Sel surya: Perbedaan antara revisi
Tidak ada ringkasan suntingan |
|||
Baris 11: | Baris 11: | ||
=== Sel, panel, modul, dan sistem === |
=== Sel, panel, modul, dan sistem === |
||
[[Berkas:From a solar cell to a PV system.svg|jmpl|Dari sel surya ke sistem PV. Diagram komponen yang mungkin dari [[ Sistem fotovoltaik|sistem fotovoltaik]]]] |
[[Berkas:From a solar cell to a PV system.svg|jmpl|Dari sel surya ke sistem PV. Diagram komponen yang mungkin dari [[ Sistem fotovoltaik|sistem fotovoltaik]]]] |
||
Beberapa sel surya dalam kelompok terpadu, semuanya berorientasi dalam satu bidang, membentuk [[Panel surya|panel atau modul fotovoltaik surya]]. Modul fotovoltaik sering memiliki selembar kaca di sisi yang menghadap matahari, memungkinkan cahaya untuk lewat sambil melindungi [[Wafer (elektronik)|wafer]] semikonduktor. Sel surya biasanya dihubungkan secara [[Rangkaian seri dan paralel|seri dan paralel]] atau seri dalam modul, menciptakan tegangan tambahan. Menghubungkan sel secara paralel menghasilkan arus yang lebih tinggi |
Beberapa sel surya dalam kelompok terpadu, semuanya berorientasi dalam satu bidang, membentuk [[Panel surya|panel atau modul fotovoltaik surya]]. Modul fotovoltaik sering memiliki selembar kaca di sisi yang menghadap matahari, memungkinkan cahaya untuk lewat sambil melindungi [[Wafer (elektronik)|wafer]] semikonduktor. Sel surya biasanya dihubungkan secara [[Rangkaian seri dan paralel|seri dan paralel]] atau seri dalam modul, menciptakan tegangan tambahan. Menghubungkan sel secara paralel menghasilkan arus yang lebih tinggi. Namun, masalah seperti efek bayangan dapat mematikan ''string'' paralel (sejumlah sel yang terhubung secara seri) yang lebih lemah (kurang menyala) menyebabkan kehilangan daya yang substansial dan kemungkinan kerusakan karena bias balik diterapkan pada sel-sel yang tertutupi oleh sel lainnya yang disoroti cahaya. ''String'' sel seri biasanya ditangani secara independen dan tidak terhubung secara paralel, meskipun hingga tahun 2014 [[konversi tenaga listrik|kotak daya]] individu telah sering dipasok untuk setiap modul dan terhubung secara paralel. Meskipun modul dapat dihubungkan untuk membuat jajaran surya dengan tegangan DC puncak yang diinginkan dan kapasitas arus pemuatan, MPPT independen lebih disukai ([[ Pelacakan titik daya maksimum|pelacak titik daya maksimum]]). Jika tidak, [[Dioda (komponen elektronik)|dioda]] shunt dapat mengurangi hilangnya daya bayangan dalam jajaran surya menggunakan sel yang terhubung secara seri/paralel. |
||
{| class="wikitable" |
{| class="wikitable" |
||
|+Harga sistem PV tipikal pada 2013 di negara-negara tertentu ($ / W) |
|+Harga sistem PV tipikal pada 2013 di negara-negara tertentu ($ / W) |
||
Baris 74: | Baris 74: | ||
Pada 1960-an, sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya, karena menawarkan rasio [[ Rasio daya terhadap berat|daya-terhadap-berat]] yang terbaik. Namun, keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa, biaya sistem daya bisa begitu tinggi, karena pengguna ruang memiliki sedikit opsi daya lain, dan kesediaan membayar untuk sel surya terbaik. Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program [[Yayasan Sains Nasional]] "Penelitian yang Diterapkan untuk Kebutuhan Nasional" mulai mendorong pengembangan sel surya untuk aplikasi terestrial. |
Pada 1960-an, sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya, karena menawarkan rasio [[ Rasio daya terhadap berat|daya-terhadap-berat]] yang terbaik. Namun, keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa, biaya sistem daya bisa begitu tinggi, karena pengguna ruang memiliki sedikit opsi daya lain, dan kesediaan membayar untuk sel surya terbaik. Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program [[Yayasan Sains Nasional]] "Penelitian yang Diterapkan untuk Kebutuhan Nasional" mulai mendorong pengembangan sel surya untuk aplikasi terestrial. |
