Biosensor: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
HsfBot (bicara | kontrib)
k replaced: elektroda → elektrode (3)
Baris 5: Baris 5:
* Alat pembaca biosensor yang terkait dengan elektronika atau pemroses sinyal untuk ditampilkan.<ref>{{cite journal |author=Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC |title=Nanorobot Hardware Architecture for Medical Defense |journal= Sensors |volume=8 |issue=5 |pages=2932–2958 |year=2008 |url=http://www.mdpi.org/sensors/papers/s8052932.pdf |doi=10.3390/s8052932}}</ref>
* Alat pembaca biosensor yang terkait dengan elektronika atau pemroses sinyal untuk ditampilkan.<ref>{{cite journal |author=Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC |title=Nanorobot Hardware Architecture for Medical Defense |journal= Sensors |volume=8 |issue=5 |pages=2932–2958 |year=2008 |url=http://www.mdpi.org/sensors/papers/s8052932.pdf |doi=10.3390/s8052932}}</ref>


Contoh yang paling umum dari biosensor adalah pengukur [[gula darah]], yang menggunakan enzim [[glukosa oksidase]] untuk memecah gula darah. Biosensor ini bekerja dengan mengoksidasi glukosa terlebih dahulu dengan menggunakan dua [[elektron]] untuk mereduksi FAD (komponen dari enzim) menjadi FADH2. Lalu FADH2 dioksidasi oleh elektroda dan menerima dua elektron dari elektroda dalam beberapa tahap. Hasilnya adalah arus listrik yang mengukur konsentrasi glukosa. Dalam kasus ini, elektroda adalah transduser dan enzim adalah elemen biologis sensitif.
Contoh yang paling umum dari biosensor adalah pengukur [[gula darah]], yang menggunakan enzim [[glukosa oksidase]] untuk memecah gula darah. Biosensor ini bekerja dengan mengoksidasi glukosa terlebih dahulu dengan menggunakan dua [[elektron]] untuk mereduksi FAD (komponen dari enzim) menjadi FADH2. Lalu FADH2 dioksidasi oleh elektrode dan menerima dua elektron dari elektrode dalam beberapa tahap. Hasilnya adalah arus listrik yang mengukur konsentrasi glukosa. Dalam kasus ini, elektrode adalah transduser dan enzim adalah elemen biologis sensitif.


Saat ini, serangkaian detektor molekul, yang disebut dengan [[hidung elektronik]], telah diaplikasikan untuk menjadikan pola respon alat tersebut sebagai ''fingerprint'' dari suatu senyawa.<ref>[http://www.microfluidicsolutions.com/apps/blog/show/20808263-ucsb-sensor-sniffs-explosives-through-microfluidics-might-replace-rover-at-the-airport-video- UCSB Electronic Nose]</ref>
Saat ini, serangkaian detektor molekul, yang disebut dengan [[hidung elektronik]], telah diaplikasikan untuk menjadikan pola respon alat tersebut sebagai ''fingerprint'' dari suatu senyawa.<ref>[http://www.microfluidicsolutions.com/apps/blog/show/20808263-ucsb-sensor-sniffs-explosives-through-microfluidics-might-replace-rover-at-the-airport-video- UCSB Electronic Nose]</ref>
Baris 13: Baris 13:
<!--Many optical biosensors are based on the phenomenon of [[surface plasmon resonance]] (SPR) techniques. This utilises a property of and other materials; specifically that a thin layer of gold on a high refractive index glass surface can absorb laser light, producing electron waves (surface plasmons) on the gold surface. This occurs only at a specific angle and wavelength of incident light and is highly dependent on the surface of the gold, such that binding of a target analyte to a receptor on the gold surface produces a measurable signal.
<!--Many optical biosensors are based on the phenomenon of [[surface plasmon resonance]] (SPR) techniques. This utilises a property of and other materials; specifically that a thin layer of gold on a high refractive index glass surface can absorb laser light, producing electron waves (surface plasmons) on the gold surface. This occurs only at a specific angle and wavelength of incident light and is highly dependent on the surface of the gold, such that binding of a target analyte to a receptor on the gold surface produces a measurable signal.


