Geometri proyektif: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Reindra (bicara | kontrib)
lanjut
Reindra (bicara | kontrib)
lanjut
Baris 46: Baris 46:
Ada banyak geometri projektif, yang dapat digolongkan sebagai diskret dan kontinu: geometri ''diskret'' terdiri dari sehimpunan titik-titik, yang banyaknya bisa saja ''berhingga'' atau ''tidak berhingga''; sedangkan geometri ''kontinu'' memiliki tak-hingga banyaknya titik tanpa jarak di antaranya.
Ada banyak geometri projektif, yang dapat digolongkan sebagai diskret dan kontinu: geometri ''diskret'' terdiri dari sehimpunan titik-titik, yang banyaknya bisa saja ''berhingga'' atau ''tidak berhingga''; sedangkan geometri ''kontinu'' memiliki tak-hingga banyaknya titik tanpa jarak di antaranya.


Satu-satunya geometri projektif berdimensi 0 (nol) adalah sebuah titik tunggal. Geometri projektif berdimensi 1 (satu) terdiri dari sebuah garis tunggal yang memuat paling sedikit 3 (tiga) titik. Konstruksi geometris dari operasi aritmetika tidak dapat dilakukan dalam kedua-dua kasus ini. Untuk dimensi 2 (dua), terdapat struktur yang kaya berdasar atas ketidakhadiran [[Teorema Desargues]].
The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be carried out in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of [[Desargues' Theorem]].


[[Image:Fano plane.svg|thumb|right|The [[Fano plane]] is the projective plane with the fewest points and lines.]]
[[Image:Fano plane.svg|thumb|right|The [[Fano plane]] is the projective plane with the fewest points and lines.]]

Revisi per 25 September 2012 08.07

Di dalam matematika, geometri projektif adalah kajian sifat-sifat geometris yang invarian di bawah transformasi projektif. Ini berarti bahwa geometri projektif memiliki tatanan, ruang projektif, dan himpunan selektif yang berbeda dibandingkan konsep-konsep geometri elementer. Intuisi-intuisi dasarnya adalah bahwa ruang projektif memiliki lebih banyak titik daripada ruang euklides, di dalam dimensi yang diberikan, dan bahwa transformasi geometris adalah diizinkan untuk memindahkan titik-titik ekstra (yang disebut "titik di ketakhinggaan") ke titik-titik tradisional, dan begitu juga sebaliknya.

Sifat-sifat yang penuh makna di dalam geometri projektif disokong oleh gagasan baru transformasi ini, yang lebih radikal dalam efek-efeknya dibanding keterekspresiannya oleh suatu matriks transformasi dan translasi (transformasi afin). Isu pertama bagi para ahli geometri adalah bahasa geometri manakah yang memadai bagi situasi baru ini? Tidaklah mungkin untuk memperbincangkan sudut dalam geometri projektif karena ia ada dalam geometri euklides, karena sudut adalah sebuah contoh dari konsep yang tidak invarian di bawah transformasi projektif, seperti yang tampak jelas dalam gambar perspektif. Satu sumber untuk geometri projektif adalah tentu saja teori perspektif. Perbedaan lainnya dari geometri elementer adalah cara di mana garis-garis sejajar dapat dikatakan saling bertemu di sebuah titik di ketakhinggaan, ketika konsep ini ditranslasikan ke dalam suku-suku geometri projektif. Dan lagi, gagasan ini memiliki landasan intuitif, misalnya rel kereta api yang bertemu di cakrawala menurut gambar perspektif. Lihatlah bidang projektif untuk dasar-dasar geometri projektif dalam dua dimensi.

Sementara beberapa gagasan telah hadir terlebih dahulu, geometri projektif sebagian besarnya merupakan hasil pengembangan dari abad ke-19. Satu rancang bangun raksasa dari berbagai penelitian telah menjadikannya sebagai cabang geometri yang paling representatif pada masa itu. Geometri projektif adalah teori tentang ruang projektif kompleks, karena koordinat-koordinat yang digunakan (koordinat homogen) adalah bilangan kompleks. Beberapa lembaran utama matematika yang lebih abstrak (termasuk teori invarian, mazhab Italia geometri aljabar, dan program Erlangen-nya Felix Klein yang mengarah pada kajian grup klasik) dibangun di atas geometri aljabar. Geometri projektif juga merupakan subjek dengan banyak praktisi yang bekerja deminya, di bawah panji-panji geometri sintetis. Cabang lain yang muncul dari kajian-kajian aksiomatis geometri projektif adalah geometri berhingga.