||
Pada awal 1990-an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi silikon yang digunakan untuk panel terestrial, dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III-V berbasis [[ Gallium arsenide|galium arsenida]], yang kemudian berkembang menjadi [[ Sel fotovoltaik multijungsi|sel fotovoltaik |
Pada awal 1990-an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi silikon yang digunakan untuk panel terestrial, dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III-V berbasis [[ Gallium arsenide|galium arsenida]], yang kemudian berkembang menjadi [[ Sel fotovoltaik multijungsi|sel fotovoltaik multipertemuan]] III-V modern yang digunakan di pesawat luar angkasa. |
||
=== Penurunan biaya === |
=== Penurunan biaya === |
||
Baris 94: | Baris 94: | ||
PV surya tumbuh tercepat di Asia, dengan China dan Jepang saat ini menyumbang setengah dari [[Pertumbuhan fotovoltaik|penyebaran di seluruh dunia]].<ref name="iea-pvps-snapshot-1992-2014">{{Cite web|url=http://www.iea-pvps.org/fileadmin/dam/public/report/technical/PVPS_report_-_A_Snapshot_of_Global_PV_-_1992-2014.pdf|title=Snapshot of Global PV 1992–2014|date=30 March 2015|publisher=International Energy Agency — Photovoltaic Power Systems Programme|archive-url=https://www.webcitation.org/6XPpb1fai?url=http://www.iea-pvps.org/index.php?id=92&eID=dam_frontend_push&docID=2430|archive-date=30 March 2015|dead-url=no}}</ref> Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016, dan tumbuh untuk memasok 1,3% daya global pada 2016.<ref>{{Cite web|url=http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html|title=Solar energy – Renewable energy – Statistical Review of World Energy – Energy economics – BP|website=bp.com}}</ref> |
PV surya tumbuh tercepat di Asia, dengan China dan Jepang saat ini menyumbang setengah dari [[Pertumbuhan fotovoltaik|penyebaran di seluruh dunia]].<ref name="iea-pvps-snapshot-1992-2014">{{Cite web|url=http://www.iea-pvps.org/fileadmin/dam/public/report/technical/PVPS_report_-_A_Snapshot_of_Global_PV_-_1992-2014.pdf|title=Snapshot of Global PV 1992–2014|date=30 March 2015|publisher=International Energy Agency — Photovoltaic Power Systems Programme|archive-url=https://www.webcitation.org/6XPpb1fai?url=http://www.iea-pvps.org/index.php?id=92&eID=dam_frontend_push&docID=2430|archive-date=30 March 2015|dead-url=no}}</ref> Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016, dan tumbuh untuk memasok 1,3% daya global pada 2016.<ref>{{Cite web|url=http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html|title=Solar energy – Renewable energy – Statistical Review of World Energy – Energy economics – BP|website=bp.com}}</ref> |
||
Faktanya, energi yang dikumpulkan oleh sel surya silikon dengan biaya satu dolar telah melampaui energi yang dihasilkan oleh minyak dengan biaya yang sama sejak 2004.<ref name=":1" /> Diperkirakan bahwa listrik dari PV akan bersaing dengan biaya listrik grosir di seluruh Eropa dan waktu pengembalian energi dari modul silikon kristal dapat dikurangi hingga di bawah 0,5 tahun pada tahun 2020.<ref>{{Cite journal|last=Mann|first=Sander A.|last2=de Wild-Scholten|first2=Mariska J.|last3=Fthenakis|first3=Vasilis M.|last4=van Sark|first4=Wilfried G.J.H.M.|last5=Sinke|first5=Wim C.|date=2014-11-01|title=The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study|journal=Progress in Photovoltaics: Research and Applications|volume=22|issue=11|pages=1180–1194|doi=10.1002/pip.2363|issn=1099-159X}}</ref> |
