Sistem reaksi-difusi: Perbedaan antara revisi
k ~ref |
|||
(4 revisi perantara oleh 3 pengguna tidak ditampilkan) | |||
Baris 1: | Baris 1: | ||
''' |
'''model reaksi-difusi''' adalah model matematika yang mendeskripsikan bagaimana konsentrasi dari satu atau lebih substansi terdistribusi dalam ruang berubah karena pengaruh dua proses: [[reaksi kimia]] lokal dimana substansi diubah menjadi yang lain, dan [[difusi]] yang menyebabkan substansi menyebar dalam ruang. |
||
Sebagaimana deskripsi ini mengimplikasikan, sistem reaksi-difusi secara alami diterapkan di [[kimia]]. Akan tetapi, persamaan reaksi-difusi dapat juga mendeskripsikan proses dinamis non-kimiawi. Contoh-contoh ditemukan di [[biologi]], [[geologi]] dan [[fisika]] serta [[ekologi]]. Secara matematis, sistem reaksi-difusi memiliki bentuk semi-linier [[persamaan diferensial parsial parabola]]. Persamaan tersebut dapat direpresentasi dalam bentuk umum |
Sebagaimana deskripsi ini mengimplikasikan, sistem reaksi-difusi secara alami diterapkan di [[kimia]]. Akan tetapi, persamaan reaksi-difusi dapat juga mendeskripsikan proses dinamis non-kimiawi. Contoh-contoh ditemukan di [[biologi]], [[geologi]] dan [[fisika]] serta [[ekologi]]. Secara matematis, sistem reaksi-difusi memiliki bentuk semi-linier [[persamaan diferensial parsial parabola]]. Persamaan tersebut dapat direpresentasi dalam bentuk umum |
||
Baris 7: | Baris 7: | ||
+ \boldsymbol{R}(\boldsymbol{q}), </math> |
+ \boldsymbol{R}(\boldsymbol{q}), </math> |
||
dimana masing-masing komponen vektor '''q'''('''x''',''t'') mewakili konsentrasi dari satu substansi <math>\underline{\boldsymbol{D}}</math> adalah [[matriks diagonal]] [[koefisien difusi]] dan '''R''' memperhitungkan seluruh reaksi lokal. Solusi persamaan reaksi-difusi menunjukkan jangkauan yang luas perilaku, mencangkup pembentukan [[gelombang menjalar]] dan fenomena seperti-gelombang sebagaimana [[pembentukan pola]] [[organisasi diri]] yang lain seperti strip, heksagonal atau lebih banyak struktur ruwet seperti [[soliton disipatif]]. |
dimana masing-masing komponen vektor '''q'''('''x''',''t'') mewakili konsentrasi dari satu substansi <math>\underline{\boldsymbol{D}}</math> adalah [[matriks diagonal]] [[koefisien difusi]] dan '''R''' memperhitungkan seluruh reaksi lokal. Solusi persamaan reaksi-difusi menunjukkan jangkauan yang luas perilaku, mencangkup pembentukan [[gelombang menjalar]] dan fenomena seperti-gelombang sebagaimana [[pembentukan pola]] [[organisasi diri]] yang lain seperti strip, heksagonal atau lebih banyak struktur ruwet seperti [[soliton disipatif]]...... |
||
== Persamaan reaksi-difusi satu komponen == |
== Persamaan reaksi-difusi satu komponen == |
||
Baris 17: | Baris 17: | ||
</math> |
</math> |
||
juga dirujuk sebagai persamaan KPP (Kolmogorov-Petrovsky-Piscounov). |
juga dirujuk sebagai persamaan KPP (Kolmogorov-Petrovsky-Piscounov).<ref>A. Kolmogorov |
||
et al, Moscow Univ. Bull. Math. A 1 (1937): 1</ref> Jika suku reaksi hilang, maka persamaan menunjukkan proses difusi murni. Persamaan terkait adalah [[persamaan panas]]. Pilihan ''R''(''u'')=''u''(1-''u'') menghasilkan [[persamaan Fisher]] yang pada awalnya digunakan untuk mendeskripsikan penyebaran [[populasi]] biologi, |
et al, Moscow Univ. Bull. Math. A 1 (1937): 1</ref> Jika suku reaksi hilang, maka persamaan menunjukkan proses difusi murni. Persamaan terkait adalah [[persamaan panas]]. Pilihan ''R''(''u'')=''u''(1-''u'') menghasilkan [[persamaan Fisher]] yang pada awalnya digunakan untuk mendeskripsikan penyebaran [[populasi]] biologi,<ref>R. A. Fisher, Ann. |
||
Eug. 7 (1937): 355</ref> persamaan Newell-Whitehead-Segel dengan ''R''(''u'') = ''u''(1-''u''²) mendeskripsikan [[konveksi Rayleigh-Benard]], |
Eug. 7 (1937): 355</ref> persamaan Newell-Whitehead-Segel dengan ''R''(''u'') = ''u''(1-''u''²) mendeskripsikan [[konveksi Rayleigh-Benard]],<ref>A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38 (1969): 279</ref><ref>L. A. Segel, |
||