Surface plasmon resonance sensors operate using a sensor chip consisting of a plastic cassette supporting a glass plate, one side of which is coated with a microscopic layer of gold. This side contacts the optical detection apparatus of the instrument. The opposite side is then contacted with a microfluidic flow system. The contact with the flow system creates channels across which reagents can be passed in solution. This side of the glass sensor chip can be modified in a number of ways, to allow easy attachment of molecules of interest. Normally it is coated in [[carboxymethyl dextran]] or similar compound.
Surface plasmon resonance sensors operate using a sensor chip consisting of a plastic cassette supporting a glass plate, one side of which is coated with a microscopic layer of gold. This side contacts the optical detection apparatus of the instrument. The opposite side is then contacted with a microfluidic flow system. The contact with the flow system creates channels across which reagents can be passed in solution. This side of the glass sensor chip can be modified in a number of ways, to allow easy attachment of molecules of interest. Normally it is coated in [[carboxymethyl dextran]] or similar compound.


Light of a fixed wavelength is reflected off the gold side of the chip at the angle of total internal reflection, and detected inside the instrument. The angle of incident light is varied in order to match the evanescent wave propagation rate with the propagation rate of the surface plasmon plaritons.<ref>{{cite journal |author=Homola J |title= Present and future of surface plasmon resonance biosensors. |year=2003 /8x2n9xhbkqtp76dq}}</ref> This induces the evanescent wave to penetrate through the glass plate and some distance into the liquid flowing over the surface.
Light of a fixed wavelength is reflected off the gold side of the chip at the angle of total internal reflection, and detected inside the instrument. The angle of incident light is varied in order to match the evanescent wave propagation rate with the propagation rate of the surface plasmon plaritons.<ref>{{cite journal |author=Homola J |title= Present and future of surface plasmon resonance biosensors. |year=2003 /8x2n9xhbkqtp76dq}}</ref> This induces the evanescent wave to penetrate through the glass plate and some distance into the liquid flowing over the surface.
Baris 21: Baris 21:
Other evanescent wave biosensors have been commercialised using waveguides where the propagation constant through the waveguide is changed by the absorption of molecules to the waveguide surface. One such example, [[Dual Polarisation Interferometry]] uses a buried waveguide as a reference against which the change in propagation constant is measured. Other configurations such as the [[Mach-Zehnder]] have reference arms lithographically defined on a substrate. Higher levels of integration can be achieved using resonator geometries where the resonant frequency of a ring resonator changes when molecules are absorbed.<ref>M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, L. C. Gunn, "Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation", IEEE J. Sel. Top. Quant. Elec. 16, 654-661 (2010)</ref><ref>{{cite journal|author=J. Witzens, M. Hochberg|title=Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators|journal=Opt. Express|volume=19|pages=7034–7061|year=2011|url = http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-8-7034&id=211400}}</ref>
Other evanescent wave biosensors have been commercialised using waveguides where the propagation constant through the waveguide is changed by the absorption of molecules to the waveguide surface. One such example, [[Dual Polarisation Interferometry]] uses a buried waveguide as a reference against which the change in propagation constant is measured. Other configurations such as the [[Mach-Zehnder]] have reference arms lithographically defined on a substrate. Higher levels of integration can be achieved using resonator geometries where the resonant frequency of a ring resonator changes when molecules are absorbed.<ref>M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, L. C. Gunn, "Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation", IEEE J. Sel. Top. Quant. Elec. 16, 654-661 (2010)</ref><ref>{{cite journal|author=J. Witzens, M. Hochberg|title=Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators|journal=Opt. Express|volume=19|pages=7034–7061|year=2011|url = http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-8-7034&id=211400}}</ref>


Other optical biosensors are mainly based on changes in absorbance or fluorescence of an appropriate indicator compound and do not need a total internal reflection geometry. For example, a fully operational prototype device detecting casein in milk has been fabricated. The device is based on detecting changes in absorption of a gold layer.<ref>H. M. Hiep et al. "A localized surface plasmon resonance based immunosensor for the detection of casein in milk" Sci. Technol. Adv. Mater. 8 (2007) 331 [http://dx.doi.org/10.1016/j.stam.2006.12.010 free download]</ref> A widely used research tool, the micro-array, can also be considered a biosensor.
Other optical biosensors are mainly based on changes in absorbance or fluorescence of an appropriate indicator compound and do not need a total internal reflection geometry. For example, a fully operational prototype device detecting casein in milk has been fabricated. The device is based on detecting changes in absorption of a gold layer.<ref>H. M. Hiep et al. "A localized surface plasmon resonance based immunosensor for the detection of casein in milk" Sci. Technol. Adv. Mater. 8 (2007) 331 [http://dx.doi.org/10.1016/j.stam.2006.12.010 free download]</ref> A widely used research tool, the micro-array, can also be considered a biosensor.


