Lompat ke isi

Ukuran (matematika)

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 16 Agustus 2008 14.53 oleh Borgxbot (bicara | kontrib) (Robot: Cosmetic changes)
.

Dalam matematika, konsep ukuran umumnya merujuk pada pengertian seperti "panjang", "luas" dan "volume".

Teori ukuran adalah cabang analisis real yang menginvestigasi aljabar σ, ukuran, fungsi ukuran dan integral.

Referensi

  • R. G. Bartle, 1995. The Elements of Integration and Lebesgue Measure. Wiley Interscience.
  • Bourbaki, Nicolas (2004), Integration I, Springer Verlag, ISBN 3-540-41129-1  Chapter III.
  • R. M. Dudley, 2002. Real Analysis and Probability. Cambridge University Press.
  • Folland, Gerald B. (1999), Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN 0-471-317160-0 Periksa nilai: length |isbn= (bantuan)  Second edition.
  • D. H. Fremlin, 2000. Measure Theory. Torres Fremlin.
  • Paul Halmos, 1950. Measure theory. Van Nostrand and Co.
  • R. Duncan Luce and Louis Narens (1987). "measurement, theory of," The New Palgrave: A Dictionary of Economics, v. 3, pp. 428-32.
  • M. E. Munroe, 1953. Introduction to Measure and Integration. Addison Wesley.
  • Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8. Emphasizes the Daniell integral.