Lompat ke isi

Fisi nuklir

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Visualisasi dari pembelahan atom Uranium dalam reaksi fisi nuklir

Dalam fisika nuklir dan kimia nuklir, fisi nuklir adalah reaksi nuklir saat nukleus atom terbagi menjadi bagian-bagian yang lebih kecil (nuklei yang lebih ringan), yang seringkali menghasilkan foton dan neutron bebas (dalam bentuk sinar gamma), dan melepaskan energi yang sangat besar. Dua nuklei yang dihasilkan biasanya ukurannya sebanding, dengan rasio massa sekitar 3:2 untuk isotop fisil.[1][2] Fisi yang biasanya terjadi adalah fisi biner, namun kadang-kadang (2 hingga 4 kali per 1000 peristiwa), tiga pecahan bermuatan positif dihasilkan dalam fisi ternari. Bagian terkecil dari ketiga nuklei ini ukurannya bervariasi antara sebesar proton hingga nukleus argon.

Fisi merupakan reaksi nuklir energetik yang biasanya dipicu oleh neutron, meskipun kadang-kadang fisi juga dianggap sebagai salah satu bentuk peluruhan radioaktif spontan, terutama dalam isotop dengan nomor massa yang sangat besar. Komposisi hasil yang tak dapat diprediksi (yang bervariasi dalam kemungkinan yang beragam dan ketidakberaturan) membedakan fisi dari proses penerowongan kuantum murni seperti emisi proton, peluruhan alfa, dan peluruhan kluster, yang menghasilkan produk yang sama setiap saat.

Reaksi-reaksi fisi yang dikenal baik

Produk dari reaksi fisi uranium, bervariasi, menghasilkan atom-atom yang bermassa lebih kecil, seperti: Ba , Kr , Zr , Te , Sr , Cs , I , La dan Xe ,dengan massa atom sekitar 95 dan 135. Sedangkan, produk dari reaksi fisi plutonium, mempunyai massa atom sekitar 100 dan 135.

Rata-rata reaksi fisi pada Uranium-235 (U-235) dan Plutonium-239 (Pu-239) yang disebabkan oleh neutron.

 neutron  +  U-235  -> (atom-atom yang lebih kecil) + 2.52 neutron + 180   MeV
 neutron  + Pu-239  -> (atom-atom yang lebih kecil) + 2.95 neutron + 200   MeV
 
 Beberapa contoh:
 
       n  +  U-235  ->    Ba-144   +    Kr-90       + 2n           + 179.6 MeV
       n  +  U-235  ->    Ba-141   +    Kr-92       + 3n           + 173.3 MeV
       n  +  U-235  ->     Zr-94   +   Te-139       + 3n           + 172.9 MeV
       n  +  U-235  ->     Zr-94   +   La-139       + 3n           + 199.3 MeV
  Isotop| massa (u)
 _______|_____________
   U-235: 235.0439299
     n  :   1.008665 
  Ba-144: 143.922953 
  Ba-141: 140.914411 
   Kr-90:  89.919517 
   Kr-92:  91.926156 
   Zr-94:  93.9063152
  Te-139: 138.93473  
  La-139: 138.9063533  
 _______|_____________

Reaktor fisi

Reaktor fisi kritis adalah jenis reaktor nuklir yang paling umum. Di dalam reaktor fisi kritis, neutron yang diproduksi oleh fisi dari atom bahan bakar digunakan untuk menginduksi reaksi fisi lainnya, sehingga untuk menjaga agar energi yang dilepaskan bisa dikendalikan. Alat yang dapat melakukan reaksi fisi tapi tidak bisa mandiri disebut sebagai reaktor fisi subkritis. Beberapa alat menggunakan peluruhan radioaktif atau akselerator partikel untuk menggerakkan fisi.

