Lompat ke isi

Transistor sambungan dwikutub

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 22 Mei 2010 07.32 oleh Kenrick95Bot (bicara | kontrib) (Bot melakukan perubahan kosmetika)
Transistor sambungan dwikutub
Simbol
TipeKomponen aktif
KategoriTransistor
PenemuJohn Bardeen, Walter Houser Brattain dan William Shockley (Desember 1947)
Pembuatan pertamaLaboratorium Telepon Bell
Komponen sejenisFET
Kemasan3 kaki (basis, kolektor, emitor)

Transistor pertemuan dwikutub (BJT) adalah salah satu jenis dari transistor. Ini adalah peranti tiga-saluran yang terbuat dari bahan semikonduktor terkotori. Dinamai dwikutub karena operasinya menyertakan baik elektron maupun lubang elektron, berlawanan dengan transistor ekakutub seperti FET yang hanya menggunakan salah satu pembawa. Walaupun sebagian kecil dari arus transistor adalah pembawa mayoritas, hampir semua arus transistor adalah dikarenakan pembawa minoritas, sehingga BJT diklasifikasikan sebagai peranti pembawa-minoritas.

Perkenalan

NPN BJT dengan pertemuan E–B dipanjar maju dan pertemuan B–C dipanjar mundur

Transistor NPN dapat dianggap sebagai dua dioda adu punggung tunggal anoda. Pada penggunaan biasa, pertemuan p-n emitor-basis dipanjar maju dan pertemuan basis-kolektor dipanjar mundur. Dalam transistor NPN, sebagai contoh, jika tegangan positif dikenakan pada pertemuan basis-emitor, keseimbangan diantara pembawa terbangkitkan kalor dan medan listrik menolak pada daerah pemiskinan menjadi tidak seimbang, memungkinkan elektron terusik kalor untuk masuk ke daerah basis. Elektron tersebut mengembara (atau menyebar) melalui basis dari daerah konsentrasi tinggi dekat emitor menuju konsentrasi rendah dekat kolektor. Elektron pada basis dinamakan pembawa minoritas karena basis dikotori menjadi tipe-p yang menjadikan lubang sebagai pembawa mayoritas pada basis. Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.

Pengendalian tegangan, arus dan muatan

Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari dioda pertemuan p-n.[1] Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis.[1][2][3] Model mendetail dari kerja transistor, model Gummel–Poon, menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.[4] Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit. Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan (sebagai contoh model Ebers–Moll)[1]. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, seperti pada model Ebers–Moll, desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.

Tundaan penghidupan, pematian dan penyimpanan

Transistor dwikutub mengalami beberapa karakteristik tundaan ketika dihidupkan dan dimatikan. Hampir semua transistor, terutama transistor daya, mengalami waktu simpan basis yang panjang sehingga membatasi frekuensi operasi dan kecepatan pensakelaran. Salah satu cara untuk mengurangi waktu penyimpanan ini adalah dengan menggunakan penggenggam Baker.

Parameter alfa (α) dan beta (β) transistor

Perbandingan elektron yang mampu melintasi basis dan mencapai kolektor adalah ukuran dari efisiensi transistor. Pengotoran cerat pada daerah emitor dan pengotoran ringan pada daerah basis menyebabkan lebih banyak elektron yang diinjeksikan dari emitor ke basis daripada lubang yang diinjeksikan dari basis ke emitor. Penguatan arus moda tunggal emitor diwakili oleh βF atau hfe, ini kira-kira sama dengan perbandingan arus DC kolektor dengan arus DC basis dalam daerah aktif-maju. Ini biasanya lebih besar dari 100 untuk transistor isyarat kecil, tapi bisa sangat rendah, terutama pada transistor yang didesain untuk penggunaan daya tinggi. Parameter penting lainnya adalah penguatan arus tunggal-basis, αF. Penguatan arus tunggal-basis kira-kira adalah penguatan arus dari emitor ke kolektor dalam daerah aktif-maju. Perbandingan ini biasanya mendekati satu, diantara 0,9 dan 0,998. Alfa dan beta lebih tepatnya berhubungan dengan rumus berikut (transistor NPN):

Struktur

Irisan transistor NPN yang disederhanakan
Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat

BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah emitor, daerah basis dan daerah kolektor. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai emitor (E), basis (B) dan kolektor (C). Basis secara fisik terletak diantara emitor dan kolektor, dan dibuat dari bahan semikonduktor terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis. Transistor pertemuan dwikutub tidak seperti transistor lainnya karena biasanya bukan merupakan peranti simetris. Ini berarti dengan mempertukarkan kolektor dan emitor membuat transistor meninggalkan moda aktif-maju dan mulai beroperasi pada moda terbalik. Karena struktur internal transistor dioptimalkan untuk operasi moda aktif-maju, mempertukarkan kolektor dan emitor membuat harga α dan β pada operasi mundur jauh lebih kecil dari harga operasi maju, seringkali α bahkan kurang dari 0.5. Buruknya simetrisitas terutama dikarenakan perbandingan pengotoran pada emitor dan kolektor. Emitor dikotori berat, sedangkan kolektor dikotori ringan, memungkinkan tegangan panjar terbalik yang besar sebelum pertemuan kolektor-basis bobol. Pertemuan kolektor-basis dipanjar terbalik pada operasi normal. Alasan emitor dikotori berat adalah untuk memperbesar efisiensi injeksi, yaitu perbandingan antara pembawa yang diinjeksikan oleh emitor dengan yang diinjeksikan oleh basis. Untuk penguatan arus yang tinggi, hampir semua pembawa yang diinjeksikan ke pertemuan emitor-basis harus datang dari emitor. Perubahan kecil pada tegangan yang dikenakan membentangi saluran basis-emitor menyebabkan arus yang mengalir diantara emitor dan kolektor untuk berubah dengan signifikan. Efek ini dapat digunakan untuk menguatkan tegangan atau arus masukan. BJT dapat dianggap sebagai sumber arus terkendali tegangan, lebih sederhana dianggap sebagai sumber arus terkendali arus, atau penguat arus, dikarenakan rendahnya impedansi pada basis. Transistor-transistor awal dibuat dari germanium tetapi hampir semua BJT modern dibuat dari silikon. Beberapa transistor juga dibuat dari galium arsenid, terutama untuk penggunaan kecepatan tinggi.

NPN

Simbol NPN BJT.
Struktur dasar transistor NPN

NPN adalah satu dari dua tipe BJT, dimana huruf N dan P menunjukkan pembawa muatan mayoritas pada daerah yang berbeda dalam transistor. Hampir semua BJT yang digunakan saat ini adalah NPN karena pergerakan elektron dalam semikonduktor jauh lebih tinggi daripada pergerakan lubang, memungkinkan operasi arus besar dan kecepatan tinggi. Transistor NPN terdiri dari selapis semikonduktor tipe-p diantara dua lapisan tipe-n. Arus kecil yang memasuki basis pada tunggal emitor dikuatkan di keluaran kolektor. Dengan kata lain, transistor NPN hidup ketika tegangan basis lebih tinggi daripada emitor. Tanda panah dalam simbol diletakkan pada kaki emitor dan menunjuk keluar (arah aliran arus konvensional ketika peranti dipanjar maju).

PNP

Jenis lain dari BJT adalah PNP.

Simbol PNP BJT.
Struktur dasar transistor PNP

Transistor PNP terdiri dari selapis semikonduktor tipe-n diantara dua lapis semikonduktor tipe-p. Arus kecil yang meninggalkan basis pada moda tunggal emitor dikuatkan pada keluaran kolektor. Dengan kata lain, transistor PNP hidup ketika basis lebih rendah daripada emitor. Tanda panah pada simbol diletakkan pada emitor dan menunjuk kedalam.

Transistor dwikutub pertemuan-taksejenis

Jalur dalam transistor dwikutub pertemuan-taksejenis. Penghalang menunjukkan elektron untuk bergerak dari emitor ke basis, dan lubang untuk diinjeksikan kembali dari basis ke emitor.