Cabang geometri projektif sendiri saat ini dibagi ke dalam banyak sub-cabang penelitian, dua contoh darinya adalah geometri aljabar projektif (kajian varietas projektif) dan geometri diferensial projektif (kajian invarian diferensial transformasi projektif).

Tinjauan

Geometri projektif adalah sebuah bentuk tak-metrik elementer dari geometri, artinya bahwa geometri projektif tidak didasarkan pada konsep jarak. Di dalam dua dimensi, geometri projektif bermula dengan kajian konfigurasi titik dan garis. Tentu saja terdapat beberapa kepentingan geometri di dalam tatanan yang langka ini dipandang sebagai geometri projektif yang dikembangkan oleh Desargues dan lain-lain di dalam penggalian mereka akan prinsip-prinsip seni perspektif.[1] Di dalam ruang-ruang yang berdimensi lebih tinggi terdapat hiperbidang dan subruang linear lainnya, yang memperlihatkan prinsip dualitas. Ilustrasi paling sederhana dari dualitas adalah dalam bidang projektif, di mana pernyataan "dua titik yang berbeda menentukan sebuah garis unik" (yakni garis yang melaluinya) dan "dua garis yang berbeda menentukan satu titik unik" (yakni titik perpotongannya) menunjukkan struktur yang sama sebagai proposisi. Geometri projektif dapat juga dipandang sebagai geometri konstruksi dengan hanya satu straightedge (sisi-lurus).[2] Karena geometri projektif tidak melibatkan konstruksi jangka, maka tidak ada lingkaran, tidak ada sudut, tidak ada pengukuran, tidak ada garis sejajar, dan tidak ada konsep intermediasi.[3] Dimaklumi bahwa teorema-teorema yang digunakan di dalam geometri projektif adalah pernyataan-pernyataan yang lebih sederhana. Misalnya irisan-irisan kerucut yang berbeda adalah semuanya ekivalen di dalam geometri projektif (kompleks), dan beberapa teorema mengenai lingkaran dapat dilihat sebagai kasus khusus dari teorema-teorema umum ini.

Pada permulaan abad ke-19, karya Poncelet, Lazare Carnot, dan yang lainnya mendirikan geometri projektif sebagai cabang tersendiri dari matematika.[3] Dasar-dasar yang saksama ini diajukan oleh Karl von Staudt dan disempurnakan oleh orang Italia Giuseppe Peano, Mario Pieri, Alessandro Padoa, dan Gino Fano pada penghujung abad ke-19.[4] Geometri projektif, seperti geometri afin dan geometri euklides, dapat juga dikembangkan dari program Erlangen-nya Felix Klein; geometri projektif dikarakterisasi oleh invarian-invarian di bawah transformasi-transformasi grup projektif.

Setelah banyak karya yang memuat sedemikian banyaknya teorema dalam subjek ini, dasar-dasar geometri projektif menjadi lebih terpahami. Struktur insidensi dan rasio silang adalah invarian fundamental di bawah transformasi projektif. Geometri projektif dapat dimodelkan oleh bidang afin (atau ruang afin) ditambah sebuah garis (hiperbidang) "di ketakhinggaan" dan kemudian memperlakukan garis itu (atau hiperbidang) sebagai sesuatu yang "biasa".[5] Sebuah model aljabar untuk mengerjakan geometri projektif di dalam gaya geometri analitik diberikan oleh koordinat-koordinat homogen.[6][7] Di pihak lain, kajian-kajian aksiomatik justru menyibak keberadaan bidang non-desarguesian, contoh-contoh untuk menunjukkan bahwa aksioma-aksioma insidensi dapat dimodelkan (hanya dalam dua dimensi) oleh struktur-struktur yang tidak aksesibel untuk penalaran melalui sistem koordinat homogen.

Di dalam artian yang mendasar, geometri projektif dan geometri terurut adalah elementer karena mereka melibatkan aksioma sesedikit mungkin dan kedua-duanya dapat digunakan sebagai fondasi bagi geometri afin dan geometri euklides.[8][9] Geometri projektif tidaklah "terurut"[3] dan dengan demikian geometri projektif adalah fondasi yang berbeda dari geometri.