Faktanya, energi yang dikumpulkan oleh sel surya silikon dengan biaya satu dolar telah melampaui energi yang dihasilkan oleh minyak dengan biaya yang sama sejak 2004.<ref name=":1" /> Diperkirakan bahwa listrik dari PV akan bersaing dengan biaya listrik grosir di seluruh Eropa dan waktu pengembalian energi dari modul silikon kristal dapat dikurangi hingga di bawah 0,5 tahun pada tahun 2020.<ref>{{Cite journal|last=Mann|first=Sander A.|last2=de Wild-Scholten|first2=Mariska J.|last3=Fthenakis|first3=Vasilis M.|last4=van Sark|first4=Wilfried G.J.H.M.|last5=Sinke|first5=Wim C.|date=2014-11-01|title=The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study|journal=Progress in Photovoltaics: Research and Applications|volume=22|issue=11|pages=1180–1194|doi=10.1002/pip.2363|issn=1099-159X}}</ref> |
||
== Material == |
|||
Sel surya biasanya dinamai dengan [[Semikonduktor|bahan semikonduktor]] pembuatnya. [[ Daftar bahan semikonduktor|Bahan]]-[[ Daftar bahan semikonduktor|bahan]] ini harus memiliki karakteristik tertentu untuk menyerap [[sinar matahari]]. Beberapa sel dirancang untuk menangani sinar matahari yang mencapai permukaan bumi, sementara yang lain dioptimalkan untuk [[ Panel surya di pesawat ruang angkasa|digunakan di ruang angkasa]]. Sel surya dapat dibuat hanya dari satu lapisan tunggal bahan penyerap cahaya ([[Pertemuan p-n|pertemuan tunggal]]) atau menggunakan beberapa konfigurasi fisik ([[ Multi-persimpangan|multipertemuan]]) untuk memanfaatkan berbagai mekanisme penyerapan dan pemisahan muatan. |
|||
Sel surya dapat diklasifikasikan menjadi sel generasi pertama, kedua dan ketiga. Sel generasi pertama — juga disebut sel konvensional, tradisional, atau berbasis [[Wafer (elektronik)|wafer]] — terbuat dari [[ Silikon kristal|silikon kristal]], teknologi PV yang dominan secara komersial, yang mencakup bahan-bahan seperti [[ Polisilikon|polisilikon]] dan [[ Silikon monokristalin|silikon monokristalin]]. Sel generasi kedua adalah sel [[ Sel surya film tipis|surya film tipis]], yang meliputi [[silikon amorphous|silikon amorf]], [[ Fotovoltaik kadmium telluride|CdTe]] dan sel [[ Sel surya tembaga indium gallium selenide|CIGS]] dan secara komersial signifikan dalam skala [[ Pembangkit listrik fotovoltaik|pembangkit listrik fotovoltaik]], [[ Membangun photovoltaics terintegrasi|membangun fotovoltaik terintegrasi]] atau dalam [[ Sistem daya yang berdiri sendiri|sistem daya]] kecil yang berdiri sendiri. [[ Sel fotovoltaik generasi ketiga|Generasi ketiga dari sel surya]] mencakup sejumlah teknologi film tipis yang sering digambarkan sebagai fotovoltaik pegari — kebanyakan dari teknologi generasi ini belum diterapkan secara komersial dan masih dalam tahap penelitian atau pengembangan. Banyak yang menggunakan bahan organik, seringkali senyawa [[Kimia organologam|organologam]] serta zat anorganik. Terlepas dari kenyataan bahwa efisiensinya rendah dan stabilitas bahan penyerap sering kali terlalu rendah untuk aplikasi komersial, ada banyak penelitian yang diinvestasikan ke dalam teknologi ini karena mereka menjanjikan untuk mencapai tujuan menghasilkan biaya rendah, efisiensi tinggi sel surya. |
|||
=== Silikon kristal === |
|||
Sejauh ini, bahan curah paling umum untuk sel surya adalah [[ Silikon kristal|silikon kristal]] (c-Si), juga dikenal sebagai "silikon kualitas surya". Kumpulan silikon dipisahkan menjadi beberapa kategori sesuai dengan kristalinitas dan ukuran kristal dalam [[ Ingot|ingot]], [[ Pita|pita]] atau [[Wafer (elektronik)|wafer]] yang dihasilkan. Sel-sel ini seluruhnya didasarkan pada konsep [[pertemuan p-n]]. Sel surya yang terbuat dari c-Si terbuat dari [[Wafer (elektronik)|wafer]] dengan tebal antara 160 dan 240 mikrometer. |
|||
== Lihat pula == |
== Lihat pula == |
Revisi per 13 Desember 2019 16.38
Sel surya atau sel fotovoltaik, adalah sebuah alat semikonduktor yang terdiri dari sebuah wilayah-besar dioda pertemuan p-n, di mana dengan adanya cahaya matahari dapat menciptakan energi listrik yang berguna. Pengubahan bentuk energi ini disebut efek fotovoltaik. Bidang riset berhubungan dengan sel surya dikenal sebagai fotovoltaik.
Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia, seperti di wilayah terpencil, satelit pengorbit bumi, kalkulator genggam, pompa air, dll. Sel surya (dalam bentuk modul atau panel surya) dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering.
Banyak bahan semikonduktor yang dapat dipakai untuk membuat sel surya diantaranya silikon, titanium oksida, germanium, dll.
Aplikasi
Rakitan sel surya digunakan untuk membuat modul surya yang menghasilkan daya listrik dari sinar matahari, yang dibedakan dari "modul termal surya" atau "panel air panas surya". Jajaran surya menghasilkan tenaga surya menggunakan energi matahari.
Sel, panel, modul, dan sistem
Beberapa sel surya dalam kelompok terpadu, semuanya berorientasi dalam satu bidang, membentuk panel atau modul fotovoltaik surya. Modul fotovoltaik sering memiliki selembar kaca di sisi yang menghadap matahari, memungkinkan cahaya untuk lewat sambil melindungi wafer semikonduktor. Sel surya biasanya dihubungkan secara seri dan paralel atau seri dalam modul, menciptakan tegangan tambahan. Menghubungkan sel secara paralel menghasilkan arus yang lebih tinggi. Namun, masalah seperti efek bayangan dapat mematikan string paralel (sejumlah sel yang terhubung secara seri) yang lebih lemah (kurang menyala) menyebabkan kehilangan daya yang substansial dan kemungkinan kerusakan karena bias balik diterapkan pada sel-sel yang tertutupi oleh sel lainnya yang disoroti cahaya. String sel seri biasanya ditangani secara independen dan tidak terhubung secara paralel, meskipun hingga tahun 2014 kotak daya individu telah sering dipasok untuk setiap modul dan terhubung secara paralel. Meskipun modul dapat dihubungkan untuk membuat jajaran surya dengan tegangan DC puncak yang diinginkan dan kapasitas arus pemuatan, MPPT independen lebih disukai (pelacak titik daya maksimum). Jika tidak, dioda shunt dapat mengurangi hilangnya daya bayangan dalam jajaran surya menggunakan sel yang terhubung secara seri/paralel.
USD / W | Australia | Cina | Perancis | Jerman | Italia | Jepang | Kerajaan Inggris | Amerika Serikat |
---|---|---|---|---|---|---|---|---|
Hunian | 1.8 | 1.5 | 4.1 | 2.4 | 2.8 | 4.2 | 2.8 | 4.9 |
Komersial | 1.7 | 1.4 | 2.7 | 1.8 | 1.9 | 3.6 | 2.4 | 4.5 |
Skala utilitas | 2.0 | 1.4 | 2.2 | 1.4 | 1.5 | 2.9 | 1.9 | 3.3 |
Sumber: IEA - Roadmap Teknologi: Laporan Energi Fotovoltaik Solar, edisi 2014[1] Catatan: DOE - Tren Penentuan Harga Sistem Fotovoltaik melaporkan harga yang lebih rendah untuk AS[2] |
Sejarah
Efek fotovoltaik didemonstrasikan pertama kali oleh fisikawan Prancis Edmond Becquerel. Pada tahun 1839, pada usia 19, ia membangun sel fotovoltaik pertama di dunia di laboratorium ayahnya. Willoughby Smith pertama kali menggambarkan "Effect of Light on Selenium during the passage of an Electric Current" ("Pengaruh Cahaya pada Selenium selama perjalanan Arus Listrik") dalam Nature edisi 20 Februari 1873. Pada tahun 1883 Charles Fritts membangun sel fotovoltaik padat pertama dengan melapisi selenium semikonduktor dengan lapisan tipis emas untuk membentuk persimpangan; perangkat ini hanya memiliki efisiensi sekitar 1%. Capaian lain termasuk:
- 1888 - Fisikawan Rusia Aleksandr Stoletov membangun sel pertama berdasarkan efek fotolistrik luar yang ditemukan oleh Heinrich Hertz pada tahun 1887.[3]
- 1905 - Albert Einstein mengusulkan teori kuantum cahaya yang baru dan menjelaskan efek fotolistrik dalam makalah penting, di mana ia menerima Hadiah Nobel dalam Fisika pada tahun 1921.[4]
- 1941 - Vadim Lashkaryov menemukan pertemuan p-n pada sel proto Cu2O dan Ag2S.[5]
- 1946 - Russell Ohl mematenkan sel surya semikonduktor junction modern,[6] sambil mengerjakan serangkaian kemajuan yang akan mengarah pada transistor.
