Polarografi: Perbedaan antara revisi
Tidak ada ringkasan suntingan |
Tidak ada ringkasan suntingan |
||
Baris 70: | Baris 70: | ||
Ada berbagai keterbatasan khususnya untuk percobaan pengukuran analisis kuantitatif menggunakan polarografi klasik. Oleh karena pengukuran arus dilakukan secara kontinu selama pertumbuhan tetesan Hg, terdapat kontribusi substansial dari arus kapasitif. Selama Hg mengalir dari ujung kapiler, awalnya terdapat peningkatan besar luas permukaan. Akibatnya, arus awal didominasi oleh efek kapasitif karena terjadi pengisian antarmuka yang meningkat pesat. Menjelang akhir pertumbuhan tetesan, terdapat sedikit perubahan pada luas permukaan yang mengurangi kontribusi perubahan kapasitansi terhadap arus total. Pada saat yang sama, proses redoks yang terjadi akan menghasilkan arus Faraday yang meluruh sekitar akar kuadrat dari waktu (karena dimensi peningkatan lapisan difusi Nernst). Peluruhan eksponensial arus kapasitif jauh lebih cepat daripada peluruhan arus Faraday; oleh karenanya, arus Faradaylebih besar secara proporsional pada akhir kehidupan tetesan. Sayangnya, proses ini diperumit oleh perubahan potensial berkelanjutan yang diterapkan pada [[elektrode kerja]] (Hg tetes) selama percobaan. Karena potensial berubah selama masa hidup tetesan (dengan asumsi parameter eksperimental tipikal adalah: laju pindaian 2 mV/s dan waktu tetesan 4 detik, potensial dapat berubah sebesar 8 mV dari awal sampai akhir tetesan), pengisian antarmuka (arus kapasitif) memiliki kontribusi yang berkelanjutan terhadap arus total, bahkan pada akhir tetesan ketika luas permukaan tidak cepat berubah. Dengan demikian, sinyal khas kebisingan pada percobaan polarografi memungkinkan batas deteksi hanya sekitar 10<sup>-5</sup> atau 10<sup>6</sup>M. |
Ada berbagai keterbatasan khususnya untuk percobaan pengukuran analisis kuantitatif menggunakan polarografi klasik. Oleh karena pengukuran arus dilakukan secara kontinu selama pertumbuhan tetesan Hg, terdapat kontribusi substansial dari arus kapasitif. Selama Hg mengalir dari ujung kapiler, awalnya terdapat peningkatan besar luas permukaan. Akibatnya, arus awal didominasi oleh efek kapasitif karena terjadi pengisian antarmuka yang meningkat pesat. Menjelang akhir pertumbuhan tetesan, terdapat sedikit perubahan pada luas permukaan yang mengurangi kontribusi perubahan kapasitansi terhadap arus total. Pada saat yang sama, proses redoks yang terjadi akan menghasilkan arus Faraday yang meluruh sekitar akar kuadrat dari waktu (karena dimensi peningkatan lapisan difusi Nernst). Peluruhan eksponensial arus kapasitif jauh lebih cepat daripada peluruhan arus Faraday; oleh karenanya, arus Faradaylebih besar secara proporsional pada akhir kehidupan tetesan. Sayangnya, proses ini diperumit oleh perubahan potensial berkelanjutan yang diterapkan pada [[elektrode kerja]] (Hg tetes) selama percobaan. Karena potensial berubah selama masa hidup tetesan (dengan asumsi parameter eksperimental tipikal adalah: laju pindaian 2 mV/s dan waktu tetesan 4 detik, potensial dapat berubah sebesar 8 mV dari awal sampai akhir tetesan), pengisian antarmuka (arus kapasitif) memiliki kontribusi yang berkelanjutan terhadap arus total, bahkan pada akhir tetesan ketika luas permukaan tidak cepat berubah. Dengan demikian, sinyal khas kebisingan pada percobaan polarografi memungkinkan batas deteksi hanya sekitar 10<sup>-5</sup> atau 10<sup>6</sup>M. |
||
==Peningkatan/perbaikan== |
|||
Pemisahan terhadap arus kapasitif dapat ditingkatkan secara dramatis menggunakan teknik polarografi tast (disebut juga polarografi DC arus tercuplik atau polarografi Strobe) dan polarografi denyut (''pulse polarography''). Teknik ini telah dikembangkan dengan memasukkan pontensiostat elektronik baik analog maupun digital. Perbaikan besar pertama diperoleh, jika arus adalah satu-satunya yang ingin diukur pada akhir setiap umur tetesan (polarografi tast). Peningkatan yang lebih besar telah dicapai dengan hadirnya polarografi denyut diferensial. Dalam teknik ini, arus diukur sebelum awal dan sebelum berakhirnya denyut potensial pendek. Hal yang terakhir ditumpangkan pada fungsi potensial-waktu linear pindaian voltametri. Amplitudo tipikal denyut-denyut ini berada pada rentang 10 dan 50 mV, sementara durasi denyut adalah 20 dan 50 ms. Perbedaan di antara kedua nilai arus tersebut diambil sebagai sinyal analitik. Teknik ini menghasilkan 100 hingga 1000-kali lipat perbaikan dalam hal batas deteksi, karena komponen kapasitif dapat ditekan dengan efektif. |
