Lompat ke isi

Integral Lebesgue: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
LaninBot (bicara | kontrib)
k Perubahan kosmetik tanda baca
LaninBot (bicara | kontrib)
k Perubahan kosmetik tanda baca
Baris 9: Baris 9:


=== Integral dari fungsi sederhana ===
=== Integral dari fungsi sederhana ===
'''Fungsi karakteristik''' <math> \chi _A : X \rightarrow \{ 0, 1 \} </math> untuk himpunan <math> A \subseteq X </math> adalah
'''Fungsi karakteristik''' <math> \chi _A: X \rightarrow \{ 0, 1 \} </math> untuk himpunan <math> A \subseteq X </math> adalah
:<math> \chi _A (x) = \begin{cases} 1 & \mathrm{jika} \; x \in A \\ 0 & \mathrm{jika} \; x \not \in A \end{cases} .</math>
:<math> \chi _A (x) = \begin{cases} 1 & \mathrm{jika} \; x \in A \\ 0 & \mathrm{jika} \; x \not \in A \end{cases} .</math>



Revisi per 22 Juni 2019 16.28

Dalam matematika modern, Integral Lebesgue suatu konsep integral.

Konstruksi

Ruang ukuran

Integral Lebesgue dapat definisikan untuk fungsi pada suatu ruang ukuran .

Integral dari fungsi sederhana

Fungsi karakteristik untuk himpunan adalah

Suatu fungsi tersebut fungsi sederhana, jika

untuk , dan .

Kita mendefinisikan integral Lebesgue dari fungsi sederhana sebagai

Integral dari fungsi tak negatif

Misalnya suatu fungsi terukur dan tak negatif, di mana aljabar σ Borel. Maka, mendefinisikan integralnya sebagai

Perhatikan bahwa .

Integral dari fungsi terukur sembarang

Misalnya suatu fungsi terukur. Selanjutnya fungsi tak negatif dan adalah didefinisikan tik demi tik sebagai dan . Perhatikan bahwa dan .

Jika dan , maka dikatakan terintegralkan dan kita mendefinisikan

Jelas, terintegralkan jika dan hanya jika .

Sifat-sifat dasar

  • Integral itu linear, yaitu jika dan fungsi terintegralkan, maka juga terintegralkan dengan
  • Integral itu monoton, yaitu jika fungsi terintegralkan dan , maka