- 1954 - sel fotovoltaik praktis pertama didemonstrasikan secara publik di Bell Laboratories.[7] Para penemu adalah Calvin Souther Fuller, Daryl Chapin dan Gerald Pearson. [8]
- 1958 - sel surya menjadi terkenal dengan penggabungannya ke satelit Vanguard I.
Aplikasi luar angkasa
Sel surya pertama kali digunakan dalam aplikasi yang menonjol ketika mereka diusulkan dan diterbangkan pada satelit Vanguard pada tahun 1958, sebagai sumber daya alternatif ke sumber daya baterai utama. Dengan menambahkan sel ke bagian satelit, waktu misi dapat diperpanjang tanpa perubahan besar pada pesawat ruang angkasa atau sistem dayanya. Pada tahun 1959 Amerika Serikat meluncurkan Explorer 6, menampilkan jajaran surya besar berbentuk sayap, yang menjadi fitur umum pada satelit tersebut. Jajaran ini terdiri dari 9600 sel surya Hoffman.
Pada 1960-an, sel surya adalah sumber daya utama untuk sebagian besar satelit yang mengorbit Bumi dan sejumlah wahana antariksa di tata surya, karena menawarkan rasio daya-terhadap-berat yang terbaik. Namun, keberhasilan ini dimungkinkan karena dalam aplikasi luar angkasa, biaya sistem daya bisa begitu tinggi, karena pengguna ruang memiliki sedikit opsi daya lain, dan kesediaan membayar untuk sel surya terbaik. Pasar tenaga luar angkasa mendorong pengembangan efisiensi yang lebih tinggi dalam sel surya hingga program Yayasan Sains Nasional "Penelitian yang Diterapkan untuk Kebutuhan Nasional" mulai mendorong pengembangan sel surya untuk aplikasi terestrial.
Pada awal 1990-an teknologi yang digunakan untuk sel surya luar angkasa membelok dari teknologi silikon yang digunakan untuk panel terestrial, dengan aplikasi pesawat ruang angkasa bergeser ke bahan semikonduktor III-V berbasis galium arsenida, yang kemudian berkembang menjadi sel fotovoltaik multipertemuan III-V modern yang digunakan di pesawat luar angkasa.
Penurunan biaya
Pemutakhiran terjadi secara bertahap selama 1960-an. Ini juga merupakan alasan bahwa biaya sel surya begitu tinggi, karena pengguna bersedia membayar untuk sel terbaik, tanpa meninggalkan alasan untuk berinvestasi dalam solusi yang lebih murah dan kurang efisien. Harga sebagian besar ditentukan oleh industri semikonduktor; perpindahan tren menuju sirkuit terpadu pada 1960-an menyebabkan ketersediaan boule yang lebih besar dengan harga relatif lebih rendah. Ketika harganya turun, harga sel yang dihasilkan juga. Efek ini menurunkan biaya sel pada tahun 1971 menjadi sekitar $ 100 per watt.[9]
Pada akhir 1969 Elliot Berman bergabung dengan gugus tugas Exxon yang sedang mencari proyek 30 tahun di masa depan dan pada April 1973 ia mendirikan Solar Power Corporation, anak perusahaan yang sepenuhnya dimiliki Exxon pada waktu itu.[10][11][12] Kelompok ini menyimpulkan bahwa daya listrik akan jauh lebih mahal pada tahun 2000, dan merasa bahwa kenaikan harga ini akan membuat sumber energi alternatif lebih menarik. Dia melakukan studi pasar dan menyimpulkan bahwa harga per watt sekitar $ 20/watt akan menciptakan permintaan yang signifikan.[10] Tim menghilangkan langkah-langkah memoles wafer dan melapisinya dengan lapisan anti-reflektif, dengan mengandalkan permukaan wafer gergajian kasar. Tim juga mengganti bahan-bahan mahal dan kabel tangan yang digunakan dalam aplikasi luar angkasa dengan papan sirkuit cetak di bagian belakang, plastik akrilik di bagian depan, dan lem silikon di antara keduanya, "pot" sel.[13] Sel surya dapat dibuat menggunakan bahan buangan dari pasar elektronik. Pada tahun 1973 mereka mengumumkan produk, dan SPC meyakinkan Tideland Signal untuk menggunakan panelnya untuk memberi daya pada pelampung navigasi, awalnya untuk US Coast Guard.[11]
