lower-alpha}}
KBBI Edisi ketiga diterbit pada tahun 2005. Kamus ini memuat 78.000 lema.<ref name=":2" /> Menurut [[Dendy Sugono|Dr. Dendy Sugono]], Kepala Pusat Bahasa, kamus ini masih terasa banyak sekali kosakata yang belum masuk. Tetapi karena KBBI merupakan kamus umum yang berisikan [[kosakata]] umum, KBBI tidak memuat kosakata dengan berbagai istilah. Untuk penggunaan kamus bidang ilmu tertentu [[Pusat Bahasa]] juga memiliki [[kamus istilah]].<ref>{{id}} Majalah Media Watch [[Habibie Center]], no 49/15. Edisi 15 September-15 Oktober 2006. Artikel: Penggunaan Bahasa dalam Media. Hal 29</ref>


== The 24th problem ==
KBBI Edisi keempat diterbit pada tahun 2008, dan kamus ini memuat lebih dari 90.000 lema.<ref name=":2" /> Pada edisi ini, KBBI diperkaya kosakata yang berasal dari [[kamus istilah]], pada edisi ini kamus disusun berdasarkan [[paradigma]].
{{Main article|Hilbert's twenty-fourth problem}}
Hilbert originally included 24 problems on his list, but decided against including one of them in the published list. The "24th problem" (in [[proof theory]], on a criterion for [[simplicity]] and general methods) was rediscovered in Hilbert's original manuscript notes by German historian [[Rüdiger Thiele]] in 2000.<ref>{{cite journal|last=Thiele|first=Rüdiger|date=January 2003|title=Hilbert's twenty-fourth problem|url=http://www.maa.org/news/Thiele.pdf|journal=American Mathematical Monthly|volume=110|pages=1–24|doi=10.1080/00029890.2003.11919933|s2cid=123061382}}</ref>


== Sequels ==
KBBI Edisi kelima resmi diluncurkan Menteri Pendidikan dan Kebudayaan, [[Muhadjir Effendy]] pada [[28 Oktober]] [[2016]]. Pada edisi ini, KBBI memuat lebih kurang 108.000 lema <ref name=":2" />(110.538 per April 2019)<ref>[http://ahlibahasa.kemdikbud.go.id/slider.php?id=379&cat=2 Sejarah Perkembangan KBBI]</ref>. Kamus ini dengan versi cetaknya setebal 2.040 halaman, hampir dua kali lipat versi sebelumnya, 1.400an halaman.
Since 1900, mathematicians and mathematical organizations have announced problem lists, but, with few exceptions, these have not had nearly as much influence nor generated as much work as Hilbert's problems.


One exception consists of three conjectures made by [[André Weil]] in the late 1940s (the [[Weil conjectures]]). In the fields of [[algebraic geometry]], number theory and the links between the two, the Weil conjectures were very important.<ref>{{Cite web|last1=Weil|first1=André|author1-link=André Weil|year=1949|title=Numbers of solutions of equations in finite fields|url=http://www.ams.org/bull/1949-55-05/S0002-9904-1949-09219-4/home.html|pages=497–508|doi=10.1090/S0002-9904-1949-09219-4|issn=0002-9904|mr=0029393|journal=[[Bulletin of the American Mathematical Society]]|volume=55|issue=5|doi-access=free}}</ref><ref name="Browder American Mathematical Society p.">{{cite book|last=Browder|first=Felix E.|author2=American Mathematical Society|date=1976|title=Mathematical developments arising from Hilbert problems.|publisher=American Mathematical Society|isbn=0-8218-1428-1|publication-place=Providence|page=|oclc=2331329}}</ref> The first of these was proved by [[Bernard Dwork]]; a completely different proof of the first two, via [[Étale cohomology|ℓ-adic cohomology]], was given by [[Alexander Grothendieck]]. The last and deepest of the Weil conjectures (an analogue of the Riemann hypothesis) was proved by [[Pierre Deligne]]. Both Grothendieck and Deligne were awarded the [[Fields medal]]. However, the Weil conjectures were, in their scope, more like a single Hilbert problem, and Weil never intended them as a programme for all mathematics. This is somewhat ironic, since arguably Weil was the mathematician of the 1940s and 1950s who best played the Hilbert role, being conversant with nearly all areas of (theoretical) mathematics and having figured importantly in the development of many of them.
== KBBI Daring dan KBBI Luring ==
Kamus Besar Bahasa Indonesia versi cetak akan dimutakhirkan setiap 5 tahun sekali, sedangkan versi daring akan dimutakhirkan setiap 6 bulan sekali.<ref>[http://badanbahasa.kemdikbud.go.id/lamanbahasa/node/2298 Badan Bahasa: KBBI V Akan Terus Diperbaiki dan Dimutakhirkan]</ref>


[[Paul Erdős]] posed hundreds, if not thousands, of mathematical [[Paul Erdős#Erdős's problems|problems]], many of them profound. Erdős often offered monetary rewards; the size of the reward depended on the perceived difficulty of the problem.<ref name="Chung Erdős Graham p.">{{cite book|last=Chung|first=Fan R. K.|last2=Erdős|first2=Paul|last3=Graham|first3=Ronald L.|date=2018|title=Erdős on graphs : his legacy of unsolved problems|isbn=978-0-429-06453-1|publication-place=Boca Raton|page=|oclc=1224541523}}</ref>
Saat ini, kamus yang dipakai merupakan KBBI Edisi V, yang memuat kurang lebih 108.000.<ref name=":2">{{Cite web|title=Perkembangan Kamus Besar Bahasa Indonesia (KBBI)|url=https://ahlibahasa.kemdikbud.go.id/slider.php?id=311&cat=2}}</ref>


The end of the millennium, which was also the centennial of Hilbert's announcement of his problems, provided a natural occasion to propose "a new set of Hilbert problems." Several mathematicians accepted the challenge, notably Fields Medalist [[Steve Smale]], who responded to a request by [[Vladimir Arnold]] to propose a list of 18&nbsp;problems.
== Rujukan ==
<references />