|||
<!-- |
<!-- |
||
==Limitations== |
|||
==Improvements== |
|||
Dramatically better discrimination against the capacitive current can be obtained using the tast and pulse polarographic techniques. These have been developed with introduction of analog and digital electronic potentiostats. A first major improvement is obtained, if the current is only measured at the end of each drop lifetime (tast polarography{{clarify|date=November 2015}}). An even greater enhancement has been the introduction of differential pulse polarography. Here, the current is measured before the beginning and before the end of short potential pulses. The latter are superimposed to the linear potential-time-function of the voltammetric scan. Typical amplitudes of these pulses range between 10 and 50 mV, whereas pulse duration is 20 to 50 ms. The difference between both current values is that taken as the analytical signal. This technique results in a 100 to 1000-fold improvement of the detection limit, because the capacitive component is effectively suppressed. |
|||
==Qualitative Information== |
==Qualitative Information== |
||
Qualitative information can also be determined from the half-wave potential of the polarogram (the current vs. potential plot in a polarographic experiment). The value of the half-wave potential is related to the standard potential for the redox reaction being studied. |
Qualitative information can also be determined from the half-wave potential of the polarogram (the current vs. potential plot in a polarographic experiment). The value of the half-wave potential is related to the standard potential for the redox reaction being studied. |
Revisi per 18 Februari 2016 07.16
Polarografi adalah bagian dari voltametri yang mana elektrode kerjanya adalah elektrode raksa tetes (bahasa Inggris: Dropping Mercury Electrode, DME) atau elektrode raksa tetes statis (bahasa Inggris: Static Mercury Drop Electrode, SMDE). Elektrode ini sangat bermanfaat karena rentang katodiknya yang lebar dan permukaannya terbarukan. Metode ini diciptakan oleh Jaroslav Heyrovský, yang mengantarkannya memperoleh anugerah Nobel pada tahun 1959.[1][2][3][4][5][6]
Teori pengoperasian
Polarografi adalah pengukuran voltametri yang responsnya ditentukan oleh kombinasi transport massa difusi/konveksi. Prinsip sederhana polarografi adalah studi tentang larutan atau proses elektroda dengan cara elektrolisis menggunakan dua elektroda, satu dapat terpolarisasi dan satu tidak dapat terpolarisasi. Elektroda yang dapat terpolarisasi dibentuk oleh raksa yang diteteskan secara teratur dari pipa kapiler. Polarografi adalah jenis pengukuran spesifik yang masuk dalam kategori umum voltametri sapuan linear yang mana potensial elektroda diubah secara linear dari potensial awal ke potensial akhir. Sebagai metode sapuan linear yang dikendalikan oleh transportasi massa konveksi/difusi, respon arus vs potensial pada percobaan polarografi memiliki bentuk sigmoidal tertentu. Polarografi menjadi unik dan berbeda dari pengukuran voltametri sapuan linier lainnya karena polarografi memanfaatkan elektroda merkuri tetes (DME) atau elektrode merkuri tetes statis.
Grafik alur potensial vs arus dalam percobaan polarografi menunjukkan osilasi arus yang sesuai dengan tetesan Hg dari kapiler. Jika sesuatu terhubung arus maksimum masing-masing tetesan, akan dihasilkan bentuk sigmoidal. Arus pembatas (bagian atas pada kurva sigmoid), disebut arus difusi karena difusi merupakan kontribusi utama fluks bahan elektroaktif pada titik ini.
