Lompat ke isi

Monad (teori kategori): Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
123569yuuift (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
HsfBot (bicara | kontrib)
k clean up
 
Baris 1: Baris 1:
{{distinguish|Monad (aljabar linear)}}{{for|penggunaan monad dalam perangkat lunak komputer|monads dalam pemrograman fungsional}}
{{distinguish|Monad (aljabar linear)}}{{for|penggunaan monad dalam perangkat lunak komputer|monads dalam pemrograman fungsional}}
Dalam [[teori kategori]], cabang dari [[matematika]], '''monad''' (juga disebut '''tripel''', '''triad''', '''konstruksi standar''' dan '''konstruksi dasar''')<ref>{{citation|url=http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf | title=Toposes, Triples and Theories | year=1985 | first1=Michael | last1=Barr | first2=Charles | last2= Wells | publisher=Springer-Verlag | isbn=0-387-96115-1 | volume=278 | work= Grundlehren der mathematischen Wissenschaften |pages=82 and 120 |postscript=.}}</ref> adalah [[endofunktor]] ([[funktor]] memetakan [[Kategori (matematika) | kategori]]), dengan dua [[transformasi alam]] yang dibutuhkan untuk memenuhi [[kondisi koherensi]]. Monad digunakan dalam teori [[funktor adjoin]], dan mereka menggeneralisasi [[operator penutupan]] pada [[himpunan terurut parsial]] ke kategori arbitrer.
Dalam [[teori kategori]], cabang dari [[matematika]], '''monad''' (juga disebut '''tripel''', '''triad''', '''konstruksi standar''' dan '''konstruksi dasar''')<ref>{{citation|url=http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf | title=Toposes, Triples and Theories | year=1985 | first1=Michael | last1=Barr | first2=Charles | last2= Wells | publisher=Springer-Verlag | isbn=0-387-96115-1 | volume=278 | work= Grundlehren der mathematischen Wissenschaften |pages=82 and 120 |postscript=.}}</ref> adalah [[endofunktor]] ([[funktor]] memetakan [[Kategori (matematika)|kategori]]), dengan dua [[transformasi alam]] yang dibutuhkan untuk memenuhi [[kondisi koherensi]]. Monad digunakan dalam teori [[funktor adjoin]], dan mereka menggeneralisasi [[operator penutupan]] pada [[himpunan terurut parsial]] ke kategori arbitrer.


== Pendahuluan dan definisi ==
== Pendahuluan dan definisi ==
Monad adalah jenis [[endofunktor]] tertentu. Misalnya, jika <math> F </math> dan <math> G </math> adalah sepasang [[funktor adjoin]], dengan <math> F </math> di sebelah kiri adjoint ke <math> G </math>, maka komposisi <math> G \circ F </math> adalah monad. Jika <math> F </math> dan <math> G </math> adalah fungsi invers, monad terkait adalah [[identitas funktor]]. Secara umum, tambahan bukanlah [[kesetaraan kategori | kesetaraan]], mereka menghubungkan kategori dengan sifat yang berbeda. Teori monad penting sebagai bagian dari upaya untuk 'mencari' tambahan. Separuh teori lainnya, dari dipelajari juga dari pertimbangan <math>F \circ G</math>, dibahas di bawah teori ganda '' komonad ''.
Monad adalah jenis [[endofunktor]] tertentu. Misalnya, jika <math> F </math> dan <math> G </math> adalah sepasang [[funktor adjoin]], dengan <math> F </math> di sebelah kiri adjoint ke <math> G </math>, maka komposisi <math> G \circ F </math> adalah monad. Jika <math> F </math> dan <math> G </math> adalah fungsi invers, monad terkait adalah [[identitas funktor]]. Secara umum, tambahan bukanlah [[kesetaraan kategori|kesetaraan]], mereka menghubungkan kategori dengan sifat yang berbeda. Teori monad penting sebagai bagian dari upaya untuk 'mencari' tambahan. Separuh teori lainnya, dari dipelajari juga dari pertimbangan <math>F \circ G</math>, dibahas di bawah teori ganda '' komonad ''.