At least in the mainstream media, the ''de facto'' 21st&nbsp;century analogue of Hilbert's problems is the list of seven [[Millennium Prize Problems]] chosen during 2000 by the [[Clay Mathematics Institute]]. Unlike the Hilbert problems, where the primary award was the admiration of Hilbert in particular and mathematicians in general, each prize problem includes a million dollar bounty. As with the Hilbert problems, one of the prize problems (the [[Poincaré conjecture]]) was solved relatively soon after the problems were announced.
=== Buku ===


The [[Riemann hypothesis]] is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise. Although it has been attacked by major mathematicians of our day, many experts believe that it will still be part of unsolved problems lists for many centuries. Hilbert himself declared: "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proved?"<ref>{{cite book|last=Clawson|first=Calvin C.|title=Mathematical Mysteries: The beauty and magic of numbers|publisher=Basic Books|isbn=9780738202594|page=258|lccn=99-066854}}</ref>
* {{Citebook|last=Poewadarminta|first=W.J.S.|date=2006|url=https://pustaka.pu.go.id/biblio/kamus-umum-bahasa-indonesia-edisi-ketiga/EJ67E|title=Kamus Umum Bahasa Indonesia|publisher=Balai Pustaka|url-status=live}}
* {{Citebook|last=Zain|first=Sutan Mohammad|url=https://opac.perpusnas.go.id/DetailOpac.aspx?id=830649|title=Kamus Moderen Bahasa Indonesia|publisher=Grafica Djakarta|url-status=live}}


In 2008, [[DARPA]] announced its own list of 23&nbsp;problems that it hoped could lead to major mathematical breakthroughs, "thereby strengthening the scientific and technological capabilities of the [[United States Department of Defense|DoD]]."<ref>{{Cite web|last=Cooney|first=Michael|date=2008-09-29|title=The world's 23 toughest math questions|url=http://www.networkworld.com/community/node/33361|website=Network World}}</ref><ref>{{Cite web|title=DARPA Mathematical Challenges - DARPA-BAA08-65|url=https://beta.sam.gov/opp/c120bc7171c203aa5f4b3903aa08e558/view|website=System for Award Management (SAM) - beta.sam.gov|access-date=2021-03-31}}</ref><ref>{{Cite web|date=2008-09-26|title=DARPA Mathematical Challenges - (Archived)|url=https://www.fbo.gov/?s=opportunity&mode=form&id=c120bc7171c203aa5f4b3903aa08e558&tab=core&_cview=0|archive-url=https://web.archive.org/web/20190112150040/https://www.fbo.gov/?s=opportunity&mode=form&id=c120bc7171c203aa5f4b3903aa08e558&tab=core&_cview=0|archive-date=2019-01-12|access-date=2021-03-31|url-status=dead}}</ref>
== Pranala luar ==


== Summary ==
*
Of the cleanly formulated Hilbert problems, problems 3, 7, 10, 14, 17, 18, 19, and 20 have a resolution that is accepted by consensus of the mathematical community. On the other hand, problems 1, 2, 5, 6, 9, 11, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.

That leaves 8 (the [[Riemann hypothesis]]), 12, 13 and 16{{refn|Some authors consider this problem as too vague to ever be described as solved, although there is still active research on it.|group=lower-alpha}} unresolved, and 4 and 23 as too vague to ever be described as solved. The withdrawn 24 would also be in this class. Number&nbsp;6 is deferred as a problem in physics rather than in mathematics.