Sejarah

Sifat-sifat geometri pertama dari sifat projektif ditemukan pertama kali pada abad ke-8 oleh Pappus dari Iskandariyah.[3] Filippo Brunelleschi (1404–1472) mulai menyelidiki geometri perspektif pada tahun 1425[10] (lihatlah sejarah perspektif untuk pembahasan lebih lanjut tentang karya dalam bidang seni rupa yang memotivasi banyak pengembangan geometri projektif). Johannes Kepler (1571–1630) dan Gérard Desargues (1591–1661) secara terpisah mengembangkan konsep berporos tentang "titik di ketakhinggaan".[11] Desargues mengembangkan cara alternatif untuk membikin gambar perspektif dengan memperumum penggunaan titik hilang untuk menyertakan kasus ketika titik-titik ini berjarak jauh tak terhingga. Dia membuat geometri euklides, di mana garis-garis sejajar adalah benar-benar sejajar, ke dalam kasus khusus dari sistem geometri yang meliputi semuanya. Pengkajian Desargues terhadap bagian-bagian kerucut melukiskan perhatian seorang Blaise Pascal yang berumur 16 tahun dan membantunya merumuskan teorema Pascal. Karya-karya Gaspard Monge pada akhir abad ke-18 dan awal abad ke-19 adalah penting bagi pengembangan geometri projektif berikutnya. Karya Desargues diabaikan sampai Michel Chasles berkesempatan membaca salinan sebuah tulisan tangan pada tahun 1845. Sementara itu, Jean-Victor Poncelet telah menerbitkan risalah dasar tentang geometri projektif pada tahun 1822. Poncelet memisahkan sifat-sifat projektif objek-objek dalam kelas individual dan mendirikan hubungan antara sifat-sifat metrik dan projektif. Geometri non-euklides yang ditemukan tak lama kemudian sebenarnya diperagakan untuk mendapatkan model-model, seperti model Klein tentang ruang hiperbolik, yang berhubungan dengan geometri projektif.

Geometri projektif pada abad ke-19 ini merupakan sebuah batu loncatan dari geometri analitik ke geometri aljabar. Ketika diperlakukan dalam suku-suku koordinat homogen, geometri projektif tampak seperti perluasan atau perbaikan teknis penggunaan koordinat untuk mengurangi masalah-masalah geometri terhadap aljabar, yakni sebuah perluasan dengan mengurangi banyaknya kasus khusus. Kajian rinci dari kuadrik dan "geometri garis"-nya Julius Plücker masih membentuk sehimpunan kaya contoh-contoh bagi para ahli geometri untuk bekerja dengan konsep-konsep yang lebih umum.

Karya Poncelet, Steiner dan lain-lain tidak ditujukan untuk memperluas geometri analitik. Teknik-teknik ini dianggap sebagai geometri sintetis: pengaruhnya, ruang projektif yang kini dipahami dulunya diperkenalkan secara aksiomatis. Hasilnya, perumusan kembali karya dini tentang geometri projektif supaya ia memenuhi standar-standar kekakuan saat ini kadang-kadang dapat menjadi sulit. Bahkan dalam kasus bidang projektif sendiri, pendekatan aksiomatis terhadap model tidak dapat dijelaskan melalui aljabar linear.

Periode ini dalam geometri telah diambil-alih oleh penelitian mengenai kurva aljabar umum oleh Clebsch, Riemann, Max Noether, dan lain-lain, yang merentangkan teknik-teknik yang telah ada, dan kemudian oleh teori invarian. Mendekati akhir abad ke-19 mazhab Italia geometri aljabar (Enriques, Segre, Severi) memecah pokok bahasan tradisional menjadi wilayah-wilayah yang memerlukan teknik-teknik yang lebih dalam.

Pada bagian akhir abad ke-19, kajian rinci tentang geometri projektif menjadi kurang bergaya lagi, meski pustaka yang membahasnya sangat banyak. Beberapa karya penting telah dibikin dalam bidang geometri enumeratif khususnya, oleh Schubert, yang kini dipandang sebagai antisipasi teori kelas Chern, diambil untuk menyajikan topologi aljabar Grassmannian.

Paul Dirac mengkaji geometri projektif dan menggunakannya sebagai basis untuk pengembangan konsep-konsepnya mengenai mekanika kuantum, meskipun karya-karyanya yang diterbitkan selalu berbentuk aljabar. Lihatlah sebuah artikel blog yang merujuk pada sebuah artikel dan buku tentang pokok bahasan ini, juga pada ceramah Dirac yang disajikan dalam audiensi umum tahun 1972 di Boston mengenai geometri projektif, tanpa menspesifikasi aplikasi dalam fisikanya.

