Lompat ke isi

Isospektral: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.3
 
Baris 12: Baris 12:
* {{citation|last=Buser|first=Peter|title=Isospectral Riemann surfaces|journal=Annales de l'Institut Fourier |year=1986|
* {{citation|last=Buser|first=Peter|title=Isospectral Riemann surfaces|journal=Annales de l'Institut Fourier |year=1986|
url=http://archive.numdam.org/ARCHIVE/AIF/AIF_1986__36_2/AIF_1986__36_2_167_0/AIF_1986__36_2_167_0.pdf| volume=36|pages= 167–192|postscript=<!--none-->|doi=10.5802/aif.1054}}
url=http://archive.numdam.org/ARCHIVE/AIF/AIF_1986__36_2/AIF_1986__36_2_167_0/AIF_1986__36_2_167_0.pdf| volume=36|pages= 167–192|postscript=<!--none-->|doi=10.5802/aif.1054}}
* {{citation|first=Peter|last= Buser|first2= John|last2=Conway|first3= Peter|last3= Doyle|first4= Klaus-Dieter|last4= Semmler|
* {{citation|first= Peter|last= Buser|first2= John|last2= Conway|first3= Peter|last3= Doyle|first4= Klaus-Dieter|last4= Semmler|title= Some planar isospectral domains|journal= Int. Math. Res. Notices|year= 1994|pages= 391–400|url= http://www.geom.uiuc.edu/docs/research/drums/cover/cover.html|postscript= <!--none-->|accessdate= 2017-09-27|archive-date= 2019-02-20|archive-url= https://web.archive.org/web/20190220184404/http://www.geom.uiuc.edu/docs/research/drums/cover/cover.html|dead-url= yes}}
title=Some planar isospectral domains|journal=Int. Math. Res. Notices| year=1994|pages= 391–400|url=http://www.geom.uiuc.edu/docs/research/drums/cover/cover.html|postscript=<!--none-->}}
* {{citation|doi=10.1002/cpa.3160250302|last=McKean|first=H. P.|title=Selberg's trace formula as applied to a compact Riemann surface|journal=Comm. Pure Appl. Math.
* {{citation|doi=10.1002/cpa.3160250302|last=McKean|first=H. P.|title=Selberg's trace formula as applied to a compact Riemann surface|journal=Comm. Pure Appl. Math.
|volume=25|year=1972|issue=3|pages= 225–246|postscript=<!--none-->}}
|volume=25|year=1972|issue=3|pages= 225–246|postscript=<!--none-->}}

Revisi terkini sejak 14 April 2023 18.13

Dalam matematika, dua operator linear disebut isospektral atau kospektral jika mereka memiliki spektrum yang sama. Secara keseluruhan, mereka memiliki beberapa set dari nilai eigen, saat itu dihitung dengan multiplisita.

Teori operator isospektral bergantung pada tanda yang berbeda pada apakah ruang tersebut adalah dimensi terbatas atau tak terbatas. Dalam dimensi terbatas, hal tersebut secara esensial sejalan dengan matriks-matriks persegi.

Referensi

[sunting | sunting sumber]