== Table of problems ==
Tabel berikut memuat 23 masalah Hilbert. Untuk detail solusi dan referensi lebih lanjut, silahkan lihat artikel yang dipranala di kolom pertama.
{| class="wikitable sortable" style="text-align:left"
|-
!style="text-align:center;" width=6% | Masalah
!style="text-align:center;" width=44% class="unsortable" | Penjelasan secara singkat
!style="text-align:center;" width=44% | Status
!style="text-align:center;" width=6% | Terpecahkan pada tahun
|-
|style="text-align:center;"| [[Masalah pertama Hilbert|Masalah ke-1]]
| [[Hipotesis kontinum]], suatu hipotesis yang mengatakan bahwa tidak ada [[Himpunan (matematika)|himpunan]] yang mempunyai [[kardinalitas]] antara kardinalitas [[bilangan bulat]] dan kardinalitas [[bilangan real]])
| {{partial|{{sort|2|}}Masalah ini mustahil untuk dibuktikan atau dibantahkan dalam [[teori himpunan Zermelo–Fraenkel]] dengan atau tanpa menggunakan [[aksioma pemilihan]]. Teorema himpunan Zermelo–Fraenkel adalah [[Konsistensi|konsisten]], dalam artian bahwa teorema ini tidak mengandung kontradiksi. Masih belum ada konsensus apakah ini adalah solusi untuk masalah tersebut.}}
|style="text-align:center;"| 1940, 1963
|-
|style="text-align:center;"| [[Masalah kedua Hilbert|Masalah ke-2]]
| Buktikan bahwa [[aksioma]] [[aritmetika]] adalah [[konsistensi|konsisten]].
| {{partial|{{sort|2|}}Belum ada konsensus mengenai apakah hasil [[Kurt Gödel|Gödel]] dan [[Gerhard Gentzen|Gentzen]] memberikan solusi untuk masalah yang dinyatakan terpecahkan atau tidak. [[Teorema ketaklengkapan Gödel|teorema ketaklengkapan kedua]] Gödel, yang dibuktikan di tahun 1931, menunjukkan bahwa tiada bukti konsistensinya yang dapat diselesaikan dalam aritmetika itu sendiri. Gentzen membuktikan di tahun 1936 bahwa konsistensi aritmetika yang diikuti dari ''[[Relasi well-founded|well-foundedness]]'' dari [[Bilangan epsilon (matematika)|ordinal &nbsp;''ε''<sub>0</sub>]].}}
|style="text-align:center;"| 1931, 1936
|-
|style="text-align:center;"| [[Masalah ketiga Hilbert|Masalah ke-3]]
| Diberikan sebarang dua [[polihedron]] yang mempunyai volume yang sama. Apakah polihedron pertama yang dipotong menjadi potongan yang berhingga banyaknya akan selalu dapat disatukan kembali agar menghasilkan polihedron kedua?
| {{yes|{{sort|1|}}Terpecahkan. Jawabannya adalah tidak. Ini terbukti menggunakan [[invarian Dehn]].}}
|style="text-align:center;"| 1900
|-
|style="text-align:center;"| [[Masalah keempat Hilbert|Masalah ke-4]]
| Konstruksi semua [[ruang metrik]] dengan garis-garis adalah [[geodesik]].
| {{dunno|{{sort|4|}}Belum jelas apakah terselesaikan atau tidak.{{refn|Menurut Gray, hampir semua masalah telah terpecahkan. Some were not defined completely, but enough progress has been made to consider them "solved"; Gray lists the fourth problem as too vague to say whether it has been solved.|group=lower-alpha}} }}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah kelima Hilbert|Masalah ke-5]]
| Are continuous [[group (mathematics)|groups]] automatically [[Lie group|differential groups]]?
| {{partial|{{sort|2|}}Resolved by [[Andrew Gleason]], assuming one interpretation of the original statement. If, however, it is understood as an equivalent of the [[Hilbert–Smith conjecture]], it is still unsolved.}}
|style="text-align:center;"| 1953?
|-
|style="text-align:center;"| [[Masalah keenam Hilbert|Masalah ke-6]]
| Mathematical treatment of the [[axiom]]s of [[physics]]<br /><br />(a) axiomatic treatment of probability with limit theorems for foundation of [[statistical physics]]<br /><br />(b) the rigorous theory of limiting processes "which lead from the atomistic view to the laws of motion of continua"
| {{partial|{{sort|2|}}Partially resolved depending on how the original statement is interpreted.<ref>{{cite journal |last1=Corry |first1=L. |year=1997 |title=David Hilbert and the axiomatization of physics (1894–1905) |journal=Arch. Hist. Exact Sci. |volume=51 |issue=2 |pages=83–198 |doi=10.1007/BF00375141|s2cid=122709777 }}</ref> Items&nbsp;(a) and (b) were two specific problems given by Hilbert in a later explanation.<ref name=Hilbert_1902/> [[probability axioms|Kolmogorov's axiomatics]] (1933) is now accepted as standard. There is some success on the way from the "atomistic view to the laws of motion of continua."<ref>{{cite journal |last1=Gorban |first1=A.N. |author-link=Alexander Nikolaevich Gorban |last2=Karlin |first2=I. |year=2014 |title=Hilbert's 6th Problem: Exact and approximate hydrodynamic manifolds for kinetic equations |journal=Bulletin of the American Mathematical Society |volume=51 |issue=2 |pages=186–246 |arxiv=1310.0406 |doi=10.1090/S0273-0979-2013-01439-3| doi-access= free}}</ref>}}
|style="text-align:center;"| 1933–2002?
|-
|style="text-align:center;"| [[Masalah ketujuh Hilbert|Masalah ke-7]]
| Apakah ''a<sup>b</sup>'' [[bilangan transenden|transenden]], untuk [[bilangan aljabar]] ''a'' ≠ 0,1 dan [[bilangan irasional]] aljabar ''b''?
| {{yes|{{sort|1|}}Terpecahkan. Jawabannya adalah bisa. Ini dapat diilustrasikan dengan [[teorema Gelfond]] atau [[teorema Gelfond–Schneider]].}}
|style="text-align:center;"| 1934
|-
|style="text-align:center;"| [[Masalah kedelapan Hilbert|Masalah ke-8]]
| [[Hipotesis Riemann]] ("bagian real dari sebarang [[Akar fungsi|akar]] non-[[Trivialitas (matematika)|trivial]] dari [[fungsi zeta Riemann]] adalah <math display="inline"> \frac{1}{2} </math>"), dan masalah-masalah lain yang membahas tentang bilangan prima, seperti [[konjektur Goldbach]] dan [[konjektur bilangan prima kembar]]
| {{no|{{sort|3|}}Belum terpecahkan.}}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah kesembilan Hilbert|Masalah ke-9]]
| Find the most general law of the [[Quadratic reciprocity|reciprocity theorem]] in any [[algebra]]ic [[number field]].
| {{partial|{{sort|2|}}Partially resolved.{{refn|Problem 9 has been solved by [[Emil Artin]] in 1927 for [[Abelian extension]]s of the [[rational numbers]] during the development of [[class field theory]]; the non-abelian case remains unsolved, if one interprets that as meaning [[non-abelian class field theory]].|group=lower-alpha}} }}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah kesepuluh Hilbert|Masalah ke-10]]
|style="text-align:left;"| Carilah algoritma untuk menentukan apakah suatu polinomial [[persamaan Diophantine]] yang diberikan dengan koefisien bialngan bulat memiliki penyelesaian berupa bilangan bulat.
| {{yes|{{sort|1|}}Terpecahkan. Jawabannya adalah mustahil. [[Teorema Matiyasevich]] mengimplikasikan tiada algoritma yang menentukan solusi bilangan bulat pada polinomial persamaan Diophantine.}}
|style="text-align:center;"| 1970
|-
|style="text-align:center;"| [[Masalah kesebelas Hilbert|Masalah ke-11]]
| Solving [[quadratic form]]s with algebraic numerical [[coefficient]]s.