Transistor dwikutub pertemuan-taksejenis (HBT) adalah sebuah penyempurnaan BJT sehingga dapat menangani isyarat frekuensi sangat tinggi hingga beberapa ratus GHz. Sekarang sering digunakan dalam sirkuit ultracepat, terutama sistem RF.[5][6] Transistor pertemuan-taksejenis mempunyai semikonduktor yang berbeda untuk tiap unsur dalam transistor. Biasanya emitor dibuat dari bahan yang memiliki celah-jalur lebih besar dari basis. Ilustrasi menunjukkan perbedaan celah-jalur memungkinkan penghalang lubang untuk menginjeksikan lubang kembali ke basis (diperlihatkan sebagai Δφp), dan penghalang elektron untuk menginjeksikan ke basis (Δφn). Susunan penghalang ini membantu mengurangi injeksi pembawa minoritas dari basis ketika pertemuan emitor-basis dipanjar terbalik, dan dengan demikian mengupansi arus basis dan menaikkan efisiensi injeksi emitor. Injeksi pembawa menuju ke basis yang telah diperbaiki memungkinkan basis untuk dikotori lebih berat, menghasilkan resistansi yang lebih rendah untuk mengakses elektroda basis. Dalam BJT tradisional, atau BJT pertemuan-sejenis, efisiensi injeksi pembawa dari emitor ke basis terutama dipengaruhi oleh perbandingan pengotoran diantaran emitor dan basis, yang berarti basis harus dikotori ringan untuk mendapatkan efisiensi injeksi yang tinggi, membuat resistansioya relatif tinggi. Sebagai tambahan, pengotoran basis yang lebih tinggi juga memperbaiki karakteristik seperti tegangan mula dengan membuat basis lebih sempit. Pembedaan tingkat komposisi dalam basis, misalnya dengan menaikkan jumlah germanium secara progresif pada transistor SiGe, menyebabkan gradien dalam celah-jalur di basis netral (ditunjukkan sebagai ΔφG), memberikan medan terpatri didalam yang membantu pengangkutan elektron melewati basis. Komponen alir tersebut membantu pengangkutan sebaran normal, menaikkan respons frekuensi transistor dengan memperpendek waktu pemindahan melewati basis. Dua HBT yang paling sering digunakan adalah silikon-germanium dan aluminium arsenid, tetapi jenis semikonduktor lain juga bisa digunakan untuk struktur HBT. Struktur HBT biasanya dibuat dengan teknik epitaksi, seperti epitaksi fasa uap logam-organik dan epitaksi sinar molekuler.

Daerah operasi

Batas operasi aman transistor, biru: batas IC maksimum, merah: batas VCE maksimum, ungu: batas daya maksimum

Transistor dwikutub mempunyai lima daerah operasi yang berbeda, terutama dibedakan oleh panjar yang diberikan:

  • Aktif-maju (atau aktif saja): pertemuan emitor-basis dipanja maju dan pertemuan basis-kolektor dipanjar mundur. Hampir semua transistor didesain untuk mencapai penguatan arus tunggal emitor yang terbesar () dalam moda aktif-maju. in forward-active mode. Dalam keadaan ini arus kolektor-emitor beberapa kali lipat lebih besar dari arus basis.
  • Aktif-mundur (atau aktif-terbalik atau terbalik): dengan membalik pemanjaran pada moda aktif-maju, transistor dwikutub memasuki moda aktif-mundur. Pada moda ini, daerah emitor dan kolektor bertukar fungsi. Karena hampir semua BJT didesain untuk penguatan arus moda aktif-maju yang maksimal, pada moda terbalik beberapa kaki lipat lebih rendah. Moda transistor ini jarang digunakan, dan hanya diperhitungkan untuk kondisi kegagalan dan untuk beberapa jenis logika dwikutub. Tegangan tembus panjar terbalik pada basis mungkin lebih rendah pada moda ini.
  • Jenuh: dengan semua pertemuan dipanjar maju, BJT memasuki moda jenuh dan memberikan konduksi arus yang besar dari emitor km kolektor. Moda ini berkorespondensi dengan logika hidup, atau sakelar yang tertutup.
  • Putus: pada keadaan putus, pemanjaran bertolak belakang dengan keadaan jenuh (semua pertemuan dipanjar terbalik). Arus yang mengalir sangat kecil, dengan demikian berkorespondensi dengan logika mati, atau sakelar yang terbuka.
  • Tembusan bandang

Walaupun daerah-daerah tersebut didefinisikan dengan baik untuk tegangan yang cukup besar, mereka bertumpang tindih jika tegangan panjar yang dikenakan terlalu kecil (kurang dari beberapa ratus milivolt).