=== Definisi formal ===
=== Definisi formal ===
Sepanjang artikel ini <math> C </math> menunjukkan sebuah [[teori kategori | kategori]]. Sebuah '' monad '' di <math> C </math> terdiri dari endofunktor <math>T \colon C \to C</math> bersama dengan dua [[transformasi alami]]: <math>\eta \colon 1_{C} \to T</math> (dimana <math>1_{C}</math> menunjukkan fungsi identitas pada <math> C </math>) dan <math>\mu \colon T^{2} \to T</math> (dimana <math>T^{2}</math> adalah funktor <math>T \circ T</math> dari <math> C </math> ke <math> C </math>). Ini diperlukan untuk memenuhi ketentuan berikut (terkadang disebut [[kondisi koherensi]]):
Sepanjang artikel ini <math> C </math> menunjukkan sebuah [[teori kategori|kategori]]. Sebuah '' monad '' di <math> C </math> terdiri dari endofunktor <math>T \colon C \to C</math> bersama dengan dua [[transformasi alami]]: <math>\eta \colon 1_{C} \to T</math> (dimana <math>1_{C}</math> menunjukkan fungsi identitas pada <math> C </math>) dan <math>\mu \colon T^{2} \to T</math> (dimana <math>T^{2}</math> adalah funktor <math>T \circ T</math> dari <math> C </math> ke <math> C </math>). Ini diperlukan untuk memenuhi ketentuan berikut (terkadang disebut [[kondisi koherensi]]):


* <math>\mu \circ T\mu = \mu \circ \mu T</math> (sebagai transformasi <math>T^{3} \to T</math>);
* <math>\mu \circ T\mu = \mu \circ \mu T</math> (sebagai transformasi <math>T^{3} \to T</math>);
Baris 20: Baris 20:
</center>
</center>


Lihat artikel tentang [[transformasi natural#Operasi dengan transformasi natural | transformasi natural]] untuk penjelasan tentang notasi <math>T\mu</math> dan <math>\mu T</math>, atau lihat di bawah diagram komutatif yang tidak menggunakan pengertian ini:
Lihat artikel tentang [[transformasi natural#Operasi dengan transformasi natural|transformasi natural]] untuk penjelasan tentang notasi <math>T\mu</math> dan <math>\mu T</math>, atau lihat di bawah diagram komutatif yang tidak menggunakan pengertian ini:


<center>
<center>
Baris 30: Baris 30:
</center>
</center>


Aksioma pertama mirip dengan [[asosiativitas]] dalam [[monoid (teori kategori) | monoid]] jika <math>\mu</math> sebagai operasi biner monoid, dan aksioma kedua mirip dengan keberadaan [[elemen identitas]] (diberikan <math>\eta</math>). Monad pada <math> C </math> dapat didefinisikan sebagai alternatif sebagai [[monoid (teori kategori) | monoid]] dalam kategori <math>\mathbf{End}_{C}</math> yang objeknya merupakan endofunktor dari <math> C </math> dan yang morfismenya merupakan transformasi, dengan [[kategori monoid | struktur monoid]] yang disebabkan oleh komposisi endofungtor.
Aksioma pertama mirip dengan [[asosiativitas]] dalam [[monoid (teori kategori)|monoid]] jika <math>\mu</math> sebagai operasi biner monoid, dan aksioma kedua mirip dengan keberadaan [[elemen identitas]] (diberikan <math>\eta</math>). Monad pada <math> C </math> dapat didefinisikan sebagai alternatif sebagai [[monoid (teori kategori)|monoid]] dalam kategori <math>\mathbf{End}_{C}</math> yang objeknya merupakan endofunktor dari <math> C </math> dan yang morfismenya merupakan transformasi, dengan [[kategori monoid|struktur monoid]] yang disebabkan oleh komposisi endofungtor.