| {{partial|{{sort|2|}}Partially resolved.<ref>{{cite book|first=Michiel|last=Hazewinkel|date= 2009|title= Handbook of Algebra|publisher=Elsevier|page=69|isbn=978-0080932811|volume=6}}</ref>}}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah keduabelas Hilbert|Masalah ke-12]]
| Extend the [[Kronecker–Weber theorem]] on Abelian extensions of the [[rational number]]s to any base number field.
| {{partial|{{sort|2|}}Partially resolved.<ref>{{cite web|url=https://www.quantamagazine.org/mathematicians-find-polynomial-building-blocks-hilbert-sought-20210525/|first=Kelsey|last=Houston-Edwards|title=Mathematicians Find Long-Sought Building Blocks for Special Polynomials|date=25 May 2021 }}</ref>}}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah ketigabelas Hilbert|Masalah ke-13]]
| Solve [[septic equation|7th degree equation]] using algebraic (variant: continuous) [[mathematical function|functions]] of two [[parameter]]s.
| {{no|{{sort|3|}}Unresolved. The continuous variant of this problem was solved by [[Vladimir Arnold]] in 1957 based on work by [[Andrei Kolmogorov]], but the algebraic variant is unresolved.{{refn|1=It is not difficult to show that the problem has a partial solution within the space of single-valued analytic functions (Raudenbush). Some authors argue that Hilbert intended for a solution within the space of (multi-valued) algebraic functions, thus continuing his own work on algebraic functions and being a question about a possible extension of the [[Galois theory]] (see, for example, Abhyankar<ref>{{cite book |url=http://www.emis.de/journals/SC/1997/2/pdf/smf_sem-cong_2_1-11.pdf |first=Shreeram S. |last=Abhyankar |title=Hilbert's Thirteenth Problem |series=Séminaires et Congrès |volume=2 |publisher=Société Mathématique de France |date=1997}}</ref> Vitushkin,<ref>{{cite journal |last1=Vitushkin |first1=Anatoliy G. |title=On Hilbert's thirteenth problem and related questions |journal=Russian Mathematical Surveys |date=2004 |volume=59 |issue=1 |pages=11–25 |doi=10.1070/RM2004v059n01ABEH000698 |publisher=Russian Academy of Sciences}}</ref> Chebotarev,<ref>{{cite journal |last1=Morozov |first1=Vladimir V. |title=О некоторых вопросах проблемы резольвент |journal=Proceedings of Kazan University |date=1954 |volume=114 |issue=2 |pages=173-187 |url=http://www.mathnet.ru/php/getFT.phtml?jrnid=uzku&paperid=406&what=fullt&option_lang=eng |publisher=Kazan University |language=ru |trans-title=On certain questions of the problem of resolvents}}</ref> and others). It appears from one of Hilbert's papers<ref>{{cite journal |first=David |last=Hilbert |title=Über die Gleichung neunten Grades |journal=Math. Ann. |volume=97 |year=1927 |pages=243–250|doi=10.1007/BF01447867 |s2cid=179178089 }}</ref> that this was his original intention for the problem.
The language of Hilbert there is "...&nbsp;Existenz von ''algebraischen'' Funktionen&nbsp;...", [existence of ''algebraic'' functions].
As such, the problem is still unresolved.|group=lower-alpha}} }}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah keempatbelas Hilbert|Masalah ke-14]]
| Is the [[invariant theory|ring of invariants]] of an [[algebraic group]] acting on a [[polynomial ring]] always [[Finitely generated algebra|finitely generated]]?
| {{yes|{{sort|1|}}Resolved. Result: No, a counterexample was constructed by [[Masayoshi Nagata]].}}
|style="text-align:center;"| 1959
|-
|style="text-align:center;"| [[Masalah kelimabelas Hilbert|Masalah ke-15]]
| Rigorous foundation of [[Schubert's enumerative calculus]].
| {{partial|{{sort|2|}}Partially resolved.{{Citation needed|date=November 2019}}}}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah keenambelas Hilbert|Masalah ke-16]]
| Describe relative positions of ovals originating from a [[real numbers|real]] [[algebraic curve]] and as [[limit cycle]]s of a polynomial [[vector field]] on the plane.
| {{no|{{sort|3|}}Unresolved, even for algebraic curves of degree 8.}}
|style="text-align:center;"| —
|-
|style="text-align:center;"| [[Masalah ketujuhbelas Hilbert|Masalah ke-17]]
| Express a nonnegative [[rational function]] as [[quotient]] of sums of [[Square (algebra)|squares]].
| {{yes|{{sort|1|}}Resolved. Result: Yes, due to [[Emil Artin]]. Moreover, an upper limit was established for the number of square terms necessary.}}
|style="text-align:center;"| 1927
|-
|style="text-align:center;"| [[Masalah kedelapanbelas Hilbert|Masalah ke-18]]
| (a) Are there only finitely many essentially different space groups in n-dimensional Euclidean space? <br/> <br/> (b) Is there a polyhedron that admits only an [[anisohedral tiling]] in three dimensions?<br /><br />(c) What is the densest [[sphere packing]]?
| {{yes|{{sort|1|}}(a) Resolved. Result Yes (by [[Ludwig Bieberbach]]) <br/> <br/> (b) Resolved. Result: Yes (by [[Karl Reinhardt (mathematician)|Karl Reinhardt]]).<br /><br />(c) Widely believed to be resolved, by [[computer-assisted proof]] (by [[Thomas Callister Hales]]). Result: Highest density achieved by [[Close-packing of equal spheres|close packings]], each with density approximately 74%, such as face-centered cubic close packing and hexagonal close packing.{{refn|Gray also lists the 18th problem as "open" in his 2000 book, because the sphere-packing problem (also known as the [[Kepler conjecture]]) was unsolved, but a solution to it has now been claimed.|group=lower-alpha}}}}
|style="text-align:center;"| {{sort|1928|(a) 1910 <br/> <br/> (b) 1928<br /><br />(c) 1998}}
|-
|style="text-align:center;"| [[Masalah kesembilanbelas Hilbert|Masalah ke-19]]
| Are the solutions of regular problems in the [[calculus of variations]] always necessarily [[Analytic function|analytic]]?
| {{yes|{{sort|1|}}Resolved. Result: Yes, proven by [[Ennio de Giorgi]] and, independently and using different methods, by [[John Forbes Nash]].}}
|style="text-align:center;"| 1957
|-
|style="text-align:center;"| [[Masalah keduapuluh Hilbert|Masalah ke-20]]
| Do all [[calculus of variations|variational problems]] with certain [[boundary condition]]s have solutions?
| {{yes|{{sort|1|}}Resolved. A significant topic of research throughout the 20th century, culminating in solutions for the non-linear case.}}
|style="text-align:center;"| ?
|-
|style="text-align:center;"| [[Masalah keduapuluhsatu Hilbert|Masalah ke-21]]
| Proof of the existence of [[linear differential equation]]s having a prescribed [[monodromic group]]
| {{partial|{{sort|2|}} Partially resolved. Result: Yes/No/Open depending on more exact formulations of the problem.}}
|style="text-align:center;"| ?
|-
|style="text-align:center;"| [[Masalah keduapuluhdua Hilbert|Masalah ke-22]]
| Uniformization of analytic relations by means of [[automorphic function]]s
| {{partial|{{sort|2|}}Partially resolved. [[Uniformization theorem]]}}
|style="text-align:center;"| ?
|-
|style="text-align:center;"| [[Masalah keduapuluhtiga Hilbert|Masalah ke-23]]
| Further development of the [[calculus of variations]]
| {{dunno|{{sort|4|}}Too vague to be stated resolved or not.}}
|style="text-align:center;"| —
|}