Deskripsi

Geometri projektif tidaklah begitu mengungkung bila dibandingkan dengan geometri euklides atau geometri afin. Ia secara intrinsik merupakan geometri non-metrik, yang fakta-faktanya tidak bergantung pada struktur metrik manapun. Di bawah transformasi projektif, struktur insidensi dan relasi sekawan harmonik projektif dipelihara. Rentang projektif adalah dasar satu dimensi. Geometri projektif memformalkan salah satu prinsip sentral seni perspektif: bahwa garis-garis sejajar bertemu di ketakhinggaan, dan oleh karenanya digambarkan seperti itu. Intinya, geometri projektif dapat dipikirkan sebagai perluasan geometri euklides di mana "arah" tiap-tiap garis dimasukkan ke dalam garis sebagai "titik" ekstra, dan di mana sebuah "cakrawala" arah yang berpadanan dengan garis-garis koplanar dipandang sebagai "garis". Dengan demikian, dua garis sejajar bertemu pada garis mendatar karena mereka memiliki arah yang sama.

Arah yang teridealisasi dirujuk sebagai titik di ketakhinggaan, sementara cakrawala teridealisasi dirujuk sebagai garis di ketakhinggaan. Pada gilirannya, semua garis ini terletak pada bidang di ketakhinggaan. Tetapi, ketakhinggaan berada dalam konsep metrik, jadi dalam hal ini geometri projektif murni tidaklah mengasingkan titik, garis, atau bidang manapun; semua yang berada di ketakhinggaan diperlakukan sama seperti yang lainnya.

Karena geometri euklides dibahas di dalam geometri projektif, di mana geometri projektif memiliki fondasi yang lebih sederhana, hasil-hasil umum dalam geometri euklides boleh jadi tiba di dalam gaya yang lebih transparan, di mana teorema-teorema yang terpisah tetapi serupa di dalam geometri euklides dapat ditangani secara kolektif di dalam kerangka kerja geometri projektif. Contohnya, garis-garis yang sejajar dan tidak sejajar tidak mesti diperlakukan sebagai kasus yang terpisah - kita mengasingkan beberapa bidang projektif sembarang sebagai bidang ideal dan menempatkannya "di ketakhinggaan" menggunakan koordinat homogen.

Sifat-sifat lainnya dari yang memiliki kepentingan mendasar di antaranya Teorema Desargues dan Teorema Pappus. Di dalam ruang projektif berdimensi tiga atau lebih besar, terdapat suatu konstruksi yang membolehkan seseorang untuk membuktikan Teorema Desargues. Tetapi untuk dimensi dua, ia mesti dipostulatkan secara terpisah.

Dengan bantuan Teorema Desargues, dipadukan dengan aksioma-aksioma lain, adalah dimungkinkan untuk mendefinisikan operasi-operasi dasar aritmetika secara geometris. Operasi-operasi yang dihasilkan memenuhi aksioma-aksioma lapangan, kecuali bahwa kekomutatifan perkalian memerlukan Teorema Segienam Pappus. Hasilnya, titik-titik di tiap-tiap garis berkoresponden satu-satu dengan lapangan yang diberikan, F, yang disertai sebuah unsur tambahan, W, sedemikian sehingga rW = W, −W = W, r+W = W, r/0 = W, r/W = 0, W−r = r−W = W. Tetapi, 0/0, W/W, W+W, W−W, 0W dan W0 tidak terdefinisi.

Geometri projektif juga menyertakan sebuah teori irisan kerucut yang lengkap, sebuah pokok bahasan yang telah dikembangkan dengan begitu baik dalam geometri euklides. Terdapat keuntungan-keuntungan yang jelas ketika seseorang mampu memikirkan hiperbola dan elips sebagai dua hal yang berbeda hanya dari fakta bahwa hiperbola terletak melintasi garis di ketakhinggaan; dan bahwa parabola dibedakan hanya oleh tangen terhadap garis yang sama. Seluruh keluarga lingkaran dapat dipandang sebagai kerucut-kerucut yang melalui dua titik yang diberikan pada garis di ketakhinggaan—memerlukan koordinat-koordinat kompleks. Karena koordinat tidaklah "sintetik", seseorang menggantinya dengan menetapkan sebuah garis dan dua titik padanya, dan memandang sistem linear semua kerucut melalui titik-titik itu sebagai objek dasar pengkajian. Pendekatan ini terbukti sangat menarik bagi para penggiat geometri yang berbakat, dan lapangan ini dikembangkan dengan sangat saksama. Sebuah contoh pendekatan ini adalah risalah dengan banyak jilid karya Henry Frederick Baker.

