Mekanika statistika: Perbedaan antara revisi
Tidak ada ringkasan suntingan |
Iqbal Fauzi (bicara | kontrib) Tidak ada ringkasan suntingan |
||
Baris 56: | Baris 56: | ||
== Postulat Dasar == |
== Postulat Dasar == |
||
Postulat dasar dalam mekanika statistika |
Postulat dasar dalam mekanika statistika adalah |
||
" Semua keadaan mikro yang mungkin muncul dari suatu sistem terisolasi dalam keadaan keseimbangan memiliki peluang sama". |
|||
Postulat ini merupakan asumsi dasar dalam mekanika statistika - hal itu menyatakan bahwa sistem dalam kesetimbangan tidak memiliki preferensi untuk setiap keadaan mikro yang tersedia. Suatu sistem terdapat Ω keadaan mikro pada energi tertentu, peluang untuk menemukan sistem dalam keadaan mikro tertentu adalah p = 1/Ω. |
|||
Postulat dasar ini diperlukan karena memungkinkan seseorang untuk menyimpulkan bahwa sistem berada dalam kesetimbangan, keadaan makro merupakan dampak dari kumpulan jumlah keadaan mikro yang sering muncul dan juga keadaan makro yang memiliki peluang terbesar dari suatu sistem. |
|||
Postulat dasar ini dibenarkan sebagian, untuk sistem klasik,Teorema Liouville (Hamilton) menyatakan bahwa jika distribusi sistem poin melalui ruang fase diakses adalah seragam pada beberapa waktu, tetap begitu pada waktu setelahnya. Pembenaran yang serupa untuk sistem diskrit dijelaskan dalam mekanisme keseimbangan rinci. |
|||
Hal ini memungkinkan untuk mendefinisikan fungsi informasi (dalam konteks teori informasi): |
|||
:<math> |
|||
I = - \sum_i \rho_i \ln\rho_i = \langle -\ln \rho \rangle. |
|||
</math> |
|||
Jika semua probabilitas (ρi) adalah sama, I adalah maksimal, dan kita memiliki informasi yang minimal tentang sistem tersebut. Ketika informasi yang kita miliki maksimal (yaitu, satu rho sama dengan satu dan sisanya ke nol, sehingga kita mengetahui keadaan yang ada di dalam sistem), fungsi ini merupakan fungsi minimal. |
|||
Fungsi informasi ini sama dengan fungsi pengurangan entropi dalam termodinamika. |
|||
Mark Srednicki berpendapat bahwa postulat dasar dapat diturunkan hanya dengan dugaan Berry (bernama Michael Berry) berlaku untuk sistem yang bersangkutan. <ref>Srednicki, Mark. "Chaos and Quantum Thermalization." [http://pre.aps.org/abstract/PRE/v50/i2/p888_1 Physical Review E 50 (1994) 888]. ''ArXiv pre-print'': [http://arxiv.org/abs/cond-mat/9403051 cond-mat/9403051]</ref><ref>Srednicki, Mark. "Thermal Fluctuations in Quantized Chaotic Systems." [http://iopscience.iop.org/0305-4470/29/4/003/ Journal of Physics A29 (1996) L75-L79]. ''ArXiv pre-print'': [http://arxiv.org/abs/chao-dyn/9511001 chao-dyn/9511001]</ref> Dugaan Berry dipercaya hanya untuk sistem yang kacau, dan mengatakan bahwa energi dalam keadaan nilai eigen didistribusikan sebagai variabel Gaussian random. Karena semua sistem realistis dengan lebih dari beberapa derajat kebebasan diharapkan menjadi kacau, ini menempatkan fundamental mendalilkan pada pijakan perusahaan. Dugaan Berry juga ditampilkan setara dengan prinsip teori informasi bias minimal. <ref>Jarzynski, C. " |
|||
Berry’s conjecture and information theory." [http://pre.aps.org/abstract/PRE/v56/i2/p2254_1 Physical Review E 56, 2254 (1997)]. ''ArXiv pre-print'': [http://arxiv.org/abs/chao-dyn/9703014 chao-dyn/9703014]</ref> |
|||
== Ensembel Statistika == |
== Ensembel Statistika == |
Revisi per 6 Maret 2012 03.18
Mekanika statistika adalah aplikasi teori probabilitas, yang memasukkan matematika untuk menangani populasi besar, ke bidang mekanika, yang menangani gerakan partikel atau objek yang dikenai suatu gaya. Bidang ini memberikan kerangka untuk menghubungkan sifat mikroskopis atom dan molekul individu dengan sifat makroskopis atau limbak (bulk) materi yang diamati sehari-hari, dan menjelaskan termodinamika sebagai produk alami dari statistika dan mekanika (klasik dan kuantum) pada tingkat mikroskopis. Mekanika statistika khususnya dapat digunakan untuk menghitung sifat termodinamika materi limbak berdasarkan data spektroskopis dari molekul individual.
