Bilangan Keith
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini. Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala. Tag ini diberikan pada April 2016. |
Halaman artikel ini diterjemahkan, sebagian atau seluruhnya, dari halaman di en.wikipedia yang berjudul « Keith Number ». Lihat pula sejarah suntingan halaman aslinya untuk melihat daftar penulisnya. |
Dalam rekreasi matematika, sejumlah bilangan Keith adalah nomor dalam urutan bilangan bulat berikut:
- 14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, ....[1]
Angka keith diperkenalkan oleh Mike Keith pada tahun 1987.[2] Perhitungan mereka sangat menantang untuk menemukan, dengan hanya sekitar 100 dikenal.
Pengenalan
Untuk menentukan apakah nomor n-digit N adalah nomor Keith, membuat urutan Fibonacci seperti yang dimulai dengan angka desimal n dari N, menempatkan digit pertama paling signifikan. Kemudian lanjutkan urutan, di mana setiap istilah berikutnya adalah jumlah dari n istilah sebelumnya. Menurut definisi, N adalah nomor Keith jika N muncul di urutan sehingga dibangun. Sebagai contoh, mempertimbangkan jumlah 3-digit N = 197. Urutan berjalan seperti ini:
- 1, 9, 7, 17, 33, 57, 107, 197, 361, ...
Karena 197 muncul di urutan, 197 dipandang memang nomor Keith.
Definisi
Sejumlah Keith adalah bilangan bulat positif N yang muncul sebagai istilah dalam hubungan rekurensi linier dengan istilah awal berdasarkan angka desimal sendiri. Diberi n-digit nomor
urutan dibentuk dengan istilah awal dan dengan istilah umum diproduksi sebagai jumlah dari istilahn sebelumnya. Jika nomor N muncul di urutan , kemudian N dikatakan nomor Keith. Satu-digit angka memiliki properti Keith sepele, dan biasanya dikecualikan.
Bilangan Keith
14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 7909, 31331, 34285, 34348, 55604, 62662, 86935, 93993, 120284, 129106, 147640, 156146, 174680, 183186, 298320, 355419, 694280, 925993, 1084051, 7913837, 11436171, 33445755, 44121607, 129572008,[1] 251133297.
Daftar Pustaka
- ^ a b "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)", The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Keith, Mike (1987). "Repfigit Numbers". Journal of Recreational Mathematics. 19.
Artikel ini tidak memiliki kategori atau memiliki terlalu sedikit kategori. Bantulah dengan menambahi kategori yang sesuai. Lihat artikel yang sejenis untuk menentukan apa kategori yang sesuai. Tolong bantu Wikipedia untuk menambahkan kategori. Tag ini diberikan pada Desember 2023. |