Ada banyak geometri projektif, yang dapat digolongkan sebagai diskret dan kontinu: geometri diskret terdiri dari sehimpunan titik-titik, yang banyaknya bisa saja berhingga atau tidak berhingga; sedangkan geometri kontinu memiliki tak-hingga banyaknya titik tanpa jarak di antaranya.

Satu-satunya geometri projektif berdimensi 0 (nol) adalah sebuah titik tunggal. Geometri projektif berdimensi 1 (satu) terdiri dari sebuah garis tunggal yang memuat paling sedikit 3 (tiga) titik. Konstruksi geometris dari operasi aritmetika tidak dapat dilakukan dalam kedua-dua kasus ini. Untuk dimensi 2 (dua), terdapat struktur yang kaya berdasar atas ketidakhadiran Teorema Desargues.

The Fano plane is the projective plane with the fewest points and lines.

According to Greenberg (1999) and others, the simplest 2-dimensional projective geometry is the Fano plane, which has 3 points on every line, with 7 points and lines in all arranged with the following schedule of collinearities:

  • [ABC]
  • [ADE]
  • [AFG]
  • [BDG]
  • [BEF]
  • [CDF]
  • [CEG]

with the affine coordinates A = {0,0}, B = {0,1}, C = {0,W} = {1,W}, D = {1,0}, E = {W,0} = {W,1}, F = {1,1}, G = {W, W}. The coordinates in a Desarguesian plane for the points designated to be the points at infinity (in this example: C, E and G) are generally not unambiguously defined.[butuh klarifikasi]

In standard notation, a finite projective geometry is written PG(a,b) where:

a is the projective (or geometric) dimension, and
b is one less than the number of points on a line (called the order of the geometry).

Thus, the example having only 7 points is written PG(2,2).

The term "projective geometry" is sometimes used to indicate the generalised underlying abstract geometry, and sometimes to indicate a particular geometry of wide interest, such as the metric geometry of flat space which we analyse through the use of homogeneous coordinates, and in which Euclidean geometry may be embedded (hence its name, Extended Euclidean plane).

The fundamental property that singles out all projective geometries is the elliptic incidence property that any two distinct lines L and M in the projective plane intersect at exactly one point P. The special case in analytic geometry of parallel lines is subsumed in the smoother form of a line at infinity on which P lies. The line at infinity is thus a line like any other in the theory: it is in no way special or distinguished. (In the later spirit of the Erlangen programme one could point to the way the group of transformations can move any line to the line at infinity).

Given a line l and a point P not on the line, the elliptic parallel property contrasts with the Euclidean and hyperbolic parallel properties as follows:

Elliptic : any line through P meets l in just one point.
Euclidean : just one line through P may be found, which does not meet l.
Hyperbolic : more than one line through P may be found, which do not meet l.

The elliptic parallel property is the key idea which leads to the principle of projective duality, possibly the most important property which all projective geometries have in common.

Dualitas

In 1825, Joseph Gergonne noted the principle of duality characterizing projective plane geometry: given any theorem or definition of that geometry, substituting point for line, lie on for pass through, collinear for concurrent, intersection for join, or vice versa, results in another theorem or valid definition, the "dual" of the first. Similarly in 3 dimensions, the duality relation holds between points and planes, allowing any theorem to be transformed by swapping point and plane, is contained by and contains. More generally, for projective spaces of dimension N, there is a duality between the subspaces of dimension R and dimension N−R−1. For N = 2, this specializes to the most commonly known form of duality—that between points and lines. The duality principle was also discovered independently by Jean-Victor Poncelet.

To establish duality only requires establishing theorems which are the dual versions of the axioms for the dimension in question. Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S (assuming planes P and S are distinct from Q and R).

In practice, the principle of duality allows us to set up a dual correspondence between two geometric constructions. The most famous of these is the polarity or reciprocity of two figures in a conic curve (in 2 dimensions) or a quadric surface (in 3 dimensions). A commonplace example is found in the reciprocation of a symmetrical polyhedron in a concentric sphere to obtain the dual polyhedron.