Transistor dalam moda aktif-maju

Transistor BJT NPN dalam moda aktif-maju

Diagram disamping menunjukkan transistor NPN disambungkan ke dua sumber tegangan. Untuk membuat transistor menghantar arus yang kentara dari C ke E, harus diatas harga minimum yang sering disebut sebagai tegangan potong. Tegangan potong biasanya kira-kira 600 mV untuk BJT silikon pada suhu ruang, tetapi ini juga bisa berbeda-beda bergantung pada tipe transistor dan teknik pemanjaran. Tegangan yang dikenakan ini membuat pertemuan P-N bagian bawah berubah menjadi hidup dan memungkinkan aliran elektron dari emitor ke basis. Pada moda aktif, medan listrik yang terdapat diantara basis dan kolektor (disebabkan oleh ) akan menyebabkan mayoritas elektron untuk melintasi pertemuan P-N bagian atas menuju ke kolektor untuk membentuk arus kolektor . Elektron yang tertinggal bergabung kembali dengan lubang yang merupakan pembawa mayoritas pada basis sehingga menimbulkan arus melalui sambungan basis untuk membentuk arus basis, . Seperti yang diperlihatkan pada diagram, arus emitor , adalah arus transistor total, yang merupakan penjumlahan arus saluran lainnya . Pada diagram, tanda panah menunjukkan arah dari arus konvensional, aliran elektron mengalir berlawanan dengan tanda panah. Pada moda aktif, perbandingan dari arus kolektor-ke-basis dengan arus basis disebut dengan penguatan arus DC. Pada perhitungan, harga dari penguatan arus DC disebut dengan , dan harga penguatan arus AC disebut dengan . Walaupun begitu, ketika cakupan frekuensi tidak diperhitungkan, simbol sering digunakan. Perlu diperhatikan bahwa arus emitor berhubungan dengan secara eksponensial. Pada suhu ruang, peningkatan sebesar kurang-lebih 60 mV meningkatkan arus emitor dengan faktor 10 kali lipat. Kerena arus basis kurang lebih sebanding dengan arus kolektor dan emitor, ini juga berubah dengan fungsi yang sama. Untuk transistor PNP, secara umum cara kerjanya adalah sama, kecuali polaritas tegangan panjar yang dibalik dan fakta bahwa pembawa muatan mayoritas adalah lubang elektron.

Transistor PNP dalam moda aktif-maju

Transistor PNP moda aktif

Sejarah

Transistor pertama

Transistor dwikutub titik-sentuh diciptakan pada Desember 1947[7] di Bell Telephone Laboratories oleh John Bardeen dan Walter Brattain dibawah arahan William Shockley. Versi pertemuan diciptakan pada tahun 1948[8]. Setelah menjadi peranti pilihan untuk berbagai rangkaian, sekarang penggunaannya telah banyak digantikan oleh FET, baik pada sirkuit digital (oleh CMOS) ataupun sirkuit analog (oleh MOSFET dan JFET).

Transistor germanium

Transistor germanium sering digunakan pada tahun 1950-an dan 1960-an. Karena transistor jenis ini mempunyai tegangan potong yang rendah, membuatnya cocok untuk beberapa penggunaan isyarat tegangan rendah. Transistor ini memiliki kemungkinan lebih besar untuk mengalami thermal runaway.

Teknik produksi

Berbagai motoda untuk memproduksi transistor pertemuan dwikutub telah dikembangkan[9].

Penggunaan

BJT tetap menjadi peranti pilihan untuk beberapa penggunaan, seperti sirkuit diskrit, karena tersedia banyak jenis BJT, transkonduktansinya yang tinggi serta resistansi kekuasannya yang tinggi dibandingkan dengan MOSFET. BJT juga dipilih untuk sirkuit analog khusus, terutama penggunaan frekuensi sangat tinggi (VHF), seperti sirkuit frekuensi radio untuk sistem nirkabel. Transistor dwikutub dapat dikombinasikan dengan MOSFET dalam sebuah sirkuit terpadu dengan menggunakan proses BiCMOS untuk membuat sirkuit inovatif yang menggunakan kelebihan kedua tipe transistor.

