Lompat ke isi

Aljabar linear: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Baris 936: Baris 936:
y_3\\
y_3\\
\end{bmatrix}</math>
\end{bmatrix}</math>

Untuk data di atas, kita mempunyai
<math>\begin{bmatrix}
1 & -1 & 1 & -1\\
1 & 0 & 0 & 0\\
1 & 1 & 1 & 1\\
1 & 2 & 4 & 8\\
\end{bmatrix}</math><math>\begin{bmatrix}
a_0\\
a_1\\
a_2\\
a_3\\
\end{bmatrix}</math> = <math>\begin{bmatrix}
0\\
0\\
0\\
6\\
\end{bmatrix}</math>

<math>\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
1 & 0 & 0 & 0 & 0\\
1 & 1 & 1 & 1 & 0\\
1 & 2 & 4 & 8 & 6\\
\end{bmatrix}</math>
Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama

<math>\begin{bmatrix}
1 & -1 & 1 & -1 & 0\\
1 & 1 & -1 & 1 & 0\\
1 & 2 & 0 & 2 & 0\\
1 & 3 & 3 & 9 & 6\\
\end{bmatrix}</math>
Baris ke-3 dibagi dengan 2
Baris ke-4 dibagi dengan 3








Revisi per 7 Juli 2006 08.38

Aljabar linier adalah bidang studi matematika yang mempelajari sistem persamaan linier dan solusinya, vektor, serta transformasi linier. Matriks dan operasinya juga merupakan hal yang berkaitan erat dengan bidang aljabar linier.

Persamaan Linier & Matriks

Persamaan linier dapat dinyatakan sebagai matriks. Misalnya persamaan:

3x1 + 4x2 − 2 x3 = 5
x1 − 5x2 + 2x3 = 7
2x1 + x2 − 3x3 = 9

dapat dinyatakan dalam augmented matrix sebagai berikut

Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk augmented matrix ke dalam bentuk row-echelon tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.

Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :

a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
am1x1 + am2x2 + ... + amnxn = 0

Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

Penyelesaian Persamaan Linear dengan Matriks


Bentuk Row-Echelon

Matriks dapat dikatakan Row-Echelon apabila memenuhi persyaratan berikut :

1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Reduced Row-Echelon

Contoh: syarat 1: baris pertama disebut leading 1

syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2

syarat 3: baris pertama dan ke-2 memenuhi syarat 3

syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Reduced Row-Echelon

Operasi eliminasi Gauss

eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Row-Echelon. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam augmented matrix dan mengoperasikannya. Setelah menjadi matriks Row-Echelon, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Contoh: Diketahui persamaan linear

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Operasikan Matriks tersebut

Baris ke 2 dikurangi baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 ditambah 3 kali baris ke 2

Baris ke 3 dibagi dengan 3 (Matriks menjadi Row-Echelon)

Maka mendapatkan 3 persamaan linear baru yaitu

Kemudian lakukan substitusi balik maka didapatkan:

Jadi nilai dari , ,dan

Operasi eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Reduced Row-Echelon. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam augmented matrix dan mengoperasikannya. Setelah menjadi matriks Reduced Row-Echelon, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.

Contoh: Diketahui persamaan linear

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Operasikan Matriks tersebut

Baris ke 2 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 3 kali baris ke 2

Baris ke 3 dibagi 8 dan baris ke 2 dibagi -1

Baris ke 2 dikurangi 4 kali baris ke 3

Baris ke 1 dikurangi 3 kali baris ke 3

Baris ke 1 dikurangi 2 kali baris ke 2 (Matriks menjadi "Reduced Row-Echelon")

Maka didapatkan nilai dari , ,dan

Operasi Dalam Matriks


Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.

Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.

Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :

a.) A + B = B + A
b.) A + ( B + C ) = ( A + B ) + C
c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar

Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj

Matriks Balikan (Inverse)


JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau inverse dari A dan dapat dituliskan ( B sama dengan inverse A ). Matriks B juga mempunyai inverse yaitu A maka dapat dituliskan . Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah inverse dari A maka B = C.

Matriks A = dapat di-inverse apabila ad - bc ≠ 0

Dengan Rumus =

Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-inverse dan


Contoh 1: Matriks

A = dan B =

AB = = = I (matriks identitas)

BA = = = I (matriks identitas)

Maka dapat dituliskan bahwa (B Merupakan inverse dari A)


Contoh 2: Matriks

A = dan B =

AB = =

BA = =

Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.

Matriks Diagonal, Segitiga, dan Matriks Simetri


Matriks Diagonal

Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :

secara umum matriks n x n bisa ditulis sebagai


Matriks diagonal dapat dibalik dengan menggunakan rumus berikut :

=

jika D adalah matriks diagonal dan k adalah angka yang positif maka

=

Contoh :

A=

maka

=

Matriks Segitiga

Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.

Matriks segitiga

Matriks segitiga bawah

Teorema Transpose pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.

Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.

Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol.

Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks segitiga atas adalah matriks segitiga atas.