Aksioma geometri projektif

Any given geometry may be deduced from an appropriate set of axioms. Projective geometries are characterised by the "elliptic parallel" axiom, that any two planes always meet in just one line, or in the plane, any two lines always meet in just one point. In other words, there are no such things as parallel lines or planes in projective geometry. Many alternative sets of axioms for projective geometry have been proposed (see for example Coxeter 2003, Hilbert & Cohn-Vossen 1999, Greenberg 1980).

Aksioma Whitehead

These axioms are based on Whitehead, "The Axioms of Projective Geometry". There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are:

  • G1: Every line contains at least 3 points
  • G2: Every two points, A and B, lie on a unique line, AB.
  • G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).

The reason each line is assumed to contain at least 3 points is to eliminate some degenerate cases. The spaces satisfying these three axioms either have at most one line, or are projective spaces of some dimension over a division ring, or are non-Desarguesian planes.

One can add further axioms restricting the dimension or the coordinate ring. For example, Coxeter's Projective Geometry,[12] references Veblen[13] in the three axioms above, together with a further 5 axioms that make the dimension 3 and the coordinate ring a commutative field of characteristic not 2.

Aksioma yang menggunakan relasi ternary

One can pursue axiomatization by postulating a ternary relation, [ABC] to denote when three points (not all necessarily distinct) are collinear. An axiomatization may be written down in terms of this relation as well:

  • C0: [ABA]
  • C1: If A and B are two points such that [ABC] and [ABD] then [BDC]
  • C2: If A and B are two points then there is a third point C such that [ABC]
  • C3: If A and C are two points, B and D also, with [BCE], [ADE] but not [ABE] then there is a point F such that [ACF] and [BDF].

For two different points, A and B, the line AB is defined as consisting of all points C for which [ABC]. The axioms C0 and C1 then provide a formalization of G2; C2 for G1 and C3 for G3.

The concept of line generalizes to planes and higher dimensional subspaces. A subspace, AB…XY may thus be recursively defined in terms of the subspace AB…X as that containing all the points of all lines YZ, as Z ranges over AB…X. Collinearity then generalizes to the relation of "independence". A set {A, B, …, Z} of points is independent, [AB…Z] if {A, B, …, Z} is a minimal generating subset for the subspace AB…Z.

The projective axioms may be supplemented by further axioms postulating limits on the dimension of the space. The minimum dimension is determined by the existence of an independent set of the required size. For the lowest dimensions, the relevant conditions may be stated in equivalent form as follows. A projective space is of:

  • (L1) at least dimension 0 if it has at least 1 point,
  • (L2) at least dimension 1 if it has at least 2 distinct points (and therefore a line),
  • (L3) at least dimension 2 if it has at least 3 non-collinear points (or two lines, or a line and a point not on the line),
  • (L4) at least dimension 3 if it has at least 4 non-coplanar points.

The maximum dimension may also be determined in a similar fashion. For the lowest dimensions, they take on the following forms. A projective space is of:

  • (M1) at most dimension 0 if it has no more than 1 point,
  • (M2) at most dimension 1 if it has no more than 1 line,
  • (M3) at most dimension 2 if it has no more than 1 plane,

and so on. It is a general theorem (a consequence of axiom (3)) that all coplanar lines intersect—the very principle Projective Geometry was originally intended to embody. Therefore, property (M3) may be equivalently stated that all lines intersect one another.

It is generally assumed that projective spaces are of at least dimension 2. In some cases, if the focus is on projective planes, a variant of M3 may be postulated. The axioms of (Eves 1997: 111), for instance, include (1), (2), (L3) and (M3). Axiom (3) becomes vacuously true under (M3) and is therefore not needed in this context.

Aksioma untuk bidang projektif

In incidence geometry, most authors[14] give a treatment that embraces the Fano plane PG(2, 2) as the minimal finite projective plane. An axiom system that achieves this is as follows:

  • (P1) Any two distinct points lie on a unique line.
  • (P2) Any two distinct lines meet in a unique point.
  • (P3) There exist at least four points of which no three are collinear.

Coxeter's Introduction to Geometry[15] gives a list of five axioms for a more restrictive concept of a projective plane attributed to Bachmann, adding Pappus's theorem to the list of axioms above (which eliminates non-Desarguesian planes) and excluding projective planes over fields of characteristic 2 (those that don't satisfy Fano's axiom). The restricted planes given in this manner more closely resemble the real projective plane.

