Lompat ke isi

Pyrosequencing

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Hasil visualisasi Pyrogram

Pyrosequencing adalah adalah teknik pemetaan DNA yang berdasarkan deteksi terhadap pirofosfat (PPi) yang dilepaskan selama sintesis DNA. Teknik ini memanfaatkan reaksi enzimatik yang dikatalisis oleh ATP sulfurylase dan luciferase untuk pirofosfat inorganik yang dilepaskan selama penambahan nukleotida.[1] Pada teknik ini pirofosfat inorganik yang dilepaskan dikonversikan menjadi ATP oleh ATP sulfurylase sehingga menyediakan energi bagi luciferase untuk mengoksidasi luciferin dan menghasilkan cahaya. Karena penambahan nukleotida telah diketahui jenis basanya, maka urutan cetakan DNA juga dapat ditentukan. Baik DNA maupun RNA dapat digunakan sebagai cetakan untuk pyrosequencing. Namun, DNA polymerase menunjukkan aktivitas katalitik yang lebih tinggi dibandingkan dengan RNA polymerase sehingga pada pyrosequencing lebih diutamakan penggunaan utas DNA sebagai cetakan.[2][3]

Pyrosequencing pada umumnya menggunakan fragmen Klenow pada DNA polymerase I yang berasal dari Escherichia coli, yang aktivitas polimerasenya relatif lambat. Sementara itu, ATP sulfurylase yang digunakan merupakan rekombinan yang berasal dari Saccharomyces cerevisiae dan luciferase yang digunakan berasal dari kunang-kunang Photinus pyralis. Reaksi keseluruhan dari proses polimerasi hingga deteksi cahaya membutuhkan 3-4 detik pada suhu ruang. Satu pmol DNA dalam reaksi pyrosequencing menghasilkan 6x1011 molekul ATP yang memancarkan lebih dari 6x109 foton dengan panjang gelombang 560 nm. Pancaran cahaya tersebut dapat dengan mudah dideteksi dengan kamera CCD (charge-coupled device). Terdapat dua strategi berbeda pyrosequencing yaitu fase solid dan fase cair.[2][3]

Pyrosequencing fase solid menggunakan DNA yang diimobilisasi dalam fase solid dan diberi perlakuan dengan sistem tiga enzim.[4] Teknik ini dilakukan dengan penambahan nukleotida yang berbeda secara berurutan kemudian cahaya yang dihasilkan dapat dideteksi untuk mengetahui di mana letak nukleotida dengan jenis tersebut berada, dilanjutkan dengan penambahan nukleotida berikutnya dan terus berulang-ulang hingga seluruh sekuens DNA terpetakan. Oleh karena itu pada teknik ini diperlukan proses pencucian di antara penambahan basa nukleotida untuk menghilangkan nukleotida pada proses sebelumnya.[2]

Teknik pyrosequencing dengan sistem tiga enzim ini masih memiliki kelemahan. Salah satu kendala terbesar pada sistem tiga enzim adalah sering terjadinya sinyal yang salah karena dATP yang ditambahkan namun tidak terinkorporasi pada DNA dapat menjadi substrat bagi luciferase untuk menghasilkan pendaran cahaya.[4] Dengan demikian pemetaan DNA menjadi tidak akurat. Permasalahan ini dpecahkan dengan dikembangkannya pyrosequencing fase liquid. Pada pyrosequencing fase liquid ditambahkan enzim pyrase, enzim pendegradasi nukelotida dari kentang, untuk membentuk sistem empat enzim. Enzim pyrase yang ditambahkan akan mendegradasi dNTP yang tidak terinkorporasi pada DNA saat replikasi sehingga dNTP yang berlebih tidak akan menjadi substrat bagi luciferase. Selain itu karena dNTP yang berlebih sudah terdegradasi, fase solid untuk tempat DNA dan proses pencucian di antara penambahan nukleotida tidak dibutuhkan lagi. Fase solid tidak dibutuhkan karena pyrosequencing fase liquid dapat dilakukan dalam satu tabung.[2]

Pendaran cahaya yang dihasilkan oleh aktivitas luciferase dengan substrat ATP dapat dideteksi dengan CCD dan divisualisasi dalam bentuk pyrogram. Pyrogram merupakan suatu grafik yang menunjukkan sekuens DNA hasil pyrosequencing melalui deteksi gelombang cahaya yang dihasilkan oleh penambahan basa nukleotida secara berurutan. Tinggi sinyal pada grafik menunjukkan seberapa banyak nukleotida yang diinkorporasi pada daerah yang berurutan. Basa-basa pada bagian bawah grafik menunjukkan urutan penambahan nukleotida sedangkan basa-basa pada bagian bawah menunjukkan sekuens DNA yang diperoleh.[1]