Nanobiosensors use an immobilized bioreceptor probe that is selective for target analyte molecules. Nanomaterials are exquisitely sensitive chemical and biological sensors. Nanoscale materials demonstrate unique properties. Their large surface area to volume ratio can achieve rapid and low cost reactions, using a variety of designs.<ref>Gerald A Urban 2009 Meas. Sci. Technol. 20 012001 {{doi|10.1088/0957-0233/20/1/012001}}</ref>
Nanobiosensors use an immobilized bioreceptor probe that is selective for target analyte molecules. Nanomaterials are exquisitely sensitive chemical and biological sensors. Nanoscale materials demonstrate unique properties. Their large surface area to volume ratio can achieve rapid and low cost reactions, using a variety of designs.<ref>Gerald A Urban 2009 Meas. Sci. Technol. 20 012001 {{doi|10.1088/0957-0233/20/1/012001}}</ref>
Baris 29: Baris 29:
== Referensi ==
== Referensi ==
{{reflist}}
{{reflist}}

{{biologi-stub}}


[[Kategori:Bioteknologi]]
[[Kategori:Bioteknologi]]
[[Kategori:Sensor]]
[[Kategori:Sensor]]


{{biologi-stub}}

Revisi per 8 April 2020 07.22

Biosensor adalah sensor yang mengombinasikan komponen hayati dengan komponen elektronik (transduser) yang mengubah sinyal dari komponen hayati menjadi luaran yang terukur. Biosensor juga dapat diartikan sebagai sebuah alat analisis yang mengkombinasikan komponen biologis dengan detektor fisikokimia.[1] Biosensor terdiri atas:

  • Elemen biologis sensitif seperti jaringan, mikroorganisme, organel, reseptor sel, enzim, antibodi, asam nukleat, dan sebagainya, adalah material biologis yang berinteraksi dengan komponen yang dipelajari. Elemen sensitif tersebut juga bisa dibuat dengan rekayasa biologis.
  • Transduser yang bekerja secara fisikokimia (optis, piezoelektris, elektrokimia, dan sebagainya) yang mengubah sinyal yang dihasilkan dari interaksi dengan komponen yang diuji sehingga bisa diukur dengan mudah.
  • Alat pembaca biosensor yang terkait dengan elektronika atau pemroses sinyal untuk ditampilkan.[2]

Contoh yang paling umum dari biosensor adalah pengukur gula darah, yang menggunakan enzim glukosa oksidase untuk memecah gula darah. Biosensor ini bekerja dengan mengoksidasi glukosa terlebih dahulu dengan menggunakan dua elektron untuk mereduksi FAD (komponen dari enzim) menjadi FADH2. Lalu FADH2 dioksidasi oleh elektrode dan menerima dua elektron dari elektrode dalam beberapa tahap. Hasilnya adalah arus listrik yang mengukur konsentrasi glukosa. Dalam kasus ini, elektrode adalah transduser dan enzim adalah elemen biologis sensitif.

Saat ini, serangkaian detektor molekul, yang disebut dengan hidung elektronik, telah diaplikasikan untuk menjadikan pola respon alat tersebut sebagai fingerprint dari suatu senyawa.[3]

Berbagai jenis hewan telah digunakan sebagai biosensor dan diidentifikasi melalui perilakunya terhadap rangsangan yang diterimanya, seperti serangga dari ordo Hymenoptera[4][5] untuk mendeteksi narkoba dan bahan peledak, dan burung kenari[6][7] untuk mendeteksi keberadaan gas berbahaya di dalam tambang.


Referensi

  1. ^ Turner, Anthony (1987). Biosensors:Fundamentals and Applications. Oxford, UK: Oxford University Press. hlm. 770. ISBN 0198547242. 
  2. ^ Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC (2008). "Nanorobot Hardware Architecture for Medical Defense" (PDF). Sensors. 8 (5): 2932–2958. doi:10.3390/s8052932. 
  3. ^ UCSB Electronic Nose
  4. ^ "Wasp Hound". Science Central. Diakses tanggal 23 February 2011. 
  5. ^ Lihat en:Hymenoptera training
  6. ^ Page, Walter Hines; Page, Arthur Wilson (August 1914). "Man And His Machines: Resuscitation Cage For Mine Canaries". The World's Work: A History of Our Time XLIV (2): 474. Retrieved 2009-08-04.
  7. ^ Lihat en:Domestic Canary#Miner's canary