Pengguna:Dedhert.Jr/Uji halaman 17: Perbedaan antara revisi
Dedhert.Jr (bicara | kontrib) |
Dedhert.Jr (bicara | kontrib) |
||
Baris 17: | Baris 17: | ||
{{Main|Sejarah konsep fungsi}}Ternyata konsep fungsi sudah ada semenjak pada abad ke-12, ketika seorang matematikawan asal [[Persia]] bernama [[Sharaf al-Dīn al-Ṭūsī|Sharaf al-Din al-Tusi]] menganalisis persamaan {{math|''x''<sup>3</sup> + ''d'' {{=}} ''b'' ⋅ ''x''<sup>2</sup>}} dalam bentuk {{math|''x''<sup>2</sup> ⋅ (''b'' – ''x'') {{=}} ''d''}}. Ia mengatakan bahwa ruas kiri setidaknya sama dengan nilai {{mvar|d}} untuk persamaan yang mempunyai suatu solusi. Nilai yang lebih kecil dari {{mvar|d}} mengartikan tiada penyelesaian bernilai positif, yang mengartikan bahwa nilai {{mvar|d}} berpadanan dengan satu penyelesaian, sedangkan nilai yang lebih besar dari {{mvar|d}} berpadanan dengan dua penyelesaian. Persamaan tersebut yang dianalisis [[Sharaf al-Din]] merupakan pengembangan yang sangat penting dalam [[matematika Islam]], namun karyanya tidak dilanjutkan pada zaman Muslim atau Eropa.<ref name="stages">{{cite journal|last1=Katz|first1=Victor|last2=Barton|first2=Bill|date=October 2007|title=Stages in the History of Algebra with Implications for Teaching|journal=Educational Studies in Mathematics|volume=66|issue=2|page=192|doi=10.1007/s10649-006-9023-7|s2cid=120363574}}</ref> |
{{Main|Sejarah konsep fungsi}}Ternyata konsep fungsi sudah ada semenjak pada abad ke-12, ketika seorang matematikawan asal [[Persia]] bernama [[Sharaf al-Dīn al-Ṭūsī|Sharaf al-Din al-Tusi]] menganalisis persamaan {{math|''x''<sup>3</sup> + ''d'' {{=}} ''b'' ⋅ ''x''<sup>2</sup>}} dalam bentuk {{math|''x''<sup>2</sup> ⋅ (''b'' – ''x'') {{=}} ''d''}}. Ia mengatakan bahwa ruas kiri setidaknya sama dengan nilai {{mvar|d}} untuk persamaan yang mempunyai suatu solusi. Nilai yang lebih kecil dari {{mvar|d}} mengartikan tiada penyelesaian bernilai positif, yang mengartikan bahwa nilai {{mvar|d}} berpadanan dengan satu penyelesaian, sedangkan nilai yang lebih besar dari {{mvar|d}} berpadanan dengan dua penyelesaian. Persamaan tersebut yang dianalisis [[Sharaf al-Din]] merupakan pengembangan yang sangat penting dalam [[matematika Islam]], namun karyanya tidak dilanjutkan pada zaman Muslim atau Eropa.<ref name="stages">{{cite journal|last1=Katz|first1=Victor|last2=Barton|first2=Bill|date=October 2007|title=Stages in the History of Algebra with Implications for Teaching|journal=Educational Studies in Mathematics|volume=66|issue=2|page=192|doi=10.1007/s10649-006-9023-7|s2cid=120363574}}</ref> |
||
Kemudian istilah "fungsi" diperkenalkan oleh [[Gottfried Leibniz]] dalam surat yang ditulis pada tahun 1673, yang menjelaskan kuantitas yang berkaitan dengan titik [[kurva]], contohnya seperti [[koordinat]] atau [[kemiringan]] kurva.<ref>{{MacTutor|class=HistTopics|id=Functions}}</ref><ref>Eves dates Leibniz's first use to the year 1694 and also similarly relates the usage to "as a term to denote any quantity connected with a curve, such as the coordinates of a point on the curve, the slope of the curve, and so on" ({{harvnb|Eves|1990|p=234}}).</ref> [[Johann Bernoulli]] mulai menyebut ekspresi tersebut sebagai "fungsi" variabel tunggal |
