Lompat ke isi

Integral Lebesgue: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Usagioq (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 6: Baris 6:
Integral Lebesgue dapat definisikan untuk fungsi pada suatu [[Ukuran_(matematika)|ruang ukuran]] <math> ( X , \Sigma , \mu ) </math>.
Integral Lebesgue dapat definisikan untuk fungsi pada suatu [[Ukuran_(matematika)|ruang ukuran]] <math> ( X , \Sigma , \mu ) </math>.


== Integral dari fungsi sederhana ==
=== Integral dari fungsi sederhana ===
'''Fungsi karakteristik''' <math> \chi _A : X \rightarrow \{ 0 , 1 \} </math> untuk himpunan <math> A \subseteq X </math> adalah
'''Fungsi karakteristik''' <math> \chi _A : X \rightarrow \{ 0 , 1 \} </math> untuk himpunan <math> A \subseteq X </math> adalah
:<math> \phi _A (x) = \begin{cases} 1 & \mathrm{jika} \; x \in A \\ 0 & \mathrm{jika} \; x \not \in A \end{cases} . </math>
:<math> \phi _A (x) = \begin{cases} 1 & \mathrm{jika} \; x \in A \\ 0 & \mathrm{jika} \; x \not \in A \end{cases} . </math>

Revisi per 22 Februari 2016 15.24

Integral Lebesgue dalam matematika modern suatu konsep integral.

Konstruksi

Ruang ukuran

Integral Lebesgue dapat definisikan untuk fungsi pada suatu ruang ukuran .

Integral dari fungsi sederhana

Fungsi karakteristik untuk himpunan adalah

Suatu fungsi tersebut fungsi sederhana, jika

untuk , dan .

Kita mendefinisikan integral Lebesgue dari fungsi sederhana sebagai