== See also ==

* [[Landau's problems]]
* [[Millennium Prize Problems]]

== Notes ==
{{notelist|30em}}

== References ==
{{Reflist|30em}}

== Further reading ==
{{div col|colwidth=30em}}
* {{cite book|last=Gray|first=Jeremy J.|year=2000|title=The Hilbert Challenge|location=Oxford, UK|publisher=[[Oxford University Press]]|isbn=978-0-19-850651-5|author-link=Jeremy Gray}}
* {{cite book|author=Yandell, Benjamin H.|year=2002|url=https://archive.org/details/honorsclasshilbe0000yand|title=The Honors Class: Hilbert's problems and their solvers|location=Wellesley, MA|publisher=A.K. Peters|isbn=978-1-56881-141-3|author-link=Benjamin Yandell|url-access=registration}}
* {{cite book|last=Thiele|first=Rüdiger|year=2005|title=Mathematics and the Historian's Craft: The Kenneth O. May lectures|title-link=Kenneth May|isbn=978-0-387-25284-1|editor-last=Van Brummelen|editor-first=Glen|series=[[Canadian Mathematical Society|CMS]] Books in Mathematics / Ouvrages de Mathématiques de la SMC|volume=21|pages=243–295|chapter=On Hilbert and his twenty-four problems}}
* {{cite book|author-last=Dawson|author-first=John W. Jr.|year=1997|title=Logical Dilemmas: The life and work of Kurt Gödel|publisher=A.K. Peters}}<br />''A wealth of information relevant to Hilbert's "program" and [[Gödel]]'s impact on the Second Question, the impact of [[Arend Heyting]]'s and [[L. E. J. Brouwer|Brouwer]]'s [[Intuitionism]] on Hilbert's philosophy.''
* {{cite book|year=1976|title=Proceedings of Symposia in Pure Mathematics XXVIII|publisher=American Mathematical Society|editor-last=Browder|editor-first=Felix E.|editor-link=Felix Browder|contribution=Mathematical Developments Arising from Hilbert Problems}}<br />''A collection of survey essays by experts devoted to each of the 23&nbsp;problems emphasizing current developments.''
* {{cite book|last=Matiyasevich|first=Yuri|year=1993|title=Hilbert's Tenth Problem|location=Cambridge, MA|publisher=MIT Press|isbn=978-0262132954}}<br />''An account at the undergraduate level by the mathematician who completed the solution of the problem.''
{{div col end}}

== External links ==
{{Wikisource|Mathematical Problems}}

* {{springer|title=Hilbert problems|id=p/h120080}}
* {{cite web|title=Original text of Hilbert's talk, in German.|url=http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html|archive-url=https://web.archive.org/web/20120205025851/http://www.mathematik.uni-bielefeld.de/~kersten/hilbert/rede.html|archive-date=2012-02-05|access-date=2005-02-05|url-status=dead}}
* {{cite web|title=David Hilbert's "Mathematical Problems": A lecture delivered before the International Congress of Mathematicians at Paris in 1900.|url=https://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00881-8/S0273-0979-00-00881-8.pdf}}
* {{librivox book|title=Mathematical Problems|author=Hilbert}}

{{Hilbert's problems}}

Revisi terkini sejak 28 Mei 2023 17.48

Nature and influence of the problems

[sunting | sunting sumber]

Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, such as the 5th, experts have traditionally agreed on a single interpretation, and a solution to the accepted interpretation has been given, but closely related unsolved problems exist. Some of Hilbert's statements were not precise enough to specify a particular problem, but were suggestive enough that certain problems of contemporary nature seem to apply; for example, most modern number theorists would probably see the 9th problem as referring to the conjectural Langlands correspondence on representations of the absolute Galois group of a number field.[1] Still other problems, such as the 11th and the 16th, concern what are now flourishing mathematical subdisciplines, like the theories of quadratic forms and real algebraic curves.

There are two problems that are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the axiomatization of physics, a goal that 20th-century developments seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry, in a manner that is now generally judged to be too vague to enable a definitive answer.

The other 21 problems have all received significant attention, and late into the 20th century work on these problems was still considered to be of the greatest importance. Paul Cohen received the Fields Medal in 1966 for his work on the first problem, and the negative solution of the tenth problem in 1970 by Yuri Matiyasevich (completing work by Julia Robinson, Hilary Putnam, and Martin Davis) generated similar acclaim. Aspects of these problems are still of great interest today.

Ignorabimus

[sunting | sunting sumber]

Following Gottlob Frege and Bertrand Russell, Hilbert sought to define mathematics logically using the method of formal systems, i.e., finitistic proofs from an agreed-upon set of axioms.[2] One of the main goals of Hilbert's program was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem.[a]

However, Gödel's second incompleteness theorem gives a precise sense in which such a finitistic proof of the consistency of arithmetic is provably impossible. Hilbert lived for 12 years after Kurt Gödel published his theorem, but does not seem to have written any formal response to Gödel's work.[b][c]

Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers." That this problem was solved by showing that there cannot be any such algorithm contradicted Hilbert's philosophy of mathematics.

In discussing his opinion that every mathematical problem should have a solution, Hilbert allows for the possibility that the solution could be a proof that the original problem is impossible.[d] He stated that the point is to know one way or the other what the solution is, and he believed that we always can know this, that in mathematics there is not any "ignorabimus" (statement whose truth can never be known).[e] It seems unclear whether he would have regarded the solution of the tenth problem as an instance of ignorabimus: what is proved not to exist is not the integer solution, but (in a certain sense) the ability to discern in a specific way whether a solution exists.

