Lompat ke isi

Usaha (fisika): Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
k ←Suntingan 114.124.177.78 (bicara) dibatalkan ke versi terakhir oleh Elbert Ziv Hitipeuw
Tag: Pengembalian
Baris 26: Baris 26:
Bentuk usaha tidak selalu mekanis, seperti [[usaha listrik]], dapat dipandang sebagai kasus khusus dari prinsip ini; misalnya, di dalam kasus listrik, usaha dilakukan dalam partikel [[muatan listrik|bermuatan]] yang bergerak melalui sebuah medium.
Bentuk usaha tidak selalu mekanis, seperti [[usaha listrik]], dapat dipandang sebagai kasus khusus dari prinsip ini; misalnya, di dalam kasus listrik, usaha dilakukan dalam partikel [[muatan listrik|bermuatan]] yang bergerak melalui sebuah medium.


Konduksi panas dari badan yang lebih hangat ke yang lebih dingin biasanya bukan merupakan usaha mekanis, karena pada ukuran mikroskopik, tidak ada gaya yang dapat diukur. Pada ukuran atomis, [http://abditrass.blogspot.com ada] gaya di mana atom berbenturan, tetapi dalam jumlahnya usaha hampir sama dengan nol.
Konduksi panas dari badan yang lebih hangat ke yang lebih dingin biasanya bukan merupakan usaha mekanis, karena pada ukuran mikroskopik, tidak ada gaya yang dapat diukur. Pada ukuran atomis, ada gaya di mana atom berbenturan, tetapi dalam jumlahnya usaha hampir sama dengan nol.


== Perhitungan matematis ==
== Perhitungan matematis ==

Revisi per 1 Agustus 2018 07.50

Kerja
Pemukul baseball melakukan kerja positif pada bola dengan memberikan gaya padanya.
Simbol umumW
Satuan SIjoule (J)
Dalam satuan pokok SI1 kgm2/s2
Turunan dari
besaran lainnya
W = Fs
W = τ θ

Usaha atau kerja (dilambangkan dengan W dari Bahasa Inggris Work) adalah energi yang disalurkan gaya ke sebuah benda sehingga benda tersebut bergerak.

Usaha didefinisikan sebagai integral garis (pembaca yang tidak akrab dengan kalkulus peubah banyak lihat "rumus mudah" di bawah):

di mana
C adalah lintasan yang dilalui oleh benda;
adalah gaya;
adalah posisi.

Usaha adalah besaran skalar, tetapi dia dapat positif atau negatif. Tidak semua gaya melakukan kerja. cotohnya, gaya sentripetal dalam gerakan berputar seragam tidak menyalurkan energi; kecepatan objek yang bergerak tetap konstan. Kenyataan ini diyakinkan oleh formula: bila vektor dari gaya dan perpindahan tegak lurus, yakni perkalian titik mereka sama dengan nol.

Bentuk usaha tidak selalu mekanis, seperti usaha listrik, dapat dipandang sebagai kasus khusus dari prinsip ini; misalnya, di dalam kasus listrik, usaha dilakukan dalam partikel bermuatan yang bergerak melalui sebuah medium.

Konduksi panas dari badan yang lebih hangat ke yang lebih dingin biasanya bukan merupakan usaha mekanis, karena pada ukuran mikroskopik, tidak ada gaya yang dapat diukur. Pada ukuran atomis, ada gaya di mana atom berbenturan, tetapi dalam jumlahnya usaha hampir sama dengan nol.

Perhitungan matematis

Untuk benda bergerak, besarnya kerja/waktu (daya) bisa dihitung. Maka, besarnya kerja yang dilakukan gaya (diukur dalam joule/sekon atau watt) adalah perkalian skalar dari gaya (vektor) dengan kecepatan (vektor). Perkalian skalar dari gaya dan kecepatan ini adalah daya sesaat. Seperti kecepatan yang diintegrasikan terhadap waktu untuk mendapatkan jarak total, menurut teorema dasar kalkulus, total kerja sepanjang lintasan adalah integral waktu dari daya sesaat sepanjang lintasan yang dilewati.[1]

Referensi

  1. ^ Resnick, Robert and Halliday, David (1966), Physics, Section 1–3 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527