Pengurangan biaya dan pertumbuhan eksponensial
Menyesuaikan inflasi, biayanya adalah $ 96 per watt untuk modul surya pada pertengahan 1970-an. Peningkatan proses dan peningkatan produksi yang sangat besar telah menurunkan angka itu menjadi 99%, menjadi 68 ¢ per watt pada 2016, menurut data dari Bloomberg New Energy Finance.[15] Hukum Swanson adalah pengamatan yang mirip dengan Hukum Moore yang menyatakan bahwa harga sel surya turun 20% untuk setiap penggandaan kapasitas industri. Itu ditampilkan dalam sebuah artikel di surat kabar mingguan Inggris The Economist pada akhir 2012.[16]
Pemutakhiran lebih lanjut mengurangi biaya produksi hingga di bawah $ 1 per watt, dengan biaya grosir jauh di bawah $ 2. Biaya saldo sistem sejak saat itu menjadi lebih tinggi daripada biaya panel surya itu sendiri. Jajaran komersial besar dapat dibangun, pada 2010, di bawah $ 3,40 per watt, sepenuhnya beroperasi.[17][18]
Ketika industri semikonduktor berpindah menuju boule yang semakin besar, peralatan lama menjadi tidak mahal. Ukuran sel surya tumbuh ketika peralatan menjadi tersedia di pasar surplus; Panel asli ARCO Solar menggunakan sel dengan diameter 2 hingga 4 inci (50 hingga 100 mm). Panel pada 1990-an dan awal 2000-an umumnya digunakan wafer 125 mm. Dan sejak 2008, hampir semua panel baru menggunakan sel 156 mm. Penyebaran dari televisi layar datar pada akhir 1990-an dan awal 2000-an menyebabkan tersedianya lembaran kaca besar berkualitas tinggi untuk menutupi panel.
Selama tahun 1990-an, sel polisilikon ("poli") menjadi semakin populer. Sel-sel ini menawarkan efisiensi yang lebih rendah dibandingkan dengan monosilikon ("mono"), tetapi mereka tumbuh dalam kuantitas besar yang mengurangi biaya. Pada pertengahan 2000-an, sel poli menjadi dominan di pasar panel berbiaya rendah, tetapi baru-baru ini mono kembali digunakan secara luas.
PV surya tumbuh tercepat di Asia, dengan China dan Jepang saat ini menyumbang setengah dari penyebaran di seluruh dunia.[19] Kapasitas PV terpasang global mencapai setidaknya 301 gigawatt pada 2016, dan tumbuh untuk memasok 1,3% daya global pada 2016.[20]
Faktanya, energi yang dikumpulkan oleh sel surya silikon dengan biaya satu dolar telah melampaui energi yang dihasilkan oleh minyak dengan biaya yang sama sejak 2004.[14] Diperkirakan bahwa listrik dari PV akan bersaing dengan biaya listrik grosir di seluruh Eropa dan waktu pengembalian energi dari modul silikon kristal dapat dikurangi hingga di bawah 0,5 tahun pada tahun 2020.[21]
Material
Sel surya biasanya dinamai dengan bahan semikonduktor pembuatnya. Bahan-bahan ini harus memiliki karakteristik tertentu untuk menyerap sinar matahari. Beberapa sel dirancang untuk menangani sinar matahari yang mencapai permukaan bumi, sementara yang lain dioptimalkan untuk digunakan di ruang angkasa. Sel surya dapat dibuat hanya dari satu lapisan tunggal bahan penyerap cahaya (pertemuan tunggal) atau menggunakan beberapa konfigurasi fisik (multipertemuan) untuk memanfaatkan berbagai mekanisme penyerapan dan pemisahan muatan.