Kemampuan untuk membuat prediksi makroskopis berdasarkan sifat mikroskopis merupakan kelebihan utama mekanika statistika terhadap termodinamika. Kedua teori diatur oleh hukum kedua termodinamika melalui media entropi. Meskipun demikian, entropi dalam termodinamika hanya dapat diketahui secara empiris, sedangkan dalam mekanika statistika, entropi merupakan fungsi distribusi sistem pada kondisi mikro.
Pendahuluan
Masalah mendasar termodinamika statistik adalah ..
Dasar-Dasar
Topik utama yang tercakup dalam termodinamika statistik meliputi:
- Keadaan mikro dan konfigurasi
- Hukum Distribusi Boltzmann
- Fungsi partisi, Integral konfigurasi atau fungsi konfigurasi partisi
- Kesetimbangan termodinamika - termal, mekanik, kimia
- Derajat bebas internal - rotasi, vibrasi, eksitasi elektronik, dll
- Kapasitas Kalor - padatan einstein, gas poliatomik, dll
- Teorema Kalor Nernst
- Fluktuasi
- Paradoks Gibbs
- Degenerasi
Terakhir, dan yang paling penting adalah defenisi entropi dari suatu sistem termodinamika dari perspektif statistika disebut entropi statistika, dan dididefenisikan sebagai:
dimana
- kB adalah konstanta Boltzmann 1.38066×10−23 J K−1 dan
- adalah jumlah keadaan mikro sesuai dengan keadaan makro termodinamika yang diamati
Persamaan ini hanya berlaku jika dapat diperoleh keadaan mikro yang sama (keadaan mikro mempunyai probabilitas yang sama)
Distribusi Boltzmann
Jika sistem besar distribusi Boltzmann dapat digunakan (distribusi Boltzmann merupakan hasil perkiraan)
dimana adalah jumlah partikel yang terdapat pada level i atau jumlah keadaan mikro yang sesuai dengan keadaan makro i; adalah energi i; T adalah temperatur; dan adalah konstanta Boltzmann.
Jika N adalah jumlah total partikel atau keadaan, distribusi kerapatan probabilitas:
dimana jumlah pada penyebut adalah keseluruhan level.
Sejarah
Pada Tahun 1738, seorang ilmuan Fisika dan Matematika dari Swiss yang bernama Daniel Bernoulli mempublikasi sebuah dasar bagi teori kinetik gas yang disebut dengan Hydrodynamica. Dalam publikasinya ini, Bernouli mengemukakan bahawa gas terdiri dari sejumlah besar molekul yang bergerak secara acak sehingga udara panas yang dapat dirasakan dijelaskan sebagai energi kinetik dari gerakan gas tersebut yang mengenai permukaan kulit kita.
Di tahun 1859, Setelah membaca sebuah tulisan tentang difusi molekul oleh Rudolf Clausius, fisikawan Skotlandia James Clerk Maxwell merumuskan sebuah teori yang disebut dengan distribusi Maxwell (Maxwell distribution) dari kecepatan sebuah molekul. Teori ini berisi tentang molekul dengan jumlah tertentu akan memiliki kecepatan tertentu dengan kisaran tertentu pula, hasil ini sekaligus dijadikan sebagai hukum yang pertama statistik didalam fisika. Lima tahun kemudian (1864), Seorang mahasiswa muda dari Vienna bernama Ludwig Boltzmann menghabiskan sebagian besar hidupnya untuk mengembangkan teori distribusi Masxwell (setelah membaca tulisan-tulisan dari Maxwell).
Hasil diatas, digunakan sebagai dasar-dasar termdinamika statistik yang diperkenalkan pada akhir 1800-an oleh Maxwell, Boltzmann, Max Planck, Clausius, and Josiah Willard Gibbs yang menjelaskan dan juga menerapkan teori atom statistik dan kuantum untuk sistem gas ideal. Dimana Maxwell dan Boltzmann merupakan penggagas awal, dan juga mencapai sebuah kesimpulan yang sama mengenai sifat statistik dari sistem gas ideal. Salahsatu sumbangsih dari Boltzmann ("ayah" termodinamika statistik) ialah penurunannya tentang Entropi (S) dan multiplisitas (Ω), penjelasan tentang jumlah kedaan mikroskopis (microstates) menghasilkan keadaan makroskopik (macrostate) yang saling bersesuaian untuk sistem tertentu.