=== Himpunan daya monad ===
=== Himpunan daya monad ===
'' Himpunan daya monad '' adalah monad <math>\mathcal{P}</math> pada kategori <math>\mathbf{Himpunan}</math>: Untuk himpunan <math> A </math> biarkan <math> T(A) </math> menjadi [[himpunan daya]] dari <math> A </math> dan untuk sebuah fungsi <math>f \colon A \to B</math> biarkan <math> T (f) </math> menjadi fungsi antara set daya yang diinduksi dengan [[Geleri (matematika) | galeri langsung]] di bawah <math> f </math>. Untuk setiap set <math> A </math>, peta <math>\eta_{A} \colon A \to T(A)</math>, pada <math>a\in A</math> [[tunggal (matematika) | tunggal]] <math>\{a\}</math>. The function
'' Himpunan daya monad '' adalah monad <math>\mathcal{P}</math> pada kategori <math>\mathbf{Himpunan}</math>: Untuk himpunan <math> A </math> biarkan <math> T(A) </math> menjadi [[himpunan daya]] dari <math> A </math> dan untuk sebuah fungsi <math>f \colon A \to B</math> biarkan <math> T (f) </math> menjadi fungsi antara set daya yang diinduksi dengan [[Geleri (matematika)|galeri langsung]] di bawah <math> f </math>. Untuk setiap set <math> A </math>, peta <math>\eta_{A} \colon A \to T(A)</math>, pada <math>a\in A</math> [[tunggal (matematika)|tunggal]] <math>\{a\}</math>. The function


:<math>\mu_{A} \colon T(T(A)) \to T(A)</math>
:<math>\mu_{A} \colon T(T(A)) \to T(A)</math>


mengambil satu set himpunan ke [[Satuan (teori himpunan) | satuan]]. Data ini menggambarkan sebuah monad.
mengambil satu set himpunan ke [[Satuan (teori himpunan)|satuan]]. Data ini menggambarkan sebuah monad.


=== Keterangan ===
=== Keterangan ===
Baris 50: Baris 50:
=== Monad arising dari tambahan ===
=== Monad arising dari tambahan ===


Semua [[adjunsi (theory category) | adjunsi]]
Semua [[adjunsi (theory category)|adjunsi]]


:<math>F: C \rightleftarrows D : G</math>
:<math>F: C \rightleftarrows D : G</math>
Baris 63: Baris 63:


==== Dualisasi ganda ====
==== Dualisasi ganda ====
'' Dualisasi monad '', untuk [[bidang (matematika) | bidang]] '' k '' tetap muncul dari adjunsi
'' Dualisasi monad '', untuk [[bidang (matematika)|bidang]] '' k '' tetap muncul dari adjunsi


:<math>(-)^* : \mathbf{Vekt}_k \rightleftarrows \mathbf{Vekt}_k^{op} : (-)^*</math>
:<math>(-)^* : \mathbf{Vekt}_k \rightleftarrows \mathbf{Vekt}_k^{op} : (-)^*</math>


di mana kedua fungsi diberikan dengan mengirimkan [[ruang vektor]] '' V '' ke [[ruang vektor ganda]] <math>V^* := \operatorname{Hom}(V, k)</math>. Monad terkait mengirimkan ruang vektor '' V '' ke [[dual ganda]] <math>V^{**}</math>. Monad ini dibahas secara umum oleh {{harvtxt|Kock|1970}}.
di mana kedua fungsi diberikan dengan mengirimkan [[ruang vektor]] '' V '' ke [[ruang vektor ganda]] <math>V^* := \operatorname{Hom}(V, k)</math>. Monad terkait mengirimkan ruang vektor '' V '' ke [[dual ganda]] <math>V^{**}</math>. Monad ini dibahas secara umum oleh {{harvtxt|Kock|1970}}.


==== Operator penutupan himpunan urutan sebagian ====
==== Operator penutupan himpunan urutan sebagian ====
Untuk kategori yang timbul dari [[himpunan terurut parsial]] <math>(P, \le)</math> (dengan morfisme tunggal dari <math>x</math> to <math>y</math> [[iff]] <math>x \le y</math>), maka formalismenya menjadi lebih sederhana: bagian adjoin adalah [[koneksi Galois]] dan monad adalah [[operator penutupan#Operator penutupan pada himpunan terurut sebagian | operator penutupan]].
Untuk kategori yang timbul dari [[himpunan terurut parsial]] <math>(P, \le)</math> (dengan morfisme tunggal dari <math>x</math> to <math>y</math> [[iff]] <math>x \le y</math>), maka formalismenya menjadi lebih sederhana: bagian adjoin adalah [[koneksi Galois]] dan monad adalah [[operator penutupan#Operator penutupan pada himpunan terurut sebagian|operator penutupan]].