Sel surya dapat diklasifikasikan menjadi sel generasi pertama, kedua dan ketiga. Sel generasi pertama — juga disebut sel konvensional, tradisional, atau berbasis wafer — terbuat dari silikon kristal, teknologi PV yang dominan secara komersial, yang mencakup bahan-bahan seperti polisilikon dan silikon monokristalin. Sel generasi kedua adalah sel surya film tipis, yang meliputi silikon amorf, CdTe dan sel CIGS dan secara komersial signifikan dalam skala pembangkit listrik fotovoltaik, membangun fotovoltaik terintegrasi atau dalam sistem daya kecil yang berdiri sendiri. Generasi ketiga dari sel surya mencakup sejumlah teknologi film tipis yang sering digambarkan sebagai fotovoltaik pegari — kebanyakan dari teknologi generasi ini belum diterapkan secara komersial dan masih dalam tahap penelitian atau pengembangan. Banyak yang menggunakan bahan organik, seringkali senyawa organologam serta zat anorganik. Terlepas dari kenyataan bahwa efisiensinya rendah dan stabilitas bahan penyerap sering kali terlalu rendah untuk aplikasi komersial, ada banyak penelitian yang diinvestasikan ke dalam teknologi ini karena mereka menjanjikan untuk mencapai tujuan menghasilkan biaya rendah, efisiensi tinggi sel surya.
Silikon kristal
Sejauh ini, bahan curah paling umum untuk sel surya adalah silikon kristal (c-Si), juga dikenal sebagai "silikon kualitas surya". Kumpulan silikon dipisahkan menjadi beberapa kategori sesuai dengan kristalinitas dan ukuran kristal dalam ingot, pita atau wafer yang dihasilkan. Sel-sel ini seluruhnya didasarkan pada konsep pertemuan p-n. Sel surya yang terbuat dari c-Si terbuat dari wafer dengan tebal antara 160 dan 240 mikrometer.
Lihat pula
- Pengembangan energi masa depan
- Teknologi hijau
- Fotodioda
- Fotovore
- Energi terbaharui
- Tenaga surya
- Panel surya
- Garis waktu energi surya
Referensi
- ^ "Technology Roadmap: Solar Photovoltaic Energy" (PDF). IEA. 2014. Diarsipkan (PDF) dari versi asli tanggal 7 October 2014. Diakses tanggal 7 October 2014.
- ^ "Photovoltaic System Pricing Trends – Historical, Recent, and Near-Term Projections, 2014 Edition" (PDF). NREL. 22 September 2014. hlm. 4. Diarsipkan (PDF) dari versi asli tanggal 29 March 2015.
- ^ Gevorkian, Peter (2007). Sustainable energy systems engineering: the complete green building design resource. McGraw Hill Professional. ISBN 978-0-07-147359-0.
- ^ "The Nobel Prize in Physics 1921: Albert Einstein", Nobel Prize official page
- ^ Lashkaryov, V. E. (1941) Investigation of a barrier layer by the thermoprobe method Diarsipkan, Izv. Akad. Nauk SSSR, Ser. Fiz. 5, 442–446, English translation: Ukr. J. Phys. 53, 53–56 (2008)
- ^ "Light sensitive device" U.S. Patent 2.402.662 Issue date: June 1946
- ^ "April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell". APS News. American Physical Society. 18 (4). April 2009.
- ^ Tsokos, K. A. (28 January 2010). Physics for the IB Diploma Full Colour. Cambridge University Press. ISBN 978-0-521-13821-5.
- ^ Perlin 1999, hlm. 50.
- ^ a b Perlin 1999, hlm. 53.
- ^ a b Williams, Neville (2005). Chasing the Sun: Solar Adventures Around the World. New Society Publishers. hlm. 84. ISBN 9781550923124.
- ^ Jones, Geoffrey; Bouamane, Loubna (2012). "Power from Sunshine": A Business History of Solar Energy (PDF). Harvard Business School. hlm. 22–23.
- ^ Perlin 1999, hlm. 54.
