Daftar integral (antiderivatif) dari fungsi hiperbolik. Untuk daftar lengkap fungsi integral, lihat Tabel integral.
Dalam semua rumus, konstanta a diasumsikan bukan nol, dan C melambangkan konstanta integrasi.
∫ sinh a x d x = 1 a cosh a x + C {\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C\,}
∫ sinh 2 a x d x = 1 4 a sinh 2 a x − x 2 + C {\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C\,}
∫ sinh n a x d x = 1 a n sinh n − 1 a x cosh a x − n − 1 n ∫ sinh n − 2 a x d x (for n > 0 ) {\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{an}}\sinh ^{n-1}ax\cosh ax-{\frac {n-1}{n}}\int \sinh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}
∫ d x sinh a x = 1 a ln | tanh a x 2 | + C {\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\,}
∫ d x sinh n a x = − cosh a x a ( n − 1 ) sinh n − 1 a x − n − 2 n − 1 ∫ d x sinh n − 2 a x (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫ x sinh a x d x = 1 a x cosh a x − 1 a 2 sinh a x + C {\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C\,}
∫ sinh a x sinh b x d x = 1 a 2 − b 2 ( a sinh b x cosh a x − b cosh b x sinh a x ) + C (for a 2 ≠ b 2 ) {\displaystyle \int \sinh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh bx\cosh ax-b\cosh bx\sinh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫ cosh a x d x = 1 a sinh a x + C {\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C\,}
∫ cosh 2 a x d x = 1 4 a sinh 2 a x + x 2 + C {\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C\,}
∫ cosh n a x d x = 1 a n sinh a x cosh n − 1 a x + n − 1 n ∫ cosh n − 2 a x d x (for n > 0 ) {\displaystyle \int \cosh ^{n}ax\,dx={\frac {1}{an}}\sinh ax\cosh ^{n-1}ax+{\frac {n-1}{n}}\int \cosh ^{n-2}ax\,dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,}
∫ d x cosh a x = 2 a arctan e a x + C {\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {2}{a}}\arctan e^{ax}+C\,}
∫ d x cosh n a x = sinh a x a ( n − 1 ) cosh n − 1 a x + n − 2 n − 1 ∫ d x cosh n − 2 a x (for n ≠ 1 ) {\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫ x cosh a x d x = 1 a x sinh a x − 1 a 2 cosh a x + C {\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C\,}
∫ x 2 cosh a x d x = − 2 x cosh a x a 2 + ( x 2 a + 2 a 3 ) sinh a x + C {\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C\,}
∫ cosh a x cosh b x d x = 1 a 2 − b 2 ( a sinh a x cosh b x − b sinh b x cosh a x ) + C (for a 2 ≠ b 2 ) {\displaystyle \int \cosh ax\cosh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\cosh bx-b\sinh bx\cosh ax)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫ tanh x d x = ln cosh x + C {\displaystyle \int \tanh x\,dx=\ln \cosh x+C}
∫ tanh 2 a x d x = x − tanh a x a + C {\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C\,}
∫ tanh n a x d x = − 1 a ( n − 1 ) tanh n − 1 a x + ∫ tanh n − 2 a x d x (for n ≠ 1 ) {\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫ coth x d x = ln | sinh x | + C , for x ≠ 0 {\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0} ∫ coth n a x d x = − 1 a ( n − 1 ) coth n − 1 a x + ∫ coth n − 2 a x d x (for n ≠ 1 ) {\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}
∫ sech x d x = arctan ( sinh x ) + C {\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C} ∫ csch x d x = ln | tanh x 2 | + C , for x ≠ 0 {\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C,{\text{ for }}x\neq 0}
∫ cosh a x sinh b x d x = 1 a 2 − b 2 ( a sinh a x sinh b x − b cosh a x cosh b x ) + C (for a 2 ≠ b 2 ) {\displaystyle \int \cosh ax\sinh bx\,dx={\frac {1}{a^{2}-b^{2}}}(a\sinh ax\sinh bx-b\cosh ax\cosh bx)+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}\,}
∫ cosh n a x sinh m a x d x = cosh n − 1 a x a ( n − m ) sinh m − 1 a x + n − 1 n − m ∫ cosh n − 2 a x sinh m a x d x (for m ≠ n ) {\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}
∫ sinh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C\,}
∫ sinh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) + C {\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C\,}
∫ cosh ( a x + b ) sin ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) sin ( c x + d ) − c a 2 + c 2 cosh ( a x + b ) cos ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C\,}
∫ cosh ( a x + b ) cos ( c x + d ) d x = a a 2 + c 2 sinh ( a x + b ) cos ( c x + d ) + c a 2 + c 2 cosh ( a x + b ) sin ( c x + d ) + C {\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C\,}