Keterbatasan
Ada berbagai keterbatasan khususnya untuk percobaan pengukuran analisis kuantitatif menggunakan polarografi klasik. Oleh karena pengukuran arus dilakukan secara kontinu selama pertumbuhan tetesan Hg, terdapat kontribusi substansial dari arus kapasitif. Selama Hg mengalir dari ujung kapiler, awalnya terdapat peningkatan besar luas permukaan. Akibatnya, arus awal didominasi oleh efek kapasitif karena terjadi pengisian antarmuka yang meningkat pesat. Menjelang akhir pertumbuhan tetesan, terdapat sedikit perubahan pada luas permukaan yang mengurangi kontribusi perubahan kapasitansi terhadap arus total. Pada saat yang sama, proses redoks yang terjadi akan menghasilkan arus Faraday yang meluruh sekitar akar kuadrat dari waktu (karena dimensi peningkatan lapisan difusi Nernst). Peluruhan eksponensial arus kapasitif jauh lebih cepat daripada peluruhan arus Faraday; oleh karenanya, arus Faradaylebih besar secara proporsional pada akhir kehidupan tetesan. Sayangnya, proses ini diperumit oleh perubahan potensial berkelanjutan yang diterapkan pada elektrode kerja (Hg tetes) selama percobaan. Karena potensial berubah selama masa hidup tetesan (dengan asumsi parameter eksperimental tipikal adalah: laju pindaian 2 mV/s dan waktu tetesan 4 detik, potensial dapat berubah sebesar 8 mV dari awal sampai akhir tetesan), pengisian antarmuka (arus kapasitif) memiliki kontribusi yang berkelanjutan terhadap arus total, bahkan pada akhir tetesan ketika luas permukaan tidak cepat berubah. Dengan demikian, sinyal khas kebisingan pada percobaan polarografi memungkinkan batas deteksi hanya sekitar 10-5 atau 106M.
Peningkatan/perbaikan
Pemisahan terhadap arus kapasitif dapat ditingkatkan secara dramatis menggunakan teknik polarografi tast (disebut juga polarografi DC arus tercuplik atau polarografi Strobe) dan polarografi denyut (pulse polarography). Teknik ini telah dikembangkan dengan memasukkan pontensiostat elektronik baik analog maupun digital. Perbaikan besar pertama diperoleh, jika arus adalah satu-satunya yang ingin diukur pada akhir setiap umur tetesan (polarografi tast). Peningkatan yang lebih besar telah dicapai dengan hadirnya polarografi denyut diferensial. Dalam teknik ini, arus diukur sebelum awal dan sebelum berakhirnya denyut potensial pendek. Hal yang terakhir ditumpangkan pada fungsi potensial-waktu linear pindaian voltametri. Amplitudo tipikal denyut-denyut ini berada pada rentang 10 dan 50 mV, sementara durasi denyut adalah 20 dan 50 ms. Perbedaan di antara kedua nilai arus tersebut diambil sebagai sinyal analitik. Teknik ini menghasilkan 100 hingga 1000-kali lipat perbaikan dalam hal batas deteksi, karena komponen kapasitif dapat ditekan dengan efektif.
Lihat juga
Referensi
- ^ Reinmuth, W. H. (1961-11-01). "Theory of Stationary Electrode Polarography". Analytical Chemistry. 33 (12): 1793–1794. doi:10.1021/ac60180a004.
- ^ Nicholson, R. S.; Irving. Shain (1964-04-01). "Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems". Analytical Chemistry. 36 (4): 706–723. doi:10.1021/ac60210a007.
- ^ Skoog, Douglas A.; Donald M. West; F. James Holler (1995-08-25). Fundamentals of Analytical Chemistry (edisi ke-7th). Harcourt Brace College Publishers. ISBN 0-03-005938-0.
- ^ Kissinger, Peter; William R. Heineman (1996-01-23). Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (edisi ke-2). CRC. ISBN 0-8247-9445-1.
- ^ Bard, Allen J.; Larry R. Faulkner (2000-12-18). Electrochemical Methods: Fundamentals and Applications (edisi ke-2). Wiley. ISBN 0-471-04372-9.
- ^ Zoski, Cynthia G. (2007-02-07). Handbook of Electrochemistry. Elsevier Science. ISBN 0-444-51958-0.