Pengguna:Kekavigi/bak pasir

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas


Dalam aljabar, kernel dari homomorfisme (fungsi yang mempertahankan struktur) umumnya gambar invers dari 0 (kecuali untuk grup yang operasinya dilambangkan dengan multi, dimana kernel adalah kebalikan dari gambar 1). Kasus khusus yang penting adalah kernel dari peta linear. kernel dari matriks, juga disebut ruang nol, adalah kernel dari peta linear yang ditentukan oleh matriks.

Kernel homomorfisme direduksi menjadi 0 (atau 1) jika dan hanya jika homomorfisme tersebut adalah injeksi, Artinya jika gambar invers dari setiap elemen terdiri dari satu elemen. Ini berarti bahwa kernel dapat dilihat sebagai ukuran sejauh mana homomorfisme gagal untuk diinjeksi.[1]

Untuk beberapa jenis struktur, seperti grup abelian dan ruang vektor, kemungkinan kernel adalah substruktur dari jenis yang sama. Ini tidak selalu terjadi, dan terkadang, kemungkinan kernel telah menerima nama khusus, seperti subgrup normal untuk kelompok dan ideal dua sisi untuk cincin.

Kernel memungkinkan untuk menentukan objek hasil bagi (juga disebut aljabar hasil bagi di aljabar universal, dan kokernel di teori kategori). Untuk banyak jenis struktur aljabar, teorema fundamental homomorfisme (atau teorema isomorfisme pertama) menyatakan bahwa galeri dari homomorfisme adalah isomorfik terhadap hasil bagi oleh kernel.

Konsep kernel telah diperluas ke struktur sedemikian rupa sehingga gambar kebalikan dari satu elemen tidak cukup untuk memutuskan apakah homomorfisme adalah injeksi. Dalam kasus ini, kernel adalah hubungan kesesuaian.

Artikel ini adalah survei untuk beberapa jenis kernel penting dalam struktur aljabar.

Linear maps

Misalkan V dan W menjadi ruang vektor di atas bidang (atau lebih umum, modul di atas gelanggang dan biarkan T menjadi peta liear dari V ke W. Jika 0W adalah vektor nol dari W , maka kernel T adalah preimage dari nol subruang {0W}; that adalah, himpunan bagian dari V yang terdiri dari semua elemen V yang dipetakan oleh T ke elemen 0W. Kernel biasanya dilambangkan sebagai ker T , atau variasinya:

Karena peta linier mempertahankan vektor nol, vektor nol 0V dari V harus menjadi milik kernel. Transformasi T bersifat injeksi jika dan hanya jika kernelnya direduksi menjadi subruang nol.

Kernel ker T selalu merupakan subruang linier dari V . Jadi, masuk akal untuk membicarakan tentang ruang hasil bagi V/(ker T). Teorema isomorfisme pertama untuk ruang vektor menyatakan bahwa ruang hasil bagi ini adalah isomorfis alami ke citra dari T (yang merupakan subruang dari W ). Akibatnya, dimensi dari V sama dengan dimensi kernel ditambah dimensi bayangan.

Jika V dan W adalah dimensi-hingga dan basis telah dipilih, maka T dapat dijelaskan oleh matriks M, dan kernel dapat dihitung dengan menyelesaikan sistem persamaan linear homogen Mv = 0. Dalam hal ini, kernel T dapat diidentifikasi ke kernel matriks M , juga disebut "spasi nol" dari M . Dimensi ruang kosong, disebut nulitas M , diberikan oleh jumlah kolom M dikurangi rank dari M , sebagai konsekuensi dari teori peringkat-nullity.

Memecahkan persamaan diferensial homogen sering kali sama dengan menghitung kernel operator diferensial tertentu. Misalnya, untuk mencari semua dua kali - fungsi terdiferensiasi s f dari garis nyata ke dirinya sendiri sehingga

biarkan V menjadi ruang dari semua fungsi yang dapat dibedakan dua kali, biarkan W menjadi ruang dari semua fungsi, dan tentukan operator linier T dari V menjadi W oleh

untuk f di V dan x sembarang bilangan real. Maka semua solusi persamaan diferensial ada di ker T .

Seseorang dapat mendefinisikan kernel untuk homomorfisme antara modul melalui gelanggang dengan cara yang analog. Ini termasuk kernel untuk homomorfisme antara grup abelian sebagai kasus khusus. Contoh ini menangkap esensi kernel secara umum kategori abelian; lihat Kernel (teori kategori).