Contoh :

Matriks segitiga yang bisa di inverse

A =

Inversenya adalah

=

Matriks yang tidak bisa di inverse

B =


Matriks Simetris

Matriks kotak A disebut simetris jika

Contoh matriks simetris

Teorema

Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka

adalah simetris

A + B dan A - B adalah simetris

kA adalah simetris

Determinan

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.


Sebagai contoh, kita ambil matriks A2x2

A = tentukan determinan A

untuk mencari determinan matrik A maka,

detA = ad - bc

Determinan dengan Ekspansi Kofaktor


Determinan dengan Minor dan kofaktor

A = tentukan determinan A

Pertama buat minor dari a11

M11 = = detM = a22a33 x a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah cofactor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

Begitu juga dengan minor dari a32

M32 = = detM = a11a23 x a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

det(A) = a11C11+a12C12+a13C13

Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a12 + a13
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

det(A) = = 1 - 2 + 3 = 1(-3) - 2(-8) + 3(-7) = -8

Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a21 + a31
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) = = 1 - 4 + 3 = 1(-3) - 4(-8) + 3(-7) = 8

Adjoint Matriks 3 x 3

Bila ada sebuah matriks A3x3

A =

Kofaktor dari matriks A adalah

C11 = 12 C12 = 6 C13 = -16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16

maka matriks yang terbentuk dari kofaktor tersebut adalah

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) =

Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal:

Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

x1 + x3 = 6
-3x1 + 4x2 + 6x3 = 30
-x1 - 2x2 + 3x3 = 8

Jawab:

bentuk matrik A dan b

A = b =

kemudian ganti kolom j dengan matrik b

A1 = A2 = A3 =

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

Tes Determinan untuk Invertibilitas

Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,

R=Er...E2 E1 A

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A adalah invertibel, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah invertibel. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak invertibel.

Contoh Soal :

A=

karena det(A) = 0. Maka A adalah invertibel.

Mencari determinan dengan cara Sarrus

A = tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + edh) - (bdi + afh + ceg)

Menghitung Inverse dari Matrix 3 x 3

A =

kemudian hitung kofaktor dari matrix A
C11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

menjadi matrix kofaktor

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor diatas, sehingga menjadi

adj(A) =

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A


Vektor dalam Ruang Euklides

Euclidan n-Space



Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.

Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istialh grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.

Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.


u1 = v1 u2 = v2 un = vn

Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v2, u2 + v2, ...., un + vn)

Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh


ku = (k u1, k u2,...,k un)

Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vector


0 = (0, 0,...., 0)

Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh


-u = (-u1, -u2, ...., -un)

Perbedaan dari vector dalam Rn dijelaskan oleh


v – u = v + (-u)

atau, dalam istilah komponen,


v – u = (v1-u1, v2-u2, ...., vn-un)

Perkalian dot product didefinisikan sebagai




Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

Data Eksperimen – Ilmuwan melakukan expereimen dan membuat n pengukuran numerical setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector dalam dalam setiap adalah nilai yang terukur.

Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel dalam setiap adalah jumlah truk dalam depot pertama dan adalah jumlah pada depot kedua., dan seterusnya.

Sirkuit Elektris – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam dan tegangan output bisa ditulis sebagai. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vector input dalam ke vector keluaran dalam.

Gambar Grafis – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturation, dan brightness dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.

Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel dalam setiap angka adalah output dari sektor individual.

Sistem Mekanikal – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalah dan kecepatan mereka adalah . Informasi ini bisa direpresentasikan sebagai vector Dalam . Vektor ini disebut kondisi dari sistem partikel pada waktu t.

Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi


Menghitung Panjang vektor u dalam ruang

jika u =


Maka Panjang vektor u




dan Menghitung jarak antara vektor u dengan vektor v



Newton Form

interpolasi polinominal p(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0} ditulis secara standar , tetapi ada juga yang menggunakan penulisan bentuk lain , contohnya : kita mencari interpolasi titik dengan data (x_{0},y_{0}),(x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3}) , jika kita tuliskan : p(x)= a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0} , dalama bentuk equivalent : p(x)=a_{3}(x-x_{0})^{3}+


Interpolasi Polinomial


Dengan menganggap masalah pada interpolasi polinomial untuk deret n + 1 di titik (x0,y0)...., (xn,yn). Maka, kita diminta untuk menemukan kurva p(x) = am + am-1 + ... + a1x + a0 dari sudut minimum yang melewati setiap dari titik data. Kurva ini harus memenuhi

karena xi diketahui, ini akan menuju pada sistem matrik di bawah ini


=

Ingat bahwa ini merupakan sistem persegi dimana n = m. Dengan menganggap n = m memberikan sistem di bawah ini untuk koefisien interpolasi polinomial p(x):

= (1)

Matrix di atas diketahui sebagai Matrix Vandermonde; kolom j merupakan elemen pangkat j-1. Sistem linier pada (1) disebut menjadi Sistem Vandermonde.


Contoh soal:

Cari interpolasi polinomial pada data (-1,0),(0,0),(1,0),(2,6) menggunakan Sistem Vandermonde.

Jawab:

Bentuk Sistem Vandermonde(1):

=

Untuk data di atas, kita mempunyai =

Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama

Baris ke-3 dibagi dengan 2 Baris ke-4 dibagi dengan 3