Reaktor fisi kritis biasanya dibangun untuk 3 tujuan utama, yang dilihat dari hasil panas yang bisa diambil atau neutron yang diproduksi dari reaksi rantai nuklir:

  • Pembangkit listrik adalah reaktor yang tujuannya untuk memproduksi panas untuk daya nuklir, biasanya dipakai untuk memenuhi kebutuhan listrik atau juga untuk sumber tenaga bagi kapal selam.
  • Reaktor penelitian dibangun dengan tujuan untuk memproduksi neutron dan/atau sumber radioaktif untuk keperluan ilmu, kedoketan, teknik, atau tujuan penelitian lainnya.
  • Reaktor peranakan dibangun dengan tujuan untuk memproduksi bahan bakar nuklir dari isotop yang terabaikan. Reaktor peranakan cepat dapat membuat 239Pu (bahan bakar nuklir) dari bahan yang sebelumnya terabaikan yaitu 238U (bukan bahan bakar nuklir). Reaktor peranakan termal sebelumnya telah dites menggunakan 232Th untuk memperbanyak isotop 233U yang dilanjutkan untuk dipelajari dan dikembangkan lebih jauh.

Pada dasarnya, semua reaktor fisi dapat digunakan untuk ketiga fungsi di atas. Tapi, karena tiap reaktor memiliki tujuan masing-masing maka biasanya hanya satu tugas utama saja. Reaktor pembangkit listrik biasanya mengubah energi kinetik dari hasil fisi menjadi panas yang nantinya akan digunakan untuk memanaskan fluida kerja dan menjalankan sebuah mesin panas yang nantinya menghasilkan listrik. Fluida kerja ini biasanya adalah air dengan turbin uap, tapi beberapa desain lainnya menggunakan gas helium. Reaktor-reaktor fisi ini mengeluarkan limbah berupa limbah radioaktif yang sangat sulit dibuang dengan aman, oleh karena itu biasanya limbah ini dibuang di tempat yang tahan radioaktif, misalnya di bawah tanah. Reaktor penelitian memproduksi neutron yang digunakan untuk berbagai macam keperluan, tapi panas yang dihasilkan fisi diperlakukan sebagai produk buangan yang tidak dapat dihindari. Reaktor peranakan adalah bentuk khusus dari reaktor penelitian, sampel yang menjadi penelitian biasanya adalah bahan bakarnya sendiri, yang merupakan sebuah campuran dari 238U dan 235U. Untuk deskripsi yang lebih jauh mengenai sifat-sifat fisika dan pengoperasian dari reaktor fisi kritis, silahkan lihat fisika reaktor nuklir. Untuk deskripsi mengenai aspek sosial, politik, dan lingkungan, silahkan lihat daya nuklir.

Bom fisi

Awan jamur pada saat Serangan bom atom di Hiroshima dan Nagasaki pada tahun 1945 membumbung tinggi sampai ketinggian 18 kilometer. Bom ini membunuh paling tidak 60.000 orang.[3]

Salah satu tipe senjata nuklir adalah bom fisi (tidak sama dengan bom fusi)], biasanya juga dikenal dengan nama lain bom atom adalah reaktor fisi yang didesain untuk melepaskan sebanyak mungkin energi dalam waktu sesingkat mungkin, energi yang terlepas ini akan menyebabkan reaktornya meledak dan akhirnya reaksi rantainya berhenti. Pengembangan senjata nuklir merupakan penelitian lanjutan dari fisi nuklir yang dilakukan oleh Militer A.S. selama Perang Dunia II. Proyek ini dinamakan Proyek Manhattan. Mereka kemudian mengembangkan reaksi rantai fisi yang menghasilkan 3 bom yaitu bom tes Trinity dan bom Little Boy dan Fat Man yang dijatuhkan di kota Hiroshima, Nagasaki, Jepang di bulan Agustus 1945.

Lihat pula

Pranala luar

  1. ^ Arora, M. G. (1994). Nuclear Chemistry. Anmol Publications. hlm. 202. ISBN 81-261-1763-X. Diakses tanggal 2011-04-02. 
  2. ^ Saha, Gopal (2010). Fundamentals of Nuclear Pharmacy (edisi ke-Sixth). Springer Science+Business Media. hlm. 11. ISBN 1-4419-5859-2. Diakses tanggal 2011-04-02. 
  3. ^ "Frequently Asked Questions #1". Radiation Effects Research Foundation. Diakses tanggal Sept. 18, 2007.