Teknik pyrosequencing ini sangat berguna untuk analisis single-nucleotide polymorphism (SNP) karena analisis ini membutuhkan teknik yang sederhana, dapat dipercaya, dan efektif dari segi biaya.[5] Teknologi pyrosequencing menawarkan teknik yang memanfaatkan interaksi dari 4 enzim dalam satu tabung untuk mengukur sintesis DNA dengan cepat. Pyrosequencing menyediakan sekuens DNA dan keuntungan yang lebih dalam hal karakterisasi genom seperti sebagian besar spesies tumbuhan.[6]

Metode sekuensi DNA ini bekerja berdasarkan urutan nukleotida dalam DNA dengan menggunakan prinsip sekuensi dari sintesis DNA. Teknik ini dikembangkan pada tahun 1990 oleh Mostafa Ronaghi dan Pål Nyrén dari Royal Institute of Technology, Stockholm.[7]

Prinsip

Secara umum, teknik ini menggunakan DNA untai tunggal yang akan disekuensi lalu mensintesis untai komplemennya dengan enzim.[4] Aktivitas enzim DNA polimerase dalam proses sintesis untai komplemen dideteksi dengan menggunakan enzim kemiluminesens, di mana akan dihasilkan cahaya ketika penambahan nukleotida ke DNA template dan cahaya tersebut yang akan diinterpretasikan sebagai sekuen hasil.

Prosedur

  1. DNA yang akan disekuensi dipotong menjadi fragmen-fragmen sepanjang kira-kira 100 bp.
  2. Fragmen-fragmen DNA tersebut didenaturasi menjadi DNA untai tunggal (single-stranded DNA/ssDNA).
  3. Tiap ssDNA ditempel pada manik-manik berukuran mikroskopis yang terpisah satu sama lainnya.
  4. PCR (polymerase chain reaction) dijalankan pada masing-masing manik-manik sehingga dari tiap manik-manik didapat kira-kira 10 juta kopi ssDNA yang identik.
  5. Manik-manik dimasukkan ke dalam sumur-sumur mikroskopis (berjumlah kira-kira 200 ribu) yang masing-masingnya berisikan enzim, DNA polimerase untuk menambah deoksinukleotida pada ssDNA, ATP sulfurilase yang membentuk ATP dari APS dan pirofosfat (PPi), luciferase untuk katalisis luciferin menjadi oksiluciferin yang menghasilkan cahaya, dan apirase, serta substrat adenosin fosfosulfat (APS) dan luciferin.

Pada proses berjalannya sekuensi DNA, masing-masing sumur mikroskopis akan dipenuhi oleh deoksinukleotida, yaitu dTTP, dCTP, dan dGTP. dATP tidak digunakan karena memicu terjadinya reaksi luciferin, tetapi digunakan deoksiadenosin ά-tiotrifosfat (dATPάS) karena DNA polimerase tidak dapat membedakan antara dATP dengan dATPάS dan karena luciferase tidak mengenali dATPάS. Ini membuat sintesis untai komplemen DNA pada ssDNA terus berjalan.

Dalam tiap sumur terjadi penambahan nukleotida dan pelepasan pyrophosphate (PPi) secara stoikiometri. ATP sulfurilase mengubah pyrophosphate (PPi) menjadi ATP dengan adanya APS. ATP yang dihasilkan akan digunakan sebagai substrat untuk luciferase dalam menghasilkan cahaya dengan mengubah luciferin menjadi oksiluciferin.

Intensitas cahaya yang dihasilkan berbanding lurus dengan banyaknya ATP. Cahaya yang dihasilkan akan dideteksi dengan detektor dan dianalisis dengan program. Sisa nukleotida dan ATP yang tidak terpakai akan didegradasi dengan apirase, dan reaksi dapat dilanjutkan dengan menambahkan nukleotida baru.

Referensi

  1. ^ a b Poirel L, Naas T, Nordmann P. 2006. Pyrosequencing as a Rapid Tool for Identification of GES-Type Extended-Spectrum Lactamases. J Clin Microbiol 44(8):3008-11.
  2. ^ a b c d Ronaghi M. 2001. Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3-11.
  3. ^ a b Marsh S, King CR, Garsa AA, McLeod HL. 2005. Pyrosequencing of Clinically Relevant Polymorphisms. Washington: Humana Press.
  4. ^ a b c Priest FG. 1984. Extracellular Enzymes. England: Van Nostrand Reinhold.
  5. ^ Pourmand N, Elahi E, Davis RW, Ronaghi M. 2002. Multiple pyrosequencing. Nucl Acids Res 30(7):1-5.
  6. ^ Pacey-Miller T, Henry R. 2003. Single-nucleotide polymorphism detection in plants using a single-stranded pyrosequencing protocol with a universal biotinylated primer. Anal Biochem 317(2):166-170.
  7. ^ Anonim. 2006. Pyrosequencing.jkimball.ma.ultranet/BiologyPages/P/Pyrosequencing.html. [13 Apr 2010].