On the other hand, the status of the first and second problems is even more complicated: there is not any clear mathematical consensus as to whether the results of Gödel (in the case of the second problem), or Gödel and Cohen (in the case of the first problem) give definitive negative solutions or not, since these solutions apply to a certain formalization of the problems, which is not necessarily the only possible one.[f]

The 24th problem

[sunting | sunting sumber]

Hilbert originally included 24 problems on his list, but decided against including one of them in the published list. The "24th problem" (in proof theory, on a criterion for simplicity and general methods) was rediscovered in Hilbert's original manuscript notes by German historian Rüdiger Thiele in 2000.[5]

Since 1900, mathematicians and mathematical organizations have announced problem lists, but, with few exceptions, these have not had nearly as much influence nor generated as much work as Hilbert's problems.

One exception consists of three conjectures made by André Weil in the late 1940s (the Weil conjectures). In the fields of algebraic geometry, number theory and the links between the two, the Weil conjectures were very important.[6][7] The first of these was proved by Bernard Dwork; a completely different proof of the first two, via ℓ-adic cohomology, was given by Alexander Grothendieck. The last and deepest of the Weil conjectures (an analogue of the Riemann hypothesis) was proved by Pierre Deligne. Both Grothendieck and Deligne were awarded the Fields medal. However, the Weil conjectures were, in their scope, more like a single Hilbert problem, and Weil never intended them as a programme for all mathematics. This is somewhat ironic, since arguably Weil was the mathematician of the 1940s and 1950s who best played the Hilbert role, being conversant with nearly all areas of (theoretical) mathematics and having figured importantly in the development of many of them.

Paul Erdős posed hundreds, if not thousands, of mathematical problems, many of them profound. Erdős often offered monetary rewards; the size of the reward depended on the perceived difficulty of the problem.[8]

The end of the millennium, which was also the centennial of Hilbert's announcement of his problems, provided a natural occasion to propose "a new set of Hilbert problems." Several mathematicians accepted the challenge, notably Fields Medalist Steve Smale, who responded to a request by Vladimir Arnold to propose a list of 18 problems.

At least in the mainstream media, the de facto 21st century analogue of Hilbert's problems is the list of seven Millennium Prize Problems chosen during 2000 by the Clay Mathematics Institute. Unlike the Hilbert problems, where the primary award was the admiration of Hilbert in particular and mathematicians in general, each prize problem includes a million dollar bounty. As with the Hilbert problems, one of the prize problems (the Poincaré conjecture) was solved relatively soon after the problems were announced.

The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise. Although it has been attacked by major mathematicians of our day, many experts believe that it will still be part of unsolved problems lists for many centuries. Hilbert himself declared: "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proved?"[9]

In 2008, DARPA announced its own list of 23 problems that it hoped could lead to major mathematical breakthroughs, "thereby strengthening the scientific and technological capabilities of the DoD."[10][11][12]

Of the cleanly formulated Hilbert problems, problems 3, 7, 10, 14, 17, 18, 19, and 20 have a resolution that is accepted by consensus of the mathematical community. On the other hand, problems 1, 2, 5, 6, 9, 11, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.

That leaves 8 (the Riemann hypothesis), 12, 13 and 16[g] unresolved, and 4 and 23 as too vague to ever be described as solved. The withdrawn 24 would also be in this class. Number 6 is deferred as a problem in physics rather than in mathematics.

Table of problems

[sunting | sunting sumber]

Tabel berikut memuat 23 masalah Hilbert. Untuk detail solusi dan referensi lebih lanjut, silahkan lihat artikel yang dipranala di kolom pertama.

Masalah Penjelasan secara singkat Status Terpecahkan pada tahun
Masalah ke-1 Hipotesis kontinum, suatu hipotesis yang mengatakan bahwa tidak ada himpunan yang mempunyai kardinalitas antara kardinalitas bilangan bulat dan kardinalitas bilangan real) Masalah ini mustahil untuk dibuktikan atau dibantahkan dalam teori himpunan Zermelo–Fraenkel dengan atau tanpa menggunakan aksioma pemilihan. Teorema himpunan Zermelo–Fraenkel adalah konsisten, dalam artian bahwa teorema ini tidak mengandung kontradiksi. Masih belum ada konsensus apakah ini adalah solusi untuk masalah tersebut. 1940, 1963
Masalah ke-2 Buktikan bahwa aksioma aritmetika adalah konsisten. Belum ada konsensus mengenai apakah hasil Gödel dan Gentzen memberikan solusi untuk masalah yang dinyatakan terpecahkan atau tidak. teorema ketaklengkapan kedua Gödel, yang dibuktikan di tahun 1931, menunjukkan bahwa tiada bukti konsistensinya yang dapat diselesaikan dalam aritmetika itu sendiri. Gentzen membuktikan di tahun 1936 bahwa konsistensi aritmetika yang diikuti dari well-foundedness dari ordinal  ε0. 1931, 1936
Masalah ke-3 Diberikan sebarang dua polihedron yang mempunyai volume yang sama. Apakah polihedron pertama yang dipotong menjadi potongan yang berhingga banyaknya akan selalu dapat disatukan kembali agar menghasilkan polihedron kedua? Terpecahkan. Jawabannya adalah tidak. Ini terbukti menggunakan invarian Dehn. 1900
Masalah ke-4 Konstruksi semua ruang metrik dengan garis-garis adalah geodesik. Belum jelas apakah terselesaikan atau tidak.[h]
Masalah ke-5 Are continuous groups automatically differential groups? Resolved by Andrew Gleason, assuming one interpretation of the original statement. If, however, it is understood as an equivalent of the Hilbert–Smith conjecture, it is still unsolved. 1953?
Masalah ke-6 Mathematical treatment of the axioms of physics

(a) axiomatic treatment of probability with limit theorems for foundation of statistical physics