Kemudian istilah "fungsi" diperkenalkan oleh [[Gottfried Leibniz]] dalam surat yang ditulis pada tahun 1673, yang menjelaskan kuantitas yang berkaitan dengan titik [[kurva]], contohnya seperti [[koordinat]] atau [[kemiringan]] kurva.<ref>{{MacTutor|class=HistTopics|id=Functions}}</ref><ref>Eves dates Leibniz's first use to the year 1694 and also similarly relates the usage to "as a term to denote any quantity connected with a curve, such as the coordinates of a point on the curve, the slope of the curve, and so on" ({{harvnb|Eves|1990|p=234}}).</ref> [[Johann Bernoulli]] mulai menyebut ekspresi tersebut sebagai "fungsi" variabel tunggal dan setuju dengan Leibniz pada tahun 1698 bahwa setiap kuantitas yang dibentuk "melalui aljabar dan transendental" dapat disebut sebagai fungsi dari ''x''.<ref name="Bourbaki2003">{{cite book|author=N. Bourbaki|date=18 September 2003|url=https://books.google.com/books?id=dtYLvM02cRYC&pg=PA154|title=Elements of Mathematics Functions of a Real Variable: Elementary Theory|publisher=Springer Science & Business Media|isbn=978-3-540-65340-0|pages=154–}}</ref> Hingga pada 1718, ia memandang bahwa "setiap ekspresinya merupakan bentuk dari variabel dan nilai konstanta."{{sfn|Eves|1990|p=234}} Notasi fungsi {{Math|''f''(''x'')}} kemudian diperkenalkan oleh seorang matematikawan bernama [[Leonhard Euler]] pada tahun 1734.<ref name=":0">{{citation|author=Ron Larson, Bruce H. Edwards|title=Calculus of a Single Variable|page=19|year=2010|publisher=Cengage Learning|isbn=978-0-538-73552-0}}</ref> |
||
== Notasi == |
== Notasi == |
||
Salah satu notasi yang paling umum digunakan adalah notasi fungsional, yang dilambangkan sebagai {{Math|''f''(''x'')}}. Notasi ini pertama kali dipakai oleh [[Leonhard Euler]] pada tahun 1734.<ref name=":0" /> Dalam beberapa notasi fungsi, biasanya ditulis dalam dua atau tiga huruf yang dipakai sebagai penyingkatan nama fungsi. Contohnya dapat dilihat pada [[Sinus (trigonometri)|fungsi sinus]], yang dilambangkan sebagai {{Math|sin ''x''}}. |
|||
Fungsi dapat dilambangkan dengan notasi lain. Fungsi dilambangkan dalam notasi panah, misalkan {{Math|''f'': ''A'' → ''B''}}, mengartikan bahwa {{math|1=''f''}} adalah suatu fungsi dengan domain {{Math|''A''}} dan kodomain {{Math|''B''}}. Fungsi seringkali disebut "pemetaan" atau "transformasi". |
|||
== Sifat-sifat == |
== Sifat-sifat == |
Revisi per 6 Juli 2022 06.04
Fungsi |
---|
x ↦ f (x) |
Contoh domain dan kodomain fungsi |
Kelas/sifat |
Konstruksi |
Perumuman |
Dalam matematika, fungsi merupakan pemetaan setiap anggota suatu himpunan yang disebut sebagai domain atau variabel bebas, kepada anggota himpunan yang lain, disebut sebagai kodomain atau variabel terikat. Fungsi ini seringkali dilambangkan dengan f, g, dan h, dan nilai fungsi f di x dilambangkan sebagai f(x).
Konsep fungsi awalnya merupakan idealisasi yang menjelaskan bagaimana cara kuantitas yang berbeda bergantung pada kuantitas lain. Sebagai contoh, the posisi planet dikatakan sebagai fungsi dari waktu. Berdasarkan sejarah, konsep fungsi dikembangkan dengan kalkulus infinitesimal pada akhir abad ke-17, hingga konsep ini fungsi dipandang sebagai terdiferensialkan pada abad ke-19. Pada akhir abad ke-19, konsep fungsi dipandang sebagai teori himpunan, yang membuatnya mempunyai penerapan yang sangat besar di bidang manapun, seperti di ilmu sains, rekayasa, dan hampir semua cabang matematika. Fungsi dapat dikatakan sebagai "pusat objek dalam menginvestigasi" di hampir semua cabang matematika.[1]
Suatu fungsi diwakili dengan himpunan dari semua pasangan (x, f (x)), yang disebut sebagai grafik fungsi.[note 1][2] Ketika domain dan kodomain merupakan himpunan bilangan real, masing-masing pasangan dapat dipandang secara khusus sebagai koordinat Cartesius dari titik di bidang. Himpunan dari titik-titik tersebut inilah yang mempunyai istilah populer yang dipakai untuk mengilustrasikan fungsi, yaitu grafik fungsi.