- ^ a b Yu, Peng; Wu, Jiang; Liu, Shenting; Xiong, Jie; Jagadish, Chennupati; Wang, Zhiming M. (2016-12-01). "Design and fabrication of silicon nanowires towards efficient solar cells". Nano Today. 11 (6): 704–737. doi:10.1016/j.nantod.2016.10.001.
- ^ Buhayar, Noah (28 January 2016) Warren Buffett controls Nevada’s legacy utility. Elon Musk is behind the solar company that’s upending the market. Let the fun begin. Bloomberg Businessweek
- ^ "Sunny Uplands: Alternative energy will no longer be alternative". The Economist. 21 November 2012. Diakses tanggal 28 December 2012.
- ^ $1/W Photovoltaic Systems DOE whitepaper August 2010
- ^ Solar Stocks: Does the Punishment Fit the Crime?. 24/7 Wall St. (6 October 2011). Retrieved 3 January 2012.
- ^ "Snapshot of Global PV 1992–2014" (PDF). International Energy Agency — Photovoltaic Power Systems Programme. 30 March 2015. Diarsipkan dari versi asli tanggal 30 March 2015.
- ^ "Solar energy – Renewable energy – Statistical Review of World Energy – Energy economics – BP". bp.com.
- ^ Mann, Sander A.; de Wild-Scholten, Mariska J.; Fthenakis, Vasilis M.; van Sark, Wilfried G.J.H.M.; Sinke, Wim C. (2014-11-01). "The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study". Progress in Photovoltaics: Research and Applications. 22 (11): 1180–1194. doi:10.1002/pip.2363. ISSN 1099-159X.
Bibliografi
- McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJ, Levina L, Sargent EH (2005). "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics". Nature Materials. 4 (2): 138–42.PMID 15640806
Pranala luar
- Use of solar cells in Kenya and Uganda, in Africa
- Pennicott, Katie, "Solar cell edges towards endless energy". 7 December 2001. PhysicsWeb.
- Dye Sensitized Solar Cells (DYSC) based on Nanocrystalline Oxide Semiconductor Films
- News searching: Solar Cell, Photovoltaic
- Historical: Photovoltaic Solar Energy Conversion: An Update
- Wladek Walukiewicz, Materials Sciences Division, Berkeley Lab.: Full Solar Spectrum Photovoltaic Materials Identified. Quote: "... Maximum, theoretically predicted efficiencies increase to 50%, 56%, and 72% for stacks of 2, 3, and 36 junctions with appropriately optimized energy gaps, respectively...."
- CNET: 5/12/03 SunPower Announces World's Most Efficient, Low-Cost Silicon Solar Cell Quote: "...The National Renewable Energy Laboratory (NREL) has verified 20.4 percent conversion efficiency for the A-300...."
- SunPower A-300 (pdf), SunPower
- [1]29 March 2002, Scientists Create New Solar Cell Quote: "...semiconducting plastic material known as P3HT... 1.7 percent for sunlight..."
- [2]15 February 03, 'Denim' solar panels to clothe future buildings Quote: "... Unlike conventional solar cells, the new, cheap material has no rigid silicon base..."
- Residential Solar Power Systems - Photo Gallery
- Examples of Photovoltaic Systems
- How Solar Cells Work
- azonano.com: Carbon Nanotube Structures Could Provide More Efficient Solar Power for Soldiers 28 February 2005
- Solar energy timeline
Yield data
- http://www.tectosol.staticip.de/index_en.htm electricity yield of a solar power system
- http://www.sunny-portal.de Yield Portal for solar power system users
Teori
- National Renewable Energy Laboratory (NREL): Photovoltaics for Buildings: PV Technology for the Home Factsheets
- 1993, National Renewable Energy Laboratory (NREL): Photovoltaics: Unlimited Electrical Energy From the Sun BrokenLink
- Electrical models of solar cells
Swakriya
- PEC (Photo Electro Chromic)
- How to Build Your Own Solar Cell
- DIY (Do It Yourself): Nanocrystalline Dye-Sensitized Solar Cell Kit Quote: "... sunlight-to-electrical energy conversion efficiency is between 1 and 0.5 %..."
- Cuprous oxide solar cells
- Make a solar cell in your kitchen, A flat panel solar battery
- From: How to Build a Solar Cell That Really Works by Walt Noon