(b) the rigorous theory of limiting processes "which lead from the atomistic view to the laws of motion of continua"
Partially resolved depending on how the original statement is interpreted.[13] Items (a) and (b) were two specific problems given by Hilbert in a later explanation.[14] Kolmogorov's axiomatics (1933) is now accepted as standard. There is some success on the way from the "atomistic view to the laws of motion of continua."[15] 1933–2002?
Masalah ke-7 Apakah ab transenden, untuk bilangan aljabar a ≠ 0,1 dan bilangan irasional aljabar b? Terpecahkan. Jawabannya adalah bisa. Ini dapat diilustrasikan dengan teorema Gelfond atau teorema Gelfond–Schneider. 1934
Masalah ke-8 Hipotesis Riemann ("bagian real dari sebarang akar non-trivial dari fungsi zeta Riemann adalah "), dan masalah-masalah lain yang membahas tentang bilangan prima, seperti konjektur Goldbach dan konjektur bilangan prima kembar Belum terpecahkan.
Masalah ke-9 Find the most general law of the reciprocity theorem in any algebraic number field. Partially resolved.[i]
Masalah ke-10 Carilah algoritma untuk menentukan apakah suatu polinomial persamaan Diophantine yang diberikan dengan koefisien bialngan bulat memiliki penyelesaian berupa bilangan bulat. Terpecahkan. Jawabannya adalah mustahil. Teorema Matiyasevich mengimplikasikan tiada algoritma yang menentukan solusi bilangan bulat pada polinomial persamaan Diophantine. 1970
Masalah ke-11 Solving quadratic forms with algebraic numerical coefficients. Partially resolved.[16]
Masalah ke-12 Extend the Kronecker–Weber theorem on Abelian extensions of the rational numbers to any base number field. Partially resolved.[17]
Masalah ke-13 Solve 7th degree equation using algebraic (variant: continuous) functions of two parameters. Unresolved. The continuous variant of this problem was solved by Vladimir Arnold in 1957 based on work by Andrei Kolmogorov, but the algebraic variant is unresolved.[j]
Masalah ke-14 Is the ring of invariants of an algebraic group acting on a polynomial ring always finitely generated? Resolved. Result: No, a counterexample was constructed by Masayoshi Nagata. 1959
Masalah ke-15 Rigorous foundation of Schubert's enumerative calculus. Partially resolved.[butuh rujukan]
Masalah ke-16 Describe relative positions of ovals originating from a real algebraic curve and as limit cycles of a polynomial vector field on the plane. Unresolved, even for algebraic curves of degree 8.
Masalah ke-17 Express a nonnegative rational function as quotient of sums of squares. Resolved. Result: Yes, due to Emil Artin. Moreover, an upper limit was established for the number of square terms necessary. 1927
Masalah ke-18 (a) Are there only finitely many essentially different space groups in n-dimensional Euclidean space?

(b) Is there a polyhedron that admits only an anisohedral tiling in three dimensions?

(c) What is the densest sphere packing?
(a) Resolved. Result Yes (by Ludwig Bieberbach)

(b) Resolved. Result: Yes (by Karl Reinhardt).

(c) Widely believed to be resolved, by computer-assisted proof (by Thomas Callister Hales). Result: Highest density achieved by close packings, each with density approximately 74%, such as face-centered cubic close packing and hexagonal close packing.[k]
(a) 1910

(b) 1928

(c) 1998
Masalah ke-19 Are the solutions of regular problems in the calculus of variations always necessarily analytic? Resolved. Result: Yes, proven by Ennio de Giorgi and, independently and using different methods, by John Forbes Nash. 1957
Masalah ke-20 Do all variational problems with certain boundary conditions have solutions? Resolved. A significant topic of research throughout the 20th century, culminating in solutions for the non-linear case. ?
Masalah ke-21 Proof of the existence of linear differential equations having a prescribed monodromic group Partially resolved. Result: Yes/No/Open depending on more exact formulations of the problem. ?
Masalah ke-22 Uniformization of analytic relations by means of automorphic functions Partially resolved. Uniformization theorem ?
Masalah ke-23 Further development of the calculus of variations Too vague to be stated resolved or not.
  1. ^ See Nagel and Newman revised by Hofstadter (2001, p. 107),[3] footnote 37: "Moreover, although most specialists in mathematical logic do not question the cogency of [Gentzen's] proof, it is not finitistic in the sense of Hilbert's original stipulations for an absolute proof of consistency." Also see next page: "But these proofs [Gentzen's et al.] cannot be mirrored inside the systems that they concern, and, since they are not finitistic, they do not achieve the proclaimed objectives of Hilbert's original program." Hofstadter rewrote the original (1958) footnote slightly, changing the word "students" to "specialists in mathematical logic". And this point is discussed again on page 109[3] and was not modified there by Hofstadter (p. 108).[3]
  2. ^ Reid reports that upon hearing about "Gödel's work from Bernays, he was 'somewhat angry'. ... At first he was only angry and frustrated, but then he began to try to deal constructively with the problem. ... It was not yet clear just what influence Gödel's work would ultimately have" (p. 198–199).[4] Reid notes that in two papers in 1931 Hilbert proposed a different form of induction called "unendliche Induktion" (p. 199).[4]
  3. ^ Reid's biography of Hilbert, written during the 1960s from interviews and letters, reports that "Godel (who never had any correspondence with Hilbert) feels that Hilbert's scheme for the foundations of mathematics 'remains highly interesting and important in spite of my negative results' (p. 217). Observe the use of present tense – she reports that Gödel and Bernays among others "answered my questions about Hilbert's work in logic and foundations" (p. vii).[4]
  4. ^ This issue that finds its beginnings in the "foundational crisis" of the early 20th century, in particular the controversy about under what circumstances could the Law of Excluded Middle be employed in proofs. See much more at Brouwer–Hilbert controversy.
  5. ^ "This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no ignorabimus." (Hilbert, 1902, p. 445.)
  6. ^ Nagel, Newman and Hofstadter discuss this issue: "The possibility of constructing a finitistic absolute proof of consistency for a formal system such as Principia Mathematica is not excluded by Gödel's results. ... His argument does not eliminate the possibility ... But no one today appears to have a clear idea of what a finitistic proof would be like that is not capable of being mirrored inside Principia Mathematica (footnote 39, page 109). The authors conclude that the prospect "is most unlikely."[3]
  7. ^ Some authors consider this problem as too vague to ever be described as solved, although there is still active research on it.
  8. ^ Menurut Gray, hampir semua masalah telah terpecahkan. Some were not defined completely, but enough progress has been made to consider them "solved"; Gray lists the fourth problem as too vague to say whether it has been solved.
  9. ^ Problem 9 has been solved by Emil Artin in 1927 for Abelian extensions of the rational numbers during the development of class field theory; the non-abelian case remains unsolved, if one interprets that as meaning non-abelian class field theory.
  10. ^ It is not difficult to show that the problem has a partial solution within the space of single-valued analytic functions (Raudenbush). Some authors argue that Hilbert intended for a solution within the space of (multi-valued) algebraic functions, thus continuing his own work on algebraic functions and being a question about a possible extension of the Galois theory (see, for example, Abhyankar[18] Vitushkin,[19] Chebotarev,[20] and others). It appears from one of Hilbert's papers[21] that this was his original intention for the problem. The language of Hilbert there is "... Existenz von algebraischen Funktionen ...", [existence of algebraic functions]. As such, the problem is still unresolved.
  11. ^ Gray also lists the 18th problem as "open" in his 2000 book, because the sphere-packing problem (also known as the Kepler conjecture) was unsolved, but a solution to it has now been claimed.