Pandangan, definisi, dan istilah lain
Pandangan mengenai fungsi
Definisi fungsi
Istilah lain
Sejarah
Ternyata konsep fungsi sudah ada semenjak pada abad ke-12, ketika seorang matematikawan asal Persia bernama Sharaf al-Din al-Tusi menganalisis persamaan x3 + d = b ⋅ x2 dalam bentuk x2 ⋅ (b – x) = d. Ia mengatakan bahwa ruas kiri setidaknya sama dengan nilai d untuk persamaan yang mempunyai suatu solusi. Nilai yang lebih kecil dari d mengartikan tiada penyelesaian bernilai positif, yang mengartikan bahwa nilai d berpadanan dengan satu penyelesaian, sedangkan nilai yang lebih besar dari d berpadanan dengan dua penyelesaian. Persamaan tersebut yang dianalisis Sharaf al-Din merupakan pengembangan yang sangat penting dalam matematika Islam, namun karyanya tidak dilanjutkan pada zaman Muslim atau Eropa.[3]
Kemudian istilah "fungsi" diperkenalkan oleh Gottfried Leibniz dalam surat yang ditulis pada tahun 1673, yang menjelaskan kuantitas yang berkaitan dengan titik kurva, contohnya seperti koordinat atau kemiringan kurva.[4][5] Johann Bernoulli mulai menyebut ekspresi tersebut sebagai "fungsi" variabel tunggal dan setuju dengan Leibniz pada tahun 1698 bahwa setiap kuantitas yang dibentuk "melalui aljabar dan transendental" dapat disebut sebagai fungsi dari x.[6] Hingga pada 1718, ia memandang bahwa "setiap ekspresinya merupakan bentuk dari variabel dan nilai konstanta."[7] Notasi fungsi f(x) kemudian diperkenalkan oleh seorang matematikawan bernama Leonhard Euler pada tahun 1734.[8]
Notasi
Salah satu notasi yang paling umum digunakan adalah notasi fungsional, yang dilambangkan sebagai f(x). Notasi ini pertama kali dipakai oleh Leonhard Euler pada tahun 1734.[8] Dalam beberapa notasi fungsi, biasanya ditulis dalam dua atau tiga huruf yang dipakai sebagai penyingkatan nama fungsi. Contohnya dapat dilihat pada fungsi sinus, yang dilambangkan sebagai sin x.
Fungsi dapat dilambangkan dengan notasi lain. Fungsi dilambangkan dalam notasi panah, misalkan f: A → B, mengartikan bahwa f adalah suatu fungsi dengan domain A dan kodomain B. Fungsi seringkali disebut "pemetaan" atau "transformasi".
Sifat-sifat
Representasi fungsi
Grafik fungsi
Tabel
Catatan
- ^ Definisi "grafik" ini mengacu pada himpunan dari pasangan objek. Grafik, yang diartikan sebagai diagram, merupakan alat yang paling sering dipakai dalam fungsi dari bilangan real ke bilangan real. Semua fungsi dapat dijelaskan dengan himpunan pasangan, namun hal ini tidak dapat membangun diagram mengenai fungsi di antara himpunan lain (seperti himpunan matriks).
Referensi
- ^ Spivak 2008, hlm. 39.
- ^ "function | Definition, Types, Examples, & Facts". Encyclopedia Britannica (dalam bahasa Inggris). Diakses tanggal 2020-08-17.
- ^ Katz, Victor; Barton, Bill (October 2007). "Stages in the History of Algebra with Implications for Teaching". Educational Studies in Mathematics. 66 (2): 192. doi:10.1007/s10649-006-9023-7.
- ^ O'Connor, John J.; Robertson, Edmund F., "Dedhert.Jr/Uji halaman 17", Arsip Sejarah Matematika MacTutor, Universitas St Andrews.
- ^ Eves dates Leibniz's first use to the year 1694 and also similarly relates the usage to "as a term to denote any quantity connected with a curve, such as the coordinates of a point on the curve, the slope of the curve, and so on" (Eves 1990, hlm. 234).
- ^ N. Bourbaki (18 September 2003). Elements of Mathematics Functions of a Real Variable: Elementary Theory. Springer Science & Business Media. hlm. 154–. ISBN 978-3-540-65340-0.
- ^ Eves 1990, hlm. 234.
- ^ a b Ron Larson, Bruce H. Edwards (2010), Calculus of a Single Variable, Cengage Learning, hlm. 19, ISBN 978-0-538-73552-0