Aljabar dengan struktur nonaljabar

Kadang-kadang aljabar dilengkapi dengan struktur nonaljabar di samping operasi aljabar mereka. Misalnya, seseorang dapat mempertimbangkan grup topologi atau ruang vektor topologis, dengan dilengkapi dengan topologi. Dalam hal ini, kita mengharapkan homomorfisme f untuk mempertahankan struktur tambahan ini; dalam contoh topologi, kita ingin f menjadi peta kontinu. Prosesnya mungkin mengalami hambatan dengan aljabar hasil bagi, yang mungkin tidak berperilaku baik. Dalam contoh topologi, kita dapat menghindari masalah dengan mensyaratkan bahwa struktur aljabar topologi menjadi Hausdorff (seperti yang biasanya dilakukan); maka kernel (bagaimanapun itu dibangun) akan menjadi set tertutup dan ruang hasil bagi akan berfungsi dengan baik (dan juga Hausdorff).

Kernel dalam teori kategori

Pengertian kernel dalam teori kategori adalah generalisasi dari kernel abelian aljabar; lihat Kernel (teori kategori). Generalisasi kategorikal dari kernel sebagai hubungan kesesuaian adalah pasangan kernel . (Ada juga pengertian kernel perbedaan, atau biner equalizer.)

Lihat pula

Catatan

Referensi


In algebra, the kernel of a homomorphism (function that preserves the structure) is generally the inverse image of 0 (except for groups whose operation is denoted multiplicatively, where the kernel is the inverse image of 1). An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the degree to which the homomorphism fails to be injective.[1]

For some types of structure, such as abelian groups and vector spaces, the possible kernels are exactly the substructures of the same type. This is not always the case, and, sometimes, the possible kernels have received a special name, such as normal subgroup for groups and two-sided ideals for rings.

Kernels allow defining quotient objects (also called quotient algebras in universal algebra, and cokernels in category theory). For many types of algebraic structure, the fundamental theorem on homomorphisms (or first isomorphism theorem) states that image of a homomorphism is isomorphic to the quotient by the kernel.

The concept of a kernel has been extended to structures such that the inverse image of a single element is not sufficient for deciding whether a homomorphism is injective. In these cases, the kernel is a congruence relation.

This article is a survey for some important types of kernels in algebraic structures.

Survey of examples

Linear maps

Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W. If 0W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0W. The kernel is usually denoted as ker T, or some variation thereof:

Since a linear map preserves zero vectors, the zero vector 0V of V must belong to the kernel. The transformation T is injective if and only if its kernel is reduced to the zero subspace.

The kernel ker T is always a linear subspace of V. Thus, it makes sense to speak of the quotient space V / (ker T). The first isomorphism theorem for vector spaces states that this quotient space is naturally isomorphic to the image of T (which is a subspace of W). As a consequence, the dimension of V equals the dimension of the kernel plus the dimension of the image.

If V and W are finite-dimensional and bases have been chosen, then T can be described by a matrix M, and the kernel can be computed by solving the homogeneous system of linear equations Mv = 0. In this case, the kernel of T may be identified to the kernel of the matrix M, also called "null space" of M. The dimension of the null space, called the nullity of M, is given by the number of columns of M minus the rank of M, as a consequence of the rank–nullity theorem.

Solving homogeneous differential equations often amounts to computing the kernel of certain differential operators. For instance, in order to find all twice-differentiable functions f from the real line to itself such that

let V be the space of all twice differentiable functions, let W be the space of all functions, and define a linear operator T from V to W by

for f in V and x an arbitrary real number. Then all solutions to the differential equation are in ker T.

One can define kernels for homomorphisms between modules over a ring in an analogous manner. This includes kernels for homomorphisms between abelian groups as a special case. This example captures the essence of kernels in general abelian categories; see Kernel (category theory).

Group homomorphisms

Let G and H be groups and let f be a group homomorphism from G to H. If eH is the identity element of H, then the kernel of f is the preimage of the singleton set {eH}; that is, the subset of G consisting of all those elements of G that are mapped by f to the element eH.

The kernel is usually denoted ker f (or a variation). In symbols:

Since a group homomorphism preserves identity elements, the identity element eG of G must belong to the kernel.

The homomorphism f is injective if and only if its kernel is only the singleton set {eG}. If f were not injective, then the non-injective elements can form a distinct element of its kernel: there would exist a, bG such that ab and f(a) = f(b). Thus f(a)f(b)−1 = eH. f is a group homomorphism, so inverses and group operations are preserved, giving f(ab−1) = eH; in other words, ab−1 ∈ ker f, and ker f would not be the singleton. Conversely, distinct elements of the kernel violate injectivity directly: if there would exist an element geG ∈ ker f, then f(g) = f(eG) = eH, thus f would not be injective.

ker f is a subgroup of G and further it is a normal subgroup. Thus, there is a corresponding quotient group G / (ker f). This is isomorphic to f(G), the image of G under f (which is a subgroup of H also), by the first isomorphism theorem for groups.

