Dalam matematikakalkulus matriks adalah notasi khusus untuk menghitung kalkulus multivariabel (kalkulus peubah banyak), terutama pada ruang matriks. Pada ruang matriks notasi ini mendefinisikan turunan matriks. Notasi ini cocok untuk memerikan sistem persamaan diferensial, dan mengambil turunan dari fungsi matriks terhadap variabel berbentuk matriks pula. Kalkulus matriks umum digunakan dalam statistika dan rekayasa, sedangkan notasi indeks tensor lebih disukai dalam fisika.
Notasi
Misalkan M(n,m) melambangkan ruang matriks riiln x m dengan n baris dan m kolom. Unsur ruang matriks ini dilambangkan sebagai F, X, Y, dan seterusnya. Sebuah unsur M(n,1), yaitu vektor kolom, dilambangkan dengan huruf kecil tebal x, dengan xT melambangkan vektor baris transposnya. Unsur M(1,1) adalah skalar, dan dilambangkan dengan a, b, f, t, dan seterusnya.
Karena ruang M(n,1) diidentifikasikan dengan ruang EuklidesRn dan M(1,1) diidentifikasikan dengan R, notasi di sini dapat mengakomodasi operasi biasa dalam kalkulus vektor.
Diferensial atau turunan matriks dari fungsi adalah unsur dari , sebuah tensor peringkat empat (pembalikan m dan n di sini menandakan ruang dual dari M(n,m)). Singkatnya, diferensial ini adalah matriks m×n yang masing-masing entrinya adalah matriks p×q.
Catat pula bahwa tiap ∂F/∂Xi,j adalah matriks p×q yang didefinisikan seperti di atas. Catat pula bahwa matriks ini memiliki indeks yang dibalikkan: m baris dan n kolom. Diferensial sepanjang F dari sebuah matriks Y berukuran n×m dalam M(n,m) adalah
Definisi ini meliputi semua definisi sebelumnya sebagai kasus khusus.
Persamaan identitas
Perkalian matriks tidak komutatif, karena itu agar identitas berikut berlaku, urutan perkalian tidak boleh diubah.
Kaidah rantai: Bila Z adalah fungsi dari Y, yang pada gilirannya adalah fungsi dari X
(Inggris)Matrix calculus Apendiks dari buku Introduction to Finite Element Methods di University of Colorado at Boulder. Menggunakan definisi Hessian untuk turunan vektor dan matriks.
(Inggris)Matrix calculus Matrix Reference Manual , Imperial College London.
(Inggris)The Matrix Cookbook, dengan bab turunan. Menggunakan definsi Hessian.