==== Adjunsi foget bebas ====
==== Adjunsi foget bebas ====
Misalnya, karena <math> G </math> menjadi [[funktor fogetful]] dari [[kategori grup | kategori '''Grp''']] dari [[grup (matematika) | grup]] ke [[kategori himpunan | kategori '''Himpunan''']], dan maka <math> F </math> menjadi fungsi [[grup bebas]] dari kategori himpunan ke kategori grup. Kemudian <math> F </math> adalah ujung kiri dari <math> G </math>. Dalam hal ini, monad terkait <math>T = G \circ F</math> maka himpunan <math> X </math> dan himpunan yang mendasari dari grup bebas <math>\mathrm{Bebas}(X)</math>.
Misalnya, karena <math> G </math> menjadi [[funktor fogetful]] dari [[kategori grup|kategori '''Grp''']] dari [[grup (matematika)|grup]] ke [[kategori himpunan|kategori '''Himpunan''']], dan maka <math> F </math> menjadi fungsi [[grup bebas]] dari kategori himpunan ke kategori grup. Kemudian <math> F </math> adalah ujung kiri dari <math> G </math>. Dalam hal ini, monad terkait <math>T = G \circ F</math> maka himpunan <math> X </math> dan himpunan yang mendasari dari grup bebas <math>\mathrm{Bebas}(X)</math>.
Peta satuan monad ini diberikan oleh peta
Peta satuan monad ini diberikan oleh peta
:<math>X \rightarrow T(X) </math>
:<math>X \rightarrow T(X) </math>
Baris 113: Baris 113:
Monad digunakan dalam [[pemrograman fungsional]] untuk mengekspresikan jenis komputasi sekuensial (terkadang dengan efek samping). Lihat [[monad dalam pemrograman fungsional]], dan modul Wikibuku yang lebih berorientasi matematis [[b:Haskell/Category theory|Teori Haskell/Kategori]].
Monad digunakan dalam [[pemrograman fungsional]] untuk mengekspresikan jenis komputasi sekuensial (terkadang dengan efek samping). Lihat [[monad dalam pemrograman fungsional]], dan modul Wikibuku yang lebih berorientasi matematis [[b:Haskell/Category theory|Teori Haskell/Kategori]].


Dalam logika kategoris, sebuah analogi telah ditarik antara teori monad-komonad, dan [[logika modal]] melalui [[operator penutupan]], [[aljabar interior]], dan hubungannya dengan [[Model matematika | model]] dari [[aljabar S4 | S4]] dan [[logika intuisi]].
Dalam logika kategoris, sebuah analogi telah ditarik antara teori monad-komonad, dan [[logika modal]] melalui [[operator penutupan]], [[aljabar interior]], dan hubungannya dengan [[Model matematika|model]] dari [[aljabar S4|S4]] dan [[logika intuisi]].


== Generalisasi ==
== Generalisasi ==
Baris 142: Baris 142:
*John Baez's [http://math.ucr.edu/home/baez/week89.html This Week's Finds in Mathematical Physics (Week 89)] mencakup monad dalam 2 kategori.
*John Baez's [http://math.ucr.edu/home/baez/week89.html This Week's Finds in Mathematical Physics (Week 89)] mencakup monad dalam 2 kategori.


[[Kategori: Fungsi adjoin]]
[[Kategori:Fungsi adjoin]]
[[Kategori: Teori kategori]]
[[Kategori:Teori kategori]]

Revisi terkini sejak 3 Februari 2021 07.24

Dalam teori kategori, cabang dari matematika, monad (juga disebut tripel, triad, konstruksi standar dan konstruksi dasar)[1] adalah endofunktor (funktor memetakan kategori), dengan dua transformasi alam yang dibutuhkan untuk memenuhi kondisi koherensi. Monad digunakan dalam teori funktor adjoin, dan mereka menggeneralisasi operator penutupan pada himpunan terurut parsial ke kategori arbitrer.

Pendahuluan dan definisi

[sunting | sunting sumber]

Monad adalah jenis endofunktor tertentu. Misalnya, jika dan adalah sepasang funktor adjoin, dengan di sebelah kiri adjoint ke , maka komposisi adalah monad. Jika dan adalah fungsi invers, monad terkait adalah identitas funktor. Secara umum, tambahan bukanlah kesetaraan, mereka menghubungkan kategori dengan sifat yang berbeda. Teori monad penting sebagai bagian dari upaya untuk 'mencari' tambahan. Separuh teori lainnya, dari dipelajari juga dari pertimbangan , dibahas di bawah teori ganda komonad .

