Lompat ke isi

Molekul

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 6 April 2013 02.34 oleh EmausBot (bicara | kontrib) (Bot: Migrasi 107 pranala interwiki, karena telah disediakan oleh Wikidata pada item d:Q11369)
Penggambaran tiga dimensi (kiri dan tengah) berserta dua dimensi (kanan) molekul terpenoid atisana.

Molekul didefinisikan sebagai sekelompok atom (paling sedikit dua) yang saling berikatan dengan sangat kuat (kovalen) dalam susunan tertentu dan bermuatan netral serta cukup stabil.[1][2] Menurut definisi ini, molekul berbeda dengan ion poliatomik. Dalam kimia organik dan biokimia, istilah molekul digunakan secara kurang kaku, sehingga molekul organik dan biomolekul bermuatan pun dianggap termasuk molekul.

Dalam teori kinetika gas, istilah molekul sering digunakan untuk merujuk pada partikel gas apapun tanpa bergantung pada komposisinya.[3] Menurut definisi ini, atom-atom gas mulia dianggap sebagai molekul walaupun gas-gas tersebut terdiri dari atom tunggal yang tak berikatan.[4]

Sebuah molekul dapat terdiri atom-atom yang berunsur sama (misalnya oksigen O2), ataupun terdiri dari unsur-unsur berbeda (misalnya air H2O). Atom-atom dan kompleks yang berhubungan secara non-kovalen (misalnya terikat oleh ikatan hidrogen dan ikatan ion) secara umum tidak dianggap sebagai satu molekul tunggal.

Ilmu molekuler

Ilmu yang mempelajari molekul disebut kimia molekuler ataupun fisika molekuler bergantung pada fokus kajiannya. Kimia molekuler berkutat pada hukum-hukum yang mengatur interaksi antara molekul, manakala fisika molekuler berkutat pada hukum-hukum yang mengatur struktur dan sifat-sifat molekul. Dalam prakteknya, perbedaan kedua ilmu tersebut tidaklah jelas dan saling bertumpang tindih. Dalam ilmu molekuler, sebuah molekul terdiri dari suatu sistem stabil yang terdiri dari dua atau lebih molekul. Ion poliatomik dapat pula kadang-kadang dianggap sebagai molekul yang bermuatan. Istilah molekul tak stabil digunakan untuk merujuk pada spesi-spesi kimia yang sangat reaktif. lebih lanjut tentang molekul

Sejarah

Walaupun keberadaan molekul telah diterima oleh banyak kimiawan sejak awal abad ke-19, terdapat beberapa pertentangan di antara para fisikawan seperti Mach, Boltzmann, Maxwell, dan Gibbs, yang memandang molekul hanyalah sebagai sebuah konsepsi matematis. Karya Perrin pada gerak Brown (1911) dianggap sebagai bukti akhir yang meyakinkan para ilmuwan akan keberadaan molekul.

Definisi molekul pula telah berubah seiring dengan berkembangnya pengetahuan atas struktur molekul. Definisi paling awal mendefinisikan molekul sebagai partikel terkecil bahan-bahan kimia yang masih mempertahankan komposisi dan sifat-sifat kimiawinya.[5] Definisi ini sering kali tidak dapat diterapkan karena banyak bahan materi seperti bebatuan, garam, dan logam tersusun atas jaringan-jaringan atom dan ion yang terikat secara kimiawi dan tidak tersusun atas molekul-molekul diskret.

Ukuran molekul

Kebanyakan molekul sangatlah kecil untuk dapat dilihat dengan mata telanjang. Kekecualian terdapat pada DNA yang dapat mencapai ukuran makroskopis. Molekul terkecil adalah hidrogen diatomik (H2), dengan keseluruhan molekul sekitar dua kali panjang ikatnya (0.74 Å). Satu molekul tunggal biasanya tidak dapat dipantau menggunakan cahaya, namun dapat dideteksi menggunakan mikroskop gaya atom. Molekul dengan ukuran yang sangat besar disebut sebagai makromolekul atau supermolekul. Jari-jari molekul efektif merupakan ukuran molekul yang terpantau dalam larutan.[6][7]

Rumus molekul

Rumus empiris sebuah senyawa menunjukkan nilai perbandingan paling sederhana unsur-unsur penyusun senyawa tersebut. Sebagai contohnya, air selalu memiliki nilai perbandingan atom hidrogen berbanding oksigen 2:1. Etanol pula selalu memiliki nilai perbandingan antara karbon, hidrogen, dan oksigen 2:6:1. Namun, rumus ini tidak menunjukkan bentuk ataupun susunan atom dalam molekul tersebut. Contohnya, dimetil eter juga memiliki nilai perbandingan yang sama dengan etanol. Molekul dengan jumlah atom penyusun yang sama namun berbeda susunannya disebut sebagai isomer.

Perlu diperhatikan bahwa rumus empiris hanya memberikan nilai perbandingan atom-atom penyusun suatu molekul dan tidak memberikan nilai jumlah atom yang sebenarnya. Rumus molekul menggambarkan jumlah atom penyusun molekul secara tepat. Contohnya, asetilena memiliki rumus molekuler C2H2, namun rumus empirisnya adalah CH.

Massa suatu molekul dapat dihitung dari rumus kimianya. Sering kali massa molekul diekspresikan dalam satuan massa atom yang setara dengan 1/12 massa atom karbon-12.

Geometri molekul

Molekul memiliki geometri yang berbentuk tetap dalam keadaan kesetimbangan. Panjang ikat dan sudut ikatan akan terus bergetar melalui gerak vibrasi dan rotasi. Rumus kimia dan struktur molekul merupakan dua faktor penting yang menentukan sifat-sifat suatu senyawa. Senyawa isomer memiliki rumus kimia yang sama, namun sifat-sifat yang berbeda oleh karena strukturnya yang berbeda. Stereoisomer adalah salah satu jenis isomer yang memiliki sifat fisika dan kimia yang sangat mirip namun aktivitas biokimia yang berbeda.

Lihat pula

Referensi

  1. ^ IUPAC, Compendium of Chemical Terminology, edisi ke-2 ("Buku Emas") (1997). Versi koreksi daring:  (1994) "molecule".
  2. ^ Pauling, Linus (1970). General Chemistry. New York: Dover Publications, Inc. ISBN 0-486-65622-5. 
    Ebbin, Darrell, D. (1990). General Chemistry, 3rd Ed. Boston: Houghton Mifflin Co. ISBN 0-395-43302-9. 
    Brown, T.L. (2003). Chemistry – the Central Science, 9th Ed. New Jersey: Prentice Hall. ISBN 0-13-066997-0. 
    Chang, Raymond (1998). Chemistry, 6th Ed. New York: McGraw Hill. ISBN 0-07-115221-0. 
    Zumdahl, Steven S. (1997). Chemistry, 4th ed. Boston: Houghton Mifflin. ISBN 0-669-41794-7. 
  3. ^ E.g. see [1]
  4. ^ Chandra, Sulekh. Comprehensive Inorganic Chemistry. New Age Publishers. ISBN 8122415121. 
  5. ^ Molecule Definition (Frostburg State University)
  6. ^ Chang RL, Deen WM, Robertson CR, Brenner BM. (1975). "Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions". Kidney Int. 8 (4): 212–218. PMID 1202253. 
  7. ^ Chang RL, Ueki IF, Troy JL, Deen WM, Robertson CR, Brenner BM. (1975). "Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran". Biophys J. 15 (9): 887–906. PMID 1182263. 

Pranala luar

Templat:Link FA