Postulat Dasar
Postulat dasar dalam mekanika statistika adalah " Semua keadaan mikro yang mungkin muncul dari suatu sistem terisolasi dalam keadaan keseimbangan memiliki peluang sama".
Postulat ini merupakan asumsi dasar dalam mekanika statistika - hal itu menyatakan bahwa sistem dalam kesetimbangan tidak memiliki preferensi untuk setiap keadaan mikro yang tersedia. Suatu sistem terdapat Ω keadaan mikro pada energi tertentu, peluang untuk menemukan sistem dalam keadaan mikro tertentu adalah p = 1/Ω.
Postulat dasar ini diperlukan karena memungkinkan seseorang untuk menyimpulkan bahwa sistem berada dalam kesetimbangan, keadaan makro merupakan dampak dari kumpulan jumlah keadaan mikro yang sering muncul dan juga keadaan makro yang memiliki peluang terbesar dari suatu sistem.
Postulat dasar ini dibenarkan sebagian, untuk sistem klasik,Teorema Liouville (Hamilton) menyatakan bahwa jika distribusi sistem poin melalui ruang fase diakses adalah seragam pada beberapa waktu, tetap begitu pada waktu setelahnya. Pembenaran yang serupa untuk sistem diskrit dijelaskan dalam mekanisme keseimbangan rinci. Hal ini memungkinkan untuk mendefinisikan fungsi informasi (dalam konteks teori informasi):
Jika semua probabilitas (ρi) adalah sama, I adalah maksimal, dan kita memiliki informasi yang minimal tentang sistem tersebut. Ketika informasi yang kita miliki maksimal (yaitu, satu rho sama dengan satu dan sisanya ke nol, sehingga kita mengetahui keadaan yang ada di dalam sistem), fungsi ini merupakan fungsi minimal.
Fungsi informasi ini sama dengan fungsi pengurangan entropi dalam termodinamika. Mark Srednicki berpendapat bahwa postulat dasar dapat diturunkan hanya dengan dugaan Berry (bernama Michael Berry) berlaku untuk sistem yang bersangkutan. [1][2] Dugaan Berry dipercaya hanya untuk sistem yang kacau, dan mengatakan bahwa energi dalam keadaan nilai eigen didistribusikan sebagai variabel Gaussian random. Karena semua sistem realistis dengan lebih dari beberapa derajat kebebasan diharapkan menjadi kacau, ini menempatkan fundamental mendalilkan pada pijakan perusahaan. Dugaan Berry juga ditampilkan setara dengan prinsip teori informasi bias minimal. [3]
Ensembel Statistika
Perumuan modern mekanika statistika didasarkan pada ..
Jalan Acak
Kajian tentang polimer rantai panjang telah menjadi sumber masalah dalam dunia mekanika statistik sejak sekitar tahun 1950-an. Salah satu alasan para ilmuwan tertarik dalam penelitian mereka adalah bahwa persamaan yang mengatur perilaku suatu rantai polimer yang independen dari rantai kimia. Terlebih lagi, persamaan yang mengatur ternyata sebuah jalan acak atau jalan difusif dalam ruang. Bahkan, persamaan Schrödinger sendiri merupakan persamaan difusi dalam waktu imajiner, .
Jalan Acak dalam Waktu
Contoh pertama dari jalan acak adalah sesuatu dalam ruang angkasa, dimana partikel mengalami gerak acak karena kekuatan eksternal dalam medium sekitarnya. Sebuah contoh lain yaitu butiran sari tepung air dalam gelas. Jika seandainya orang bisa “mewarnai” jalan yang telah ditempuh oleh serbuk sari, maka jalan yang tampak adalah suatu jalan yang acak.
