Lompat ke isi

Bilangan Keith: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
EmausBot (bicara | kontrib)
k Bot: Migrasi 6 pranala interwiki, karena telah disediakan oleh Wikidata pada item d:Q378067
Rachmat-bot (bicara | kontrib)
k cosmetic changes, added orphan tag
Baris 1: Baris 1:
{{Orphan|date=April 2016}}

{{terjemahan|en|Keith Number|version=}}
{{terjemahan|en|Keith Number|version=}}
Dalam rekreasi matematika, sejumlah '''bilangan Keith''' adalah nomor dalam urutan [[bilangan bulat]] berikut:
Dalam rekreasi matematika, sejumlah '''bilangan Keith''' adalah nomor dalam urutan [[bilangan bulat]] berikut:
Baris 16: Baris 18:


==Bilangan Keith==
==Bilangan Keith==
14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607, 129572008, <ref name=OEIS/> 251133297.
14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607, 129572008,<ref name=OEIS/> 251133297.


==Daftar Pustaka==
==Daftar Pustaka==

Revisi per 8 April 2016 05.14


Dalam rekreasi matematika, sejumlah bilangan Keith adalah nomor dalam urutan bilangan bulat berikut:

14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, ....[1]

Angka keith diperkenalkan oleh Mike Keith pada tahun 1987.[2] Perhitungan mereka sangat menantang untuk menemukan, dengan hanya sekitar 100 dikenal.

Pengenalan

Untuk menentukan apakah nomor n-digit N adalah nomor Keith, membuat urutan Fibonacci seperti yang dimulai dengan angka desimal n dari N, menempatkan digit pertama paling signifikan. Kemudian lanjutkan urutan, di mana setiap istilah berikutnya adalah jumlah dari n istilah sebelumnya. Menurut definisi, N adalah nomor Keith jika N muncul di urutan sehingga dibangun. Sebagai contoh, mempertimbangkan jumlah 3-digit N = 197. Urutan berjalan seperti ini:

1, 9, 7, 17, 33, 57, 107, 197, 361, ...

Karena 197 muncul di urutan, 197 dipandang memang nomor Keith.

Definisi

Sejumlah Keith adalah bilangan bulat positif N yang muncul sebagai istilah dalam hubungan rekurensi linier dengan istilah awal berdasarkan angka desimal sendiri. Diberi n-digit nomor

urutan dibentuk dengan istilah awal dan dengan istilah umum diproduksi sebagai jumlah dari istilahn sebelumnya. Jika nomor N muncul di urutan , kemudian N dikatakan nomor Keith. Satu-digit angka memiliki properti Keith sepele, dan biasanya dikecualikan.

Bilangan Keith

14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607, 129572008,[1] 251133297.

Daftar Pustaka