References

[sunting | sunting sumber]
  1. ^ Weinstein, Jared (2015-08-25). "Reciprocity laws and Galois representations: recent breakthroughs". Bulletin of the American Mathematical Society. American Mathematical Society (AMS). 53 (1): 1–39. doi:10.1090/bull/1515. ISSN 0273-0979. 
  2. ^ van Heijenoort, Jean, ed. (1976) [1966]. From Frege to Gödel: A source book in mathematical logic, 1879–1931 (edisi ke-(pbk.)). Cambridge MA: Harvard University Press. hlm. 464ff. ISBN 978-0-674-32449-7. A reliable source of Hilbert's axiomatic system, his comments on them and on the foundational "crisis" that was on-going at the time (translated into English), appears as Hilbert's 'The Foundations of Mathematics' (1927).
  3. ^ a b c d Nagel, Ernest; Newman, James R. (2001). Hofstadter, Douglas R., ed. Gödel's Proof. New York, NY: New York University Press. ISBN 978-0-8147-5816-8. 
  4. ^ a b c Reid, Constance (1996). HilbertPerlu mendaftar (gratis). New York, NY: Springer-Verlag. ISBN 978-0387946740. 
  5. ^ Thiele, Rüdiger (January 2003). "Hilbert's twenty-fourth problem" (PDF). American Mathematical Monthly. 110: 1–24. doi:10.1080/00029890.2003.11919933. 
  6. ^ Weil, André (1949). "Numbers of solutions of equations in finite fields". Bulletin of the American Mathematical Society. hlm. 497–508. doi:10.1090/S0002-9904-1949-09219-4alt=Dapat diakses gratis. ISSN 0002-9904. MR 0029393. 
  7. ^ Browder, Felix E.; American Mathematical Society (1976). Mathematical developments arising from Hilbert problems. Providence: American Mathematical Society. ISBN 0-8218-1428-1. OCLC 2331329. 
  8. ^ Chung, Fan R. K.; Erdős, Paul; Graham, Ronald L. (2018). Erdős on graphs : his legacy of unsolved problems. Boca Raton. ISBN 978-0-429-06453-1. OCLC 1224541523. 
  9. ^ Clawson, Calvin C. Mathematical Mysteries: The beauty and magic of numbers. Basic Books. hlm. 258. ISBN 9780738202594. LCCN 99-066854. 
  10. ^ Cooney, Michael (2008-09-29). "The world's 23 toughest math questions". Network World. 
  11. ^ "DARPA Mathematical Challenges - DARPA-BAA08-65". System for Award Management (SAM) - beta.sam.gov. Diakses tanggal 2021-03-31. 
  12. ^ "DARPA Mathematical Challenges - (Archived)". 2008-09-26. Diarsipkan dari versi asli tanggal 2019-01-12. Diakses tanggal 2021-03-31. 
  13. ^ Corry, L. (1997). "David Hilbert and the axiomatization of physics (1894–1905)". Arch. Hist. Exact Sci. 51 (2): 83–198. doi:10.1007/BF00375141. 
  14. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama Hilbert_1902
  15. ^ Gorban, A.N.; Karlin, I. (2014). "Hilbert's 6th Problem: Exact and approximate hydrodynamic manifolds for kinetic equations". Bulletin of the American Mathematical Society. 51 (2): 186–246. arXiv:1310.0406alt=Dapat diakses gratis. doi:10.1090/S0273-0979-2013-01439-3alt=Dapat diakses gratis. 
  16. ^ Hazewinkel, Michiel (2009). Handbook of Algebra. 6. Elsevier. hlm. 69. ISBN 978-0080932811. 
  17. ^ Houston-Edwards, Kelsey (25 May 2021). "Mathematicians Find Long-Sought Building Blocks for Special Polynomials". 
  18. ^ Abhyankar, Shreeram S. (1997). Hilbert's Thirteenth Problem (PDF). Séminaires et Congrès. 2. Société Mathématique de France. 
  19. ^ Vitushkin, Anatoliy G. (2004). "On Hilbert's thirteenth problem and related questions". Russian Mathematical Surveys. Russian Academy of Sciences. 59 (1): 11–25. doi:10.1070/RM2004v059n01ABEH000698. 
  20. ^ Morozov, Vladimir V. (1954). "О некоторых вопросах проблемы резольвент" [On certain questions of the problem of resolvents]. Proceedings of Kazan University (dalam bahasa Rusia). Kazan University. 114 (2): 173–187. 
  21. ^ Hilbert, David (1927). "Über die Gleichung neunten Grades". Math. Ann. 97: 243–250. doi:10.1007/BF01447867. 

Further reading

[sunting | sunting sumber]
[sunting | sunting sumber]

Templat:Hilbert's problems