Jari-jari atom: Perbedaan antara revisi
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler |
Tidak ada ringkasan suntingan Tag: Suntingan perangkat seluler Suntingan peramban seluler |
||
Baris 1: | Baris 1: | ||
[[Berkas:Helium atom QM.svg|180px|jmpl|ka|Diagram atom helium, menunjukkan kepadatan kania kania kania probabilitas elektron warna abu-abu.]] |
[[Berkas:Helium atom QM.svg|180px|jmpl|ka|Diagram atom helium, menunjukkan kepadatan kania kania kania probabilitas elektron warna abu-abu.]] |
||
'''Jari-jari atom''' adalah [[jarak]] dari [[inti atom]] ke [[orbital elektron]] kania terluar yang stabil dalam suatu [[atom]] dalam [[keadaan setimbang]]. Biasanya jarak tersebut |
'''Jari-jari atom''' adalah [[jarak]] dari [[inti atom]] ke [[orbital elektron]] kania terluar yang stabil dalam suatu [[atom]] dalam [[keadaan setimbang]]. Biasanya jarak tersebut kaniadiukur dalam [[satuan]] [[pikometer]] atau [[angstrom]]. Dikarenakan [[eletron|elektron-elektron]] senantiasa bergerak, maka untuk mengukur jarak dari inti atom kepadanya amatlah sulit. Untuk itu digunakan beberapa cara yang lebih akurat seperti dijelaskan pada bagian selanjutnya. |
||
== Jenis-jenis jari-jari atom == |
== Jenis-jenis jari-jari atom == |
Revisi per 10 September 2018 04.43
Jari-jari atom adalah jarak dari inti atom ke orbital elektron kania terluar yang stabil dalam suatu atom dalam keadaan setimbang. Biasanya jarak tersebut kaniadiukur dalam satuan pikometer atau angstrom. Dikarenakan elektron-elektron senantiasa bergerak, maka untuk mengukur jarak dari inti atom kepadanya amatlah sulit. Untuk itu digunakan beberapa cara yang lebih akurat seperti dijelaskan pada bagian selanjutnya.
Jenis-jenis jari-jari atom
Terdapat beberapa jenis jari-jari atom yang digunakan untuk menyatakan jarak dari inti atom ke lintasan stabil terluar dari elektronnya, di antaranya adalah jari-jari kovalen, jari-jari logam dan jari-jari van der Waals. Ketiganya dipilih disebabkan oleh perbedaan dari sifat-sifat elemen yang akan diukur.
Jari-jari kovalen
Jari-jari atom diukur menggunakan jari-jari kovalen untuk elemen-elemen yang memiliki jenis ikatan kovalen. Umumnya elemen-elemen ini merupakan elemen-elemen non-logam. Secara teknis jarak yang diukur adalah setengah dari jarak internuklir antara dua atom bertetangga terdekat dalam kisi-kisi kristal.
Jari-jari kovalen untuk elemen-elemen yang tidak dapat berikatan dapat diperkirakan dengan melakukan kombinasi jari-jari dari elemen-elemen yang dapat berikatan dalam molekul untuk atom-atom yang berbeda.
Jari-jari logam
Jari-jari atom diukur menggunakan jari-jari logam untuk elemen-elemen yang termasuk dalam elemen-elemen logam. Jari-jari logam adalah setengah jarak dari jarak internuklir terdekat dari atom-atom dalam kristal logam.
Jari-jari van der Waals
Jari-jari atom diukur menggunakan jari-jari van der Waals untuk elemen yang atom-atomnya tidak dapat saling berikatan. Contoh dari kelompok ini adalah gas mulia, di mana dikatakan bahwa atom-atom dari elemen ini tak termampatkan atau terpadatkan (unsquashed).
Jari-jari atom dalam tabel periodik
Dalam tabel periodik, jari-jari atom bertambah nilainya dalam satu golongan ke bawah sejalan dengan bertambahnya lintasan-lintasan elektron, dan berkurang kiri ke kanan dikarenakan dengan bertambahnya muatan inti (atau jumlah proton) - dengan perkecualian untuk golongan gas mulia.
Beberapa nilai jari-jari atom
Catatan: Semua pengukuran dituliskan dalam satuan pikometer (pm).
- Radius suatu atom bukanlah suatu karakteristik yang unik dan bergantung dari definisi. Data yang diambil dari sumber yang berbeda dengan asumsi (pemodelan atau pengukuran) yang berbeda tidak dapat saling dibandingkan.
- † sampai dengan ketelitian kira-kira 5 pm.
- - data tidak tersedia.
Jari-jari atom yang dihitung
Tabel berikut menunjukkan jari-jari atom yang dihitung dari model teoretis, yang diterbitkan oleh Enrico Clementi pada tahun 1967.[1] The values are in picometres (pm).
Golongan (kolom) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
Periode (baris) |
|||||||||||||||||||
1 | H 53 |
He 31 | |||||||||||||||||
2 | Li 167 |
Be 112 |
B 87 |
C 67 |
N 56 |
O 48 |
F 42 |
Ne 38 | |||||||||||
3 | Na 190 |
Mg 145 |
Al 118 |
Si 111 |
P 98 |
S 88 |
Cl 79 |
Ar 71 | |||||||||||
4 | K 243 |
Ca 194 |
Sc 184 |
Ti 176 |
V 171 |
Cr 166 |
Mn 161 |
Fe 156 |
Co 152 |
Ni 149 |
Cu 145 |
Zn 142 |
Ga 136 |
Ge 125 |
As 114 |
Se 103 |
Br 94 |
Kr 88 | |
5 | Rb 265 |
Sr 219 |
Y 212 |
Zr 206 |
Nb 198 |
Mo 190 |
Tc 183 |
Ru 178 |
Rh 173 |
Pd 169 |
Ag 165 |
Cd 161 |
In 156 |
Sn 145 |
Sb 133 |
Te 123 |
I 115 |
Xe 108 | |
6 | Cs 298 |
Ba 253 |
* |
Hf 208 |
Ta 200 |
W 193 |
Re 188 |
Os 185 |
Ir 180 |
Pt 177 |
Au 174 |
Hg 171 |
Tl 156 |
Pb 154 |
Bi 143 |
Po 135 |
At |
Rn 120 | |
7 | Fr |
Ra |
** |
Rf |
Db |
Sg |
Bh |
Hs |
Mt |
Ds |
Rg |
Cn |
Uut |
Fl |
Uup |
Lv |
Uus |
Uuo | |
Lantanida | * |
La |
Ce |
Pr 247 |
Nd 206 |
Pm 205 |
Sm 238 |
Eu 231 |
Gd 233 |
Tb 225 |
Dy 228 |
Ho |
Er 226 |
Tm 222 |
Yb 222 |
Lu 217 | |||
Aktinida | ** |
Ac |
Th |
Pa |
U |
Np |
Pu |
Am |
Cm |
Bk |
Cf |
Es |
Fm |
Md |
No |
Lr |
Referensi
- ^ Clementi, E.; Raimond, D. L.; Reinhardt, W. P. (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084.