Pengguna:Dedhert.Jr/Uji halaman 17
Fungsi |
---|
x ↦ f (x) |
Contoh domain dan kodomain fungsi |
Kelas/sifat |
Konstruksi |
Perumuman |
Dalam matematika, fungsi merupakan pemetaan setiap anggota suatu himpunan yang disebut sebagai domain atau variabel bebas, kepada anggota himpunan yang lain, disebut sebagai kodomain atau variabel terikat. Fungsi ini seringkali dilambangkan dengan f, g, dan h, dan nilai fungsi f di x dilambangkan sebagai f(x).
Konsep fungsi awalnya merupakan idealisasi yang menjelaskan bagaimana cara kuantitas yang berbeda bergantung pada kuantitas lain. Sebagai contoh, the posisi planet dikatakan sebagai fungsi dari waktu. Berdasarkan sejarah, konsep fungsi dikembangkan dengan kalkulus infinitesimal pada akhir abad ke-17, hingga konsep ini fungsi dipandang sebagai terdiferensialkan pada abad ke-19. Pada akhir abad ke-19, konsep fungsi dipandang sebagai teori himpunan, yang membuatnya mempunyai penerapan yang sangat besar di bidang manapun, seperti di ilmu sains, rekayasa, dan hampir semua cabang matematika. Fungsi dapat dikatakan sebagai "pusat objek dalam menginvestigasi" di hampir semua cabang matematika.[1]
Suatu fungsi diwakili dengan himpunan dari semua pasangan (x, f (x)), yang disebut sebagai grafik fungsi.[note 1][2] Ketika domain dan kodomain merupakan himpunan bilangan real, masing-masing pasangan dapat dipandang secara khusus sebagai koordinat Cartesius dari titik di bidang. Himpunan dari titik-titik tersebut inilah yang mempunyai istilah populer yang dipakai untuk mengilustrasikan fungsi, yaitu grafik fungsi.
- ^ Spivak 2008, hlm. 39.
- ^ "function | Definition, Types, Examples, & Facts". Encyclopedia Britannica (dalam bahasa Inggris). Diakses tanggal 2020-08-17.
Kesalahan pengutipan: Ditemukan tag <ref>
untuk kelompok bernama "note", tapi tidak ditemukan tag <references group="note"/>
yang berkaitan