Mempertimbangkan sebuah masalah kecil, jalan bergerak sepanjang jalur 1D dalam arah x. Misalkan jalan bergerak baik jarak + atau - pada jarak tetap b, tergantung pada sisi koin yang dilempar, apakah muncul kepala atau ekor. Mari kita mulai dengan mempertimbangkan statistik dari langkah jalan kecil yang diambil (dimana adalah langkah ke-i yang diambil):
- ;karena probabilitas apriori sama
Persamaan yang kedua dikenal sebagai fungsi korelasi. Delta adalah delta Kronecker yang menyatakan bahwa jika indeks i dan j berbeda, maka hasilnya adalah 0, tetapi jika i = j maka delta Kronecker adalah 1, sehingga fungsi korelasi mengembalikan nilai . Ini masuk akal, karena jika i = j maka kita mempertimbangkan langkah yang sama. Sebaliknya secara trivial maka dapat ditunjukkan bahwa perpindahan rata-rata jalan pada sumbu-x adalah 0;
Karena yang dinyatakan adalah 0, maka jumlah dari 0 masih tetap 0. Hal ini juga dapat ditunjukkan menggunakan metode yang sama seperti yang ditunjukkan di atas untuk menghitung akar mean nilai kuadrat dari masalah. Hasil perhitungan ini diberikan di bawah ini:
Dari persamaan difusi dapat ditunjukkan bahwa jarak partikel bergerak menyebar di media adalah sebanding dengan akar dari waktu sistem telah menyebar, di mana proporsionalitas konstan adalah akar dari difusi konstan. Hubungan di atas, meskipun secara bentuk berbeda tapi mengindikasikan mirip secara fisik, dimana N adalah jumlah dari gerak pindah (secara bebas dihubungkan dengan waktu) dan b adalah karakteristik panjang gerak. Sebagai konsekuensinya, kita dapat mempertimbangkan difusi sebagai proses jalan acak.
Jalan Acak dalam Ruang
Jalan acak dalam ruang dapat dianggap sebagai snapshot dari jalan yang diambil oleh alat bantu jalan acak dalam waktu. Salah satu contoh adalah konfigurasi spasial polimer rantai panjang.
Ada dua jenis jalan acak dalam ruang : jalan acak self-avoinding, dimana ikatan antar rantai polimer berinteraksi dan tidak tumpang tindih dalam ruang, dan jalan acak pure (murni), di mana ikatan antar rantai polimer tidak berinteraksi dan ikatan terletak bebas di atas satu sama lain. Jenis pertama adalah yang paling digunakan untuk sistem fisik, tapi larutannya sulit untuk dapat menggunakan prinsip pertama.
Dengan mempertimbangkan sebuah hubungan secara bebas, rantai polimer yang tidak berinteraksi, vektor end-to-end adalah dimana adalah posisi vektor dari ikatan ke-i dalam rantai. Sebagai hasil dari teorema limit pusat, jika N >> 1 kemudian kita anggap distribusi Gaussian untuk vektor end-to-end. Kita dapat membuat pernyataan statistik dari ikatan itu sendiri;
;oleh isotropi ruang
;semua ikatan dalam rantai tersebut tidak berkorelasi satu sama lain
Menggunakan statistik dari ikatan individu, maka dengan mudah menunjukkan bahwa dan . Perhatikan hasil terakhir adalah sama dengan yang ditemukan jalan acak pada waktunya.
Dengan asumsi seperti yang telah dinyatakan, bahwa distribusi vektor end-to-end untuk jumlah yang sangat besar dari rantai polimer yang identik gaussian, distribusi probabilitas memiliki bentuk sebagai berikut:
Apa gunanya ini untuk kita? Ingat bahwa menurut prinsip probabilitas apriori yang kemungkinan sama, jumlah microstates, Ω, pada beberapa nilai fisik berbanding lurus dengan distribusi probabilitas pada saat nilai fisik itu, yaitu;
dimana c adalah konstanta proporsionalitas yang berubah-ubah. Mengingat fungsi distribusi, ada maxima yang sesuai . Secara fisik jumlah ini, microstates yang memiliki vektor end-to-end dari 0 lebih baik daripada microstate lainnya. Sekarang dengan mempertimbangkan
dimana F adalah energi bebas Helmholtz , adalah trivial untuk menunjukkan bahwa
Sebuah pegas hooke!
Hasil ini dikenal sebagai entropic spring result dan jumlah adalah setelah peregangan (stretching) rantai polimer anda melakukan kerja pada sistem untuk menariknya (lebih disukai) dari keadaan kesetimbangannya. Contoh yang umum adalah pita elastis, terdiri dari polimer rantai panjang (karet). Dengan peregangan (stretching) pita elastis anda melakukan kerja pada sistem dan pita berperilaku seperti semi konvensional, kecuali tidak seperti halnya semi logam, semua kerja yang dilakukan muncul sebagai energi termal, banyak dalam kasus termodinamika seperti mengompresi gas ideal dalam piston.