Definisi formal

[sunting | sunting sumber]

Sepanjang artikel ini menunjukkan sebuah kategori. Sebuah monad di terdiri dari endofunktor bersama dengan dua transformasi alami: (dimana menunjukkan fungsi identitas pada ) dan (dimana adalah funktor dari ke ). Ini diperlukan untuk memenuhi ketentuan berikut (terkadang disebut kondisi koherensi):

  • (sebagai transformasi );
  • (sebagai transformasi ; maka menunjukkan transformasi identitas dari menjadi ).

Kita dapat menulis ulang kondisi ini menggunakan diagram komutatif berikut:

            

Lihat artikel tentang transformasi natural untuk penjelasan tentang notasi dan , atau lihat di bawah diagram komutatif yang tidak menggunakan pengertian ini:

            

Aksioma pertama mirip dengan asosiativitas dalam monoid jika sebagai operasi biner monoid, dan aksioma kedua mirip dengan keberadaan elemen identitas (diberikan ). Monad pada dapat didefinisikan sebagai alternatif sebagai monoid dalam kategori yang objeknya merupakan endofunktor dari dan yang morfismenya merupakan transformasi, dengan struktur monoid yang disebabkan oleh komposisi endofungtor.

Himpunan daya monad

[sunting | sunting sumber]

Himpunan daya monad adalah monad pada kategori : Untuk himpunan biarkan menjadi himpunan daya dari dan untuk sebuah fungsi biarkan menjadi fungsi antara set daya yang diinduksi dengan galeri langsung di bawah . Untuk setiap set , peta , pada tunggal . The function

mengambil satu set himpunan ke satuan. Data ini menggambarkan sebuah monad.

Keterangan

[sunting | sunting sumber]

Aksioma sebuah monad secara formal mirip dengan aksioma monoid. Faktanya, monad adalah kasus khusus dari monoid, yaitu mereka merupakan monoid di antara endofunktor , yang dilengkapi dengan perkalian yang diberikan oleh komposisi endofungtor.

Komposisi monad secara umum bukan monad. Misalnya, monad himpunan daya ganda tidak menerima struktur monad.[2]

Sejarah terminologis

[sunting | sunting sumber]

Gagasan monad ditemukan oleh Roger Godement pada tahun 1958 dengan nama "konstruksi standar". Pada 1960-an dan 1970-an, banyak orang menggunakan nama "tiga kali lipat". Istilah standar sekarang "monad" adalah karena Saunders Mac Lane.

Monad arising dari tambahan

[sunting | sunting sumber]

Semua adjunsi

menimbulkan monad pada C . Konstruksi yang sangat luas ini bekerja sebagai berikut: ujung ujung adalah komposit

Fungsi akhir ini dengan cepat dianggap sebagai monad, di mana peta satuan berasal dari peta satuan dari adjunsi, dan peta perkalian dibangun menggunakan peta mounit dari adjunsi:

Dualisasi ganda

[sunting | sunting sumber]

Dualisasi monad , untuk bidang k tetap muncul dari adjunsi

di mana kedua fungsi diberikan dengan mengirimkan ruang vektor V ke ruang vektor ganda . Monad terkait mengirimkan ruang vektor V ke dual ganda . Monad ini dibahas secara umum oleh (Kock 1970).

Operator penutupan himpunan urutan sebagian

[sunting | sunting sumber]

Untuk kategori yang timbul dari himpunan terurut parsial (dengan morfisme tunggal dari to iff ), maka formalismenya menjadi lebih sederhana: bagian adjoin adalah koneksi Galois dan monad adalah operator penutupan.

Adjunsi foget bebas

[sunting | sunting sumber]

Misalnya, karena menjadi funktor fogetful dari kategori Grp dari grup ke kategori Himpunan, dan maka menjadi fungsi grup bebas dari kategori himpunan ke kategori grup. Kemudian adalah ujung kiri dari . Dalam hal ini, monad terkait maka himpunan dan himpunan yang mendasari dari grup bebas . Peta satuan monad ini diberikan oleh peta

termasuk set apapun ke dalam himpunan dengan cara alami, sebagai pita panjang 1. Selanjutnya, perkalian dari monad ini adalah peta

terbuat dari rangkaian atau 'perataan' alami dari 'pita'. Maka berarti dua transformasi natural. Contoh sebelumnya tentang grup bebas dapat digeneralisasikan ke semua jenis aljabar dalam arti Varietas aljabar dalam aljabar universal. Jadi, setiap jenis aljabar menimbulkan monad pada kategori himpunan. Yang penting, jenis aljabar dapat dipulihkan dari monad (sebagai kategori aljabar Eilenberg–Moore), jadi monad juga dapat dilihat sebagai varietas umum dari aljabar universal.