Lihat pula

Catatan

  1. ^ Ramanan 1997, p. 88
  2. ^ Coxeter 2003, p. v
  3. ^ a b c d Coxeter 1969, p. 229
  4. ^ Coxeter 2003, p. 14
  5. ^ Coxeter 1969, pp. 93, 261
  6. ^ Coxeter 1969, pp. 234–238
  7. ^ Coxeter 2003, pp. 111–132
  8. ^ Coxeter 1969, pp. 175–262
  9. ^ Coxeter 2003, pp. 102–110
  10. ^ Coxeter 2003, p. 2
  11. ^ Coxeter 2003, p. 3
  12. ^ Coxeter 2003, pp. 14–15
  13. ^ Veblen 1966, pp. 16, 18, 24, 45
  14. ^ Bennett 1995, pg. 4, Beutelspacher & Rosenberg 1998, pg. 8, Casse 2006, pg. 29, Cederberg 2001, pg. 9, Garner 1981, pg. 7, Hughes & Piper 1973, pg. 77, Mihalek 1972, pg. 29, Polster 1998, pg. 5 and Samuel 1988, pg. 21 among the references given.
  15. ^ Coxeter 1969, pp. 229–234

Referensi

  • F. Bachmann, 1959. Aufbau der Geometrie aus dem Spiegelungsbegriff, Springer, Berlin.
  • Baer, Reinhold (2005). Linear Algebra and Projective Geometry. Mineola NY: Dover. ISBN 0-486-44565-8. 
  • Bennett, M.K. (1995). Affine and Projective Geometry. New York: Wiley. ISBN 0-471-11315-8. 
  • Beutelspacher, Albrecht; Rosenbaum, Ute (1998). Projective Geometry: from foundations to applications. Cambridge: Cambridge University Press. ISBN 0-521-48277-1. 
  • Casse, Rey (2006). Projective Geometry: An Introduction. New York: Oxford University Press. ISBN 0-19-929886-6. 
  • Cederberg, Judith N. (2001). A Course in Modern Geometries. New York: Springer-Verlag. ISBN 0-387-98972-2. 
  • Coxeter, H. S. M., 1995. The Real Projective Plane, 3rd ed. Springer Verlag.
  • Coxeter, H. S. M., 2003. Projective Geometry, 2nd ed. Springer Verlag. ISBN 978-0-387-40623-7.
  • Coxeter, H. S. M. (1969). Introduction to Geometry. New York: John Wiley & Sons. ISBN 0-471-50458-0. 
  • Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR0233275 
  • Howard Eves, 1997. Foundations and Fundamental Concepts of Mathematics, 3rd ed. Dover.
  • Garner, Lynn E. (1981). An Outline of Projective Geometry. New York: North Holland. ISBN 0-444-00423-8. 
  • Greenberg, M.J., 2007. Euclidean and non-Euclidean geometries, 4th ed. Freeman.
  • Richard Hartley and Andrew Zisserman, 2003. Multiple view geometry in computer vision, 2nd ed. Cambridge University Press. ISBN 0-521-54051-8
  • Hartshorne, Robin, 2009. Foundations of Projective Geometry, 2nd ed. Ishi Press. ISBN 978-4-87187-837-1
  • Hartshorne, Robin, 2000. Geometry: Euclid and Beyond. Springer.
  • Hilbert, D. and Cohn-Vossen, S., 1999. Geometry and the imagination, 2nd ed. Chelsea.
  • D. R. Hughes and F. C. Piper, 1973. Projective Planes, Springer.
  • Mihalek, R.J. (1972). Projective Geometry and Algebraic Structures. New York: Academic Press. ISBN 0-12-495550-9. 
  • Polster, Burkard (1998). A Geometrical Picture Book. New York: Springer-Verlag. ISBN 0-387-98437-2. 
  • Ramanan, S. (August 1997). "Projective geometry". Resonance. Springer India. 2 (8): 87–94. doi:10.1007/BF02835009. ISSN 0971-8044. 
  • Samuel, Pierre (1988). Projective Geometry. New York: Springer-Verlag. ISBN 0-387-96752-4. 
  • Veblen, Oswald; Young, J. W. A. (1938). Projective geometry. Boston: Ginn & Co. ISBN 978-1-4181-8285-4. 

Pranala luar