Mungkin pada awalnya akan mengejutkan bahwa kerja yang dilakukan pada peregangan (stretching) rantai polimer dapat berhubungan sepenuhnya untuk perubahan entropi dari sistem sebagai akibat dari peregangan (stretching). Namun, ini adalah karakteristik dari sistem yang tidak menyimpan energi apapun sebagai energi potensial, seperti gas ideal. Bahwa sistem tersebut sepenuhnya didorong oleh perubahan entropi pada suhu tertentu, bisa dilihat ketika sebuah kasus yang boleh melakukan kerja pada lingkungan sekitarnya (seperti ketika sebuah pita elastis melakukan kerja pada lingkungan dengan kontraktor, atau gas ideal melakukan kerja pada lingkungan dengan memperluas). Karena perubahan energi bebas dalam kasus tersebut berasal sepenuhnya dari perubahan entropi bukan internal (potensial) konversi energi, dalam kasus kerja, keduanya dapat ditarik seluruhnya dari energi termal dalam polimer, dengan efisiensi 100% dari konversi untuk energi termal untuk kerja . pada gas ideal dan polimer, hal ini dimungkinkan oleh kenaikan bahan entropi dari kontraksi yang membuat hilangnya entropi dari penyerapan energi panas, dan pendinginan material.
Termodinamika Klasik dan Termodinamika Statistika
Sebagai contoh dari sudut pandang termodinamika klasik, orang mungkin bertanya apa itu sebuah sistem termodinamika dari molekul-molekul gas, seperti ammonia NH3 yang menentukan karakteristik energi bebas dari senyawa tersebut? termodinamika klasik tidak memberikan jawaban tersebut. Apabila kita diberikan data spektroskopi dari kumpulan molekul-molekul gas, seperti panjang ikatan, sudut ikatan, rotasi ikatan dan fleksibilitas dari ikatan-ikatan dalam NH3, kita akan melihat bahwa energi bebas tidak lain adalah hal-hal tersebut. Untuk membuktikan kebenaran ini, kita perlu menjembatani pemisah antara bidang mikroskopik dari atom-atom dan molekul-molekul dan bidang makroskopik dari termodinamika klasik. Dari fisika, mekanika statistik menyediakan semacam jembatan dengan mengajarkan kita bagaimana untuk memahami sistem termodinamika sebagai suatu kesatuan dari banyak unit. Secara lebih spesifik hal tersebut menunjukkan bagaimana parameter-parameter termodinamika dari suatu sistem, seperti temperatur dan tekanan dapat diinterpretasikan dalam hubungan parameter-parameter deskriptif dari elemen utama atom-atom dan molekul-molekul.
Dalam sebuah sistem yang dibatasi, karakteristik terpenting unit-unit mikroskopik ini yaitu energi-energinya yang terkuantisasi. Hal tersebut dimana energi dapat menjadi sebuah sistem makroskopik membentuk sebuah kontinum virtual dari banyak kemungkinan, energi-energi tersebut terbuka terhadap berbagai komponen-komponen submikroskopik yang terbatas untuk satu set diskontinu dari alternatif yang terhubung dengan nilai-nilai integral dari beberapa bilangan kuantum.
Rujukan
- Chandler, David (1987). Introduction to Modern Statistical Mechanics. Oxford University Press. ISBN 0-19-504277-8.
- Huang, Kerson (1990). Statistical Mechanics. Wiley, John & Sons, Inc. ISBN 0-471-81518-7.
- Kroemer, Herbert; Kittel, Charles (1980). Thermal Physics (2nd ed.). W. H. Freeman Company. ISBN 0-7167-1088-9.
- McQuarrie, Donald (2000). Statistical Mechanics (2nd rev. ed.). University Science Books. ISBN 1-891389-15-7.
- Dill, Ken; Bromberg, Sarina (2003). Molecular Driving Forces. Garland Science. ISBN 0-8153-2051-5.
Pranala luar
- (Inggris) "Philosophy of Statistical Mechanics", Lawrence Sklar, Stanford Encyclopedia of Philosophy.
- ^ Srednicki, Mark. "Chaos and Quantum Thermalization." Physical Review E 50 (1994) 888. ArXiv pre-print: cond-mat/9403051
- ^ Srednicki, Mark. "Thermal Fluctuations in Quantized Chaotic Systems." Journal of Physics A29 (1996) L75-L79. ArXiv pre-print: chao-dyn/9511001
- ^ Jarzynski, C. " Berry’s conjecture and information theory." Physical Review E 56, 2254 (1997). ArXiv pre-print: chao-dyn/9703014