Monad lain yang muncul dari sebuah adjunsi adalah saat adalah ujung fungsi pada kategori ruang vektor yang memetakan ruang vektor ke aljabar tensor , dan yang memetakan peta linier ke produk tensornya. Kami kemudian memiliki transformasi alami yang sesuai dengan penyematan ke dalam aljabar tensor, dan transformasi alami yang sesuai dengan peta dari untuk diperoleh hanya dengan memperluas semua produk tensor.

Monad kondensi

[sunting | sunting sumber]

Di bawah kondisi ringan, funktor yang tidak menggunakan adjoin kiri juga menghasilkan monad, yang disebut monad kondensi. Misalnya, inklusi

tidak menerima adjoint kiri. Codensity monadnya adalah monad pada set yang mengirimkan set X ke set ultrafilter pada X . Maka, contoh serupa dibahas oleh (Leinster 2013).

Aljabar untuk monad

[sunting | sunting sumber]

Dirumuskan monad pada kategori , wajar untuk mempertimbangkan aljabar- , yaitu, objek C yang dilanjutkan dari T ke cara yang kompatibel dengan satuan dan perkalian monad. Lebih formal, aljabar- T pada adalah objek dari dengan panah of disebut peta struktur dari aljabar seperti diagram

dan

Morfisme dari aljabar- adalah panah dari dari diagram

T membentuk kategori yang disebut kategori Eilenberg–Moore dan dilambangkan dengan . Misalnya, untuk grup bebas monad yang didiskusikan di atas, aljabar- T adalah himpunan X bersama dengan peta dari grup bebas yang dihasilkan oleh X menuju X dengan subjek asosiatif dan satuan. Struktur seperti itu setara dengan mengatakan bahwa X adalah kelompok itu sendiri.

Contoh lain adalah distribusi monad pada kategori himpunan. Hal tersebut ditentukan dengan urutan satu himpunan X ke himpunan fungsi dengan dukungan terbatas dan sehingga . Dengan memeriksa definisi, dapat ditunjukkan bahwa aljabar di atas monad distribusi setara dengan himpunan konveks, yaitu, himpunan dengan operasi pada tunduk pada aksioma yang menyerupai perilaku kombinasi linear cembung dalam ruang Euklides.[3]

Penggunaan

[sunting | sunting sumber]

Monad digunakan dalam pemrograman fungsional untuk mengekspresikan jenis komputasi sekuensial (terkadang dengan efek samping). Lihat monad dalam pemrograman fungsional, dan modul Wikibuku yang lebih berorientasi matematis Teori Haskell/Kategori.

Dalam logika kategoris, sebuah analogi telah ditarik antara teori monad-komonad, dan logika modal melalui operator penutupan, aljabar interior, dan hubungannya dengan model dari S4 dan logika intuisi.

Generalisasi

[sunting | sunting sumber]

Dimungkinkan untuk mendefinisikan monad dalam Kategori-2 . Monad yang dijelaskan di atas adalah monad untuk .

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ Barr, Michael; Wells, Charles (1985), "Toposes, Triples and Theories" (PDF), Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 278, hlm. 82 and 120, ISBN 0-387-96115-1. 
  2. ^ Klin; Salamanca, Iterated Covariant Powerset is not a Monad, doi:10.1016/j.entcs.2018.11.013alt=Dapat diakses gratis 
  3. ^ Świrszcz, T. (1974), "Monadic functors and convexity", Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22: 39–42, MR 0390019 , Jacobs, Bart (2010), "Convexity, Duality and Effects", Theoretical Computer Science, IFIP Advances in Information and Communication Technology, 323, hlm. 1–19, doi:10.1007/978-3-642-15240-5_1alt=Dapat diakses gratis, ISBN 978-3-642-15239-9 

Bacaan lebih lanjut

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]