In the special case of abelian groups, there is no deviation from the previous section.

Example

Let G be the cyclic group on 6 elements (0, 1, 2, 3, 4, 5} with modular addition, H be the cyclic on 2 elements (0, 1} with modular addition, and f the homomorphism that maps each element g in G to the element g modulo 2 in H. Then ker f = {0, 2, 4}, since all these elements are mapped to 0H. The quotient group G / (ker f) has two elements: (0, 2, 4} and (1, 3, 5}. It is indeed isomorphic to H.

Ring homomorphisms

Templat:Ring theory sidebar

Let R and S be rings (assumed unital) and let f be a ring homomorphism from R to S. If 0S is the zero element of S, then the kernel of f is its kernel as linear map over the integers, or, equivalently, as additive groups. It is the preimage of the zero ideal (0S}, which is, the subset of R consisting of all those elements of R that are mapped by f to the element 0S. The kernel is usually denoted ker f (or a variation). In symbols:

Since a ring homomorphism preserves zero elements, the zero element 0R of R must belong to the kernel. The homomorphism f is injective if and only if its kernel is only the singleton set (0R}. This is always the case if R is a field, and S is not the zero ring.

Since ker f contains the multiplicative identity only when S is the zero ring, it turns out that the kernel is generally not a subring of R. The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f). The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of f (which is a subring of S). (Note that rings need not be unital for the kernel definition).

To some extent, this can be thought of as a special case of the situation for modules, since these are all bimodules over a ring R:

  • R itself;
  • any two-sided ideal of R (such as ker f);
  • any quotient ring of R (such as R / (ker f)); and
  • the codomain of any ring homomorphism whose domain is R (such as S, the codomain of f).

However, the isomorphism theorem gives a stronger result, because ring isomorphisms preserve multiplication while module isomorphisms (even between rings) in general do not.

This example captures the essence of kernels in general Mal'cev algebras.

Monoid homomorphisms

Let M and N be monoids and let f be a monoid homomorphism from M to N. Then the kernel of f is the subset of the direct product M × M consisting of all those ordered pairs of elements of M whose components are both mapped by f to the same element in N. The kernel is usually denoted ker f (or a variation thereof). In symbols:

Since f is a function, the elements of the form (m, m) must belong to the kernel. The homomorphism f is injective if and only if its kernel is only the diagonal set ((m, m) : m in M}.

It turns out that ker f is an equivalence relation on M, and in fact a congruence relation. Thus, it makes sense to speak of the quotient monoid M / (ker f). The first isomorphism theorem for monoids states that this quotient monoid is naturally isomorphic to the image of f (which is a submonoid of N; for the congruence relation).

This is very different in flavour from the above examples. In particular, the preimage of the identity element of N is not enough to determine the kernel of f.

Universal algebra

All the above cases may be unified and generalized in universal algebra.

General case

Let A and B be algebraic structures of a given type and let f be a homomorphism of that type from A to B. Then the kernel of f is the subset of the direct product A × A consisting of all those ordered pairs of elements of A whose components are both mapped by f to the same element in B. The kernel is usually denoted ker f (or a variation). In symbols:

Since f is a function, the elements of the form (a, a) must belong to the kernel.

The homomorphism f is injective if and only if its kernel is exactly the diagonal set ((a, a) : aA}.

It is easy to see that ker f is an equivalence relation on A, and in fact a congruence relation. Thus, it makes sense to speak of the quotient algebra A / (ker f). The first isomorphism theorem in general universal algebra states that this quotient algebra is naturally isomorphic to the image of f (which is a subalgebra of B).

Note that the definition of kernel here (as in the monoid example) doesn't depend on the algebraic structure; it is a purely set-theoretic concept. For more on this general concept, outside of abstract algebra, see kernel of a function.

Algebras with nonalgebraic structure

Sometimes algebras are equipped with a nonalgebraic structure in addition to their algebraic operations. For example, one may consider topological groups or topological vector spaces, which are equipped with a topology. In this case, we would expect the homomorphism f to preserve this additional structure; in the topological examples, we would want f to be a continuous map. The process may run into a snag with the quotient algebras, which may not be well-behaved. In the topological examples, we can avoid problems by requiring that topological algebraic structures be Hausdorff (as is usually done); then the kernel (however it is constructed) will be a closed set and the quotient space will work fine (and also be Hausdorff).

Kernels in category theory

The notion of kernel in category theory is a generalisation of the kernels of abelian algebras; see Kernel (category theory). The categorical generalisation of the kernel as a congruence relation is the kernel pair. (There is also the notion of difference kernel, or binary equaliser.)

See also

Notes

References