J. Fluid Mech. 38 (1969): 203</ref> persamaan [[Zeldovich]] yang lebih umum dengan ''R''(''u'') = ''u''(1-''u'')(''u''-''α'') dan 0<''α''<1 yang muncul dalam teori [[pembakaran]], |
J. Fluid Mech. 38 (1969): 203</ref> persamaan [[Zeldovich]] yang lebih umum dengan ''R''(''u'') = ''u''(1-''u'')(''u''-''α'') dan 0<''α''<1 yang muncul dalam teori [[pembakaran]],<ref>Y. B. Zeldovich and D. A. Frank-Kamenetsky, Acta Physicochim. 9 (1938): 341</ref> dan kasus degenerasi khususnya dengan ''R''(''u'') = ''u²''-''u³'' yang kadang-kadang dirujuk sebagai persamaan Zeldovich.<ref>B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction, Birkhäuser (2004)</ref> |
||
Dinamika sistem satu komponen adalah subjek terhadap pembatas tertentu sebagaimana persamaan evolusi dapat juga ditulis dalam bentuk variasional |
Dinamika sistem satu komponen adalah subjek terhadap pembatas tertentu sebagaimana persamaan evolusi dapat juga ditulis dalam bentuk variasional |
||
Baris 36: | Baris 36: | ||
dengan potensial ''V''(''u'') sehingga ''R''(''u'')=d''V''(''u'')/d''u''. |
dengan potensial ''V''(''u'') sehingga ''R''(''u'')=d''V''(''u'')/d''u''. |
||
[[Berkas:Travelling wave for Fisher equation.svg| |
[[Berkas:Travelling wave for Fisher equation.svg|jmpl|ka|A travelling wave front solution for Fisher's equation.]] |
||
== Referensi == |
== Referensi == |
Revisi terkini sejak 27 September 2022 04.10
model reaksi-difusi adalah model matematika yang mendeskripsikan bagaimana konsentrasi dari satu atau lebih substansi terdistribusi dalam ruang berubah karena pengaruh dua proses: reaksi kimia lokal dimana substansi diubah menjadi yang lain, dan difusi yang menyebabkan substansi menyebar dalam ruang.
Sebagaimana deskripsi ini mengimplikasikan, sistem reaksi-difusi secara alami diterapkan di kimia. Akan tetapi, persamaan reaksi-difusi dapat juga mendeskripsikan proses dinamis non-kimiawi. Contoh-contoh ditemukan di biologi, geologi dan fisika serta ekologi. Secara matematis, sistem reaksi-difusi memiliki bentuk semi-linier persamaan diferensial parsial parabola. Persamaan tersebut dapat direpresentasi dalam bentuk umum
dimana masing-masing komponen vektor q(x,t) mewakili konsentrasi dari satu substansi adalah matriks diagonal koefisien difusi dan R memperhitungkan seluruh reaksi lokal. Solusi persamaan reaksi-difusi menunjukkan jangkauan yang luas perilaku, mencangkup pembentukan gelombang menjalar dan fenomena seperti-gelombang sebagaimana pembentukan pola organisasi diri yang lain seperti strip, heksagonal atau lebih banyak struktur ruwet seperti soliton disipatif......
Persamaan reaksi-difusi satu komponen
[sunting | sunting sumber]Persamaan reaksi-difusi yang paling sederhana memperlakukan konsentrasi u substansi tunggal dalam satu dimensi ruang,
juga dirujuk sebagai persamaan KPP (Kolmogorov-Petrovsky-Piscounov).[1] Jika suku reaksi hilang, maka persamaan menunjukkan proses difusi murni. Persamaan terkait adalah persamaan panas. Pilihan R(u)=u(1-u) menghasilkan persamaan Fisher yang pada awalnya digunakan untuk mendeskripsikan penyebaran populasi biologi,[2] persamaan Newell-Whitehead-Segel dengan R(u) = u(1-u²) mendeskripsikan konveksi Rayleigh-Benard,[3][4] persamaan Zeldovich yang lebih umum dengan R(u) = u(1-u)(u-α) dan 0<α<1 yang muncul dalam teori pembakaran,[5] dan kasus degenerasi khususnya dengan R(u) = u²-u³ yang kadang-kadang dirujuk sebagai persamaan Zeldovich.[6]
Dinamika sistem satu komponen adalah subjek terhadap pembatas tertentu sebagaimana persamaan evolusi dapat juga ditulis dalam bentuk variasional
dan oleh karenanya mendeskripsikan penurunan permanen "energi bebas" diberikan oleh fungsional
dengan potensial V(u) sehingga R(u)=dV(u)/du.
Referensi
[sunting | sunting sumber]- ^ A. Kolmogorov et al, Moscow Univ. Bull. Math. A 1 (1937): 1
- ^ R. A. Fisher, Ann. Eug. 7 (1937): 355
- ^ A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38 (1969): 279
- ^ L. A. Segel, J. Fluid Mech. 38 (1969): 203
- ^ Y. B. Zeldovich and D. A. Frank-Kamenetsky, Acta Physicochim. 9 (1938): 341
- ^ B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction, Birkhäuser (2004)