Lompat ke isi

Algoritma Strassen: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
HerculeBot (bicara | kontrib)
k r2.7.1) (bot Menambah: fa:الگوریتم استراسن
Xqbot (bicara | kontrib)
Baris 123: Baris 123:
[[fr:Algorithme de Strassen]]
[[fr:Algorithme de Strassen]]
[[it:Algoritmo di Strassen]]
[[it:Algoritmo di Strassen]]
[[ja:Strassenのアルゴリズム]]
[[ja:シュトラッセンのアルゴリズム]]
[[ko:슈트라센 알고리즘]]
[[ko:슈트라센 알고리즘]]
[[pt:Algoritmo de Strassen]]
[[pt:Algoritmo de Strassen]]

Revisi per 20 September 2011 05.50

Algoritma Strassen dalam matematika, khususnya aljabar linear adalah sebuah algoritma yang dinamakan oleh Volker Strassen yang merupakan sebuah algoritma yang digunakan untuk perkalian matriks yang secara asimtot lebih cepat dari pada algoritma perkalian matriks standar dan sangat berguna dalam penggunaanya untuk matriks yang berukuran besar.

Sejarah

Volker Strassen mempublikasikan algoritma Strassen tahun 1969. Meskipun algoritma ini hanya sedikit lebih cepat daripada algoritma standar untuk perkalian matriks, dialah yang pertama menjelaskan bahwa eliminasi Gauss adalah tidak optimal. Dalam tulisannya, dia memulai penelitian untuk melengkapi algoritma-algoritma yang lebih cepat seperti algoritma Winograd dari Shmuel Winograd pada 1980, dan yang lebih kompleks algoritma Coppersmith-Winograd dipublikasikan pada 1987.

Algoritma

Misalkan A, B dua matriks persegi pada ring R. Kita ingin menghitung produk matriks C sebagai

Jika matriks A, B bukan bertipe 2n x 2n kita isi baris-baris dan kolom-kolom yang kosong dengan nol.

Kita partisi A, B dan C kedalam matriks blok yang berukuran sama.

dengan

lalu

Dengan konstruksi ini kita tidak mengurangi jumlah dari perkalian-perkalian. Kita masih memerlukan 8 perkalian-perkalian untuk menghitung matriks-matriks Ci,j , dengan jumlah perkalian yang sama kita perlukan ketika menggunakan matriks perkalian standar.

Sekarang sampai pada bagian terpenting. Kita tetapkan matriks baru

Yang kemudian digunakan untuk mengekspresikan Ci,j dalam bentuk Mk. Karena kita telah mendefenisikan Mk kita bisa mengeliminasi satu perkalian matriks dan mengurangi jumlah perkalian-perkalian menjadi 7 (satu perkalian matriks untuk tiap Mk) dan ekspresi Ci,j sebagai

Kita iterasikan bagian diatas ke-n kali proses sampai submatriks-submatriks menjadi angka-angka.

Algoritma Strassen pada penerapannya mengubah metode standar dari perkalian matriks agar submatriks-submatriks yang cukup kecil menjadi lebih efisien. Fakta-fakta agar algoritma Strassen lebih efisien bergantung pada implementasi khusus dan hardware.

Analisi Numerik

Perkalian matriks standar melakukan

perkalian-perkalian dari elemen-elemen dalam ring R. Kita anggap penjumlahan-penjumlahan diperlukan karena bergantung pada R, yang bisa jauh lebih cepat daripada perkalian-perkalian dalam implementasi pada komputer terutama jika ukuran dari entri matriks melebihi ukuran kata dari mesin.

Dengan algoritma Strassen kita bisa mengurangi jumlah perkalian-perkalian

.

Pengurangan dalam jumlah perkalian bagaimanapun akan sampai saat pilihan dari sedikit pengurangan kestabilan numerik.

Contoh program sederhana pada Matlab

function c = strass(a,b)
nmin = 2;
%misalkan matriks a dan b berukuran 2 x 2
[n,n] = size(a);
if n <= nmin;
   c = a*b;
else
   %entri matriks a dan b berukuran n x n; n=2^k; k=2,3,...
   %misalkan entri matriks a dan b berukuran n=2^2 atau 4 x 4
   a11=a(1:2,1:2); a12=a(1:2,3:4); a21=a(3:4,1:2); a22=a(3:4,3:4);
   b11=b(1:2,1:2); b12=b(1:2,3:4); b21=b(3:4,1:2); b22=b(3:4,3:4);
   p1 = (a11+a22)*(b11+b22);
   p2 = (a21+a22)*b11;
   p3 = a11*(b12-b22);
   p4 = a22*(b21-b11);
   p5 = (a11+a12)*b22;
   p6 = (a21-a11)*(b11+b12);
   p7 = (a12-a22)*(b21+b22);
   c = [p1+p4-p5+p7 p3+p5; p2+p4 p1-p2+p3+p6];
end

Catatan: program diatas hanya untuk matriks berukuran 1x1, 2x2, 4x4. Untuk matriks yang berukuran lebih besar, masih diperlukan penyempurnaan. Agar programnya bisa berjalan.

Referensi

Pranala luar