Sensor suhu

Karena ketergantungan suhu dan arus pada tegangan panjar maju pertemuan basis-emitor yang dapat dihitung, sebuah BJT dapat digunakan untuk mengukur suhu dengan menghitung perbedaan dua tegangan pada dua arus panjar yang berbeda dengan perbandingan yang diketahui.[23].

Pengubah logaritmik

Karena tegangan basis-emitor berubah sebagai fungsi logaritmik dari arus basis-emitor dan kolektor-emitor, sebuah BJT dapat juga digunakan untuk menghitung logaritma dan anti-logaritma. Sebuah dioda sebenarnya juga dapat melakukan fungsi ini, tetapi transistor memberikan fleksibilitas yang lebih besar.

Kerawanan

Pemaparan transistor ke radiasi menyebalan kerusakan radiasi. Radiasi menyebabkan penimbunan molekul cacat di daerah basis yang berlaku sebagai pusat penggabungan kembali. Hasil dari pengurangan umur pembawa minoritas menyebabkan transistor kehilangan penguatan.

BJT daya beresiko mengalami moda kegagalan yang dinamakan dobrakan sekunder. Pada moda kegagalan ini, beberapa titik pada kepingan semikonduktor menjadi panas dikarenakan arus yang mengalirinya. Bahang yang ditimbulkan menyebabkan pembawa lebih mudah bergerak. Sebagai hasilnya, bagian terpanas dari kepingan semikonduktor menghantarkan lebih banyak lagi arus. Proses regeneratif ini akan terus berlanjut hingga transistor mengalami kegagalan total atau pencatu daya mengalami kegagalan.

Lihat pula

Referensi

  1. ^ a b c Paul Horowitz and Winfield Hill (1989). [[The Art of Electronics]] (edisi ke-2nd). Cambridge University Press. ISBN 9780521370950.  Konflik URL–wikilink (bantuan)
  2. ^ Juin Jei Liou and Jiann S. Yuan (1998). Semiconductor Device Physics and Simulation. Springer. ISBN 0306457245. 
  3. ^ General Electric (1962). Transistor Manual (edisi ke-6th). hlm. 12.  "If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. ... When a transistor is used at higher frequencies, the fundamental limitation is the time it takes the carriers to diffuse across the base region..." (same in 4th and 5th editions)
  4. ^ Paolo Antognetti and Giuseppe Massobrio (1993). Semiconductor Device Modeling with Spice. McGraw–Hill Professional. ISBN 0071349553. 
  5. ^ D.V. Morgan, Robin H. Williams (Editors) (1991). Physics and Technology of Heterojunction Devices. London: Institution of Electrical Engineers (Peter Peregrinus Ltd.). ISBN 0863412041. 
  6. ^ Peter Ashburn (2003). SiGe Heterojunction Bipolar Transistors. New York: Wiley. Chapter 10. ISBN 0470848383. 
  7. ^ http://www.computerhistory.org/semiconductor/timeline/1947-invention.html
  8. ^ http://www.computerhistory.org/semiconductor/timeline/1948-conception.html
  9. ^ Third case study – the solid state advent (PDF)
  10. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery BELL LABS TYPE M1752
  11. ^ Morris, Peter Robin (1990). "4.2". A History of the World Semiconductor Industry. IEE History of Technology Series 12. London: Peter Peregrinus Ltd. hlm. 29. ISBN 0 86341 227 0. 
  12. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery RCA TA153
  13. ^ High Speed Switching Transistor Handbook (edisi ke-2nd). Motorola. 1963. hlm. 17. [1]
  14. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery WESTERN ELECTRIC 3N22
  15. ^ The Tetrode Power Transistor PDF
  16. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery PHILCO A01
  17. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery Surface Barrier Transistor
  18. ^ Herb’s Bipolar Transistors IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 11, NOVEMBER 2001 PDF
  19. ^ Influence of Mobility and Lifetime Variations on Drift-Field Effects in Silicon-Junction Devices PDF
  20. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery BELL LABS PROTOTYPE DIFFUSED BASE TRIODE
  21. ^ TRANSISTOR MUSEUM Historic Transistor Photo Gallery FAIRCHILD 2N1613
  22. ^ http://www.computerhistory.org/semiconductor/timeline/1960-Epitaxial.html
  23. ^ http://www.maxim-ic.com/appnotes.cfm/appnote_number/689

Pranala luar