Lompat ke isi

Fungsi phi Euler: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
k PranalaLuar
k Bot: Perubahan kosmetika
Baris 2: Baris 2:




Dikemukakan oleh '''[[Leonhard Euler]]''' (L. 15 April 1707, [[Konfederasi Swiss Lama|Swiss.]] w. 18 September 1783, [[Kekaisaran Rusia|Rusia]]). Pada kisaran tahun 1750-an. Lalu, Notasi φ(m) atau ⍉(m) ditulis pertama kali oleh [[Gauss]] pada tahun
Dikemukakan oleh '''[[Leonhard Euler]]''' (L. 15 April 1707, [[Konfederasi Swiss Lama|Swiss.]] w. 18 September 1783, [[Kekaisaran Rusia|Rusia]]). Pada kisaran tahun 1750-an. Lalu, Notasi φ(m) atau ⍉(m) ditulis pertama kali oleh [[Gauss]] pada tahun


'''Contoh :'''
'''Contoh :'''
Baris 18: Baris 18:
φ(mn) = φ(m)φ(n) jika fpb(m,n)=1
φ(mn) = φ(m)φ(n) jika fpb(m,n)=1


φ(Pⁿ) = Pⁿ⁻¹ (P-1)
φ(Pⁿ) = Pⁿ⁻¹ (P-1)


φ(P₁×P₂×...×Pₙ) = (P₁-1)(P₂-1)(P₃-1)...(Pₙ-1)
φ(P₁×P₂×...×Pₙ) = (P₁-1)(P₂-1)(P₃-1)...(Pₙ-1)


*<math>a\mid b \implies \varphi(a)\mid\varphi(b)</math>
* <math>a\mid b \implies \varphi(a)\mid\varphi(b)</math>
*<math> n \mid \varphi(a^n-1) \quad \text{untuk setiap } a,n > 1</math>
* <math> n \mid \varphi(a^n-1) \quad \text{untuk setiap } a,n > 1</math>
*φ(m,n) = Φ(m).φ(n) .
* φ(m,n) = Φ(m).φ(n) .
:Note the special cases
:Note the special cases
:*<math>\varphi(2m) = \begin{cases}
:* <math>\varphi(2m) = \begin{cases}
2\varphi(m) &\text{ if } m \text{ is even} \\
2\varphi(m) &\text{ if } m \text{ is even} \\
\varphi(m) &\text{ if } m \text{ is odd}
\varphi(m) &\text{ if } m \text{ is odd}
\end{cases}</math>
\end{cases}</math>
:*<math>\varphi\left(n^m\right) = n^{m-1}\varphi(n)</math>
:* <math>\varphi\left(n^m\right) = n^{m-1}\varphi(n)</math>


*<math>\varphi(\operatorname{lcm}(m,n))\cdot\varphi(\operatorname{gcd}(m,n)) = \varphi(m)\cdot\varphi(n)</math>
* <math>\varphi(\operatorname{lcm}(m,n))\cdot\varphi(\operatorname{gcd}(m,n)) = \varphi(m)\cdot\varphi(n)</math>


:Compare this to the formula
:Compare this to the formula
:*<math>\operatorname{lcm}(m,n)\cdot \operatorname{gcd}(m,n) = m \cdot n</math>
:* <math>\operatorname{lcm}(m,n)\cdot \operatorname{gcd}(m,n) = m \cdot n</math>
:(See [[least common multiple]].)
:(See [[least common multiple]].)


*{{math|''φ''(''n'')}} is even for {{math|''n'' ≥ 3}}. Moreover, if {{mvar|n}} has {{mvar|r}} distinct odd prime factors, {{math|2<sup>''r''</sup> {{!}} ''φ''(''n'')}}
* {{math|''φ''(''n'')}} is even for {{math|''n'' ≥ 3}}. Moreover, if {{mvar|n}} has {{mvar|r}} distinct odd prime factors, {{math|2<sup>''r''</sup> {{!}} ''φ''(''n'')}}
* For any {{math|''a'' > 1}} and {{math|''n'' > 6}} such that {{math|4 ∤ ''n''}} there exists an {{math|''l'' ≥ 2''n''}} such that {{math|''l'' {{!}} ''φ''(''a<sup>n</sup>'' − 1)}}.
* For any {{math|''a'' > 1}} and {{math|''n'' > 6}} such that {{math|4 ∤ ''n''}} there exists an {{math|''l'' ≥ 2''n''}} such that {{math|''l'' {{!}} ''φ''(''a<sup>n</sup>'' − 1)}}.
*<math>\frac{\varphi(n)}{n}=\frac{\varphi(\operatorname{rad}(n))}{\operatorname{rad}(n)}</math>
* <math>\frac{\varphi(n)}{n}=\frac{\varphi(\operatorname{rad}(n))}{\operatorname{rad}(n)}</math>
:where {{math|rad(''n'')}} is the [[radical of an integer|radical of {{mvar|n}}]].
:where {{math|rad(''n'')}} is the [[radical of an integer|radical of {{mvar|n}}]].
*<math>\sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)} = \frac{n}{\varphi(n)}</math>&nbsp;<ref>Dineva (in external refs), prop. 1</ref>
* <math>\sum_{d \mid n} \frac{\mu^2(d)}{\varphi(d)} = \frac{n}{\varphi(n)}</math>&nbsp;<ref>Dineva (in external refs), prop. 1</ref>
*<math>\sum_{1\le k\le n \atop (k,n)=1}\!\!k = \tfrac12 n\varphi(n) \quad \text{for }n>1</math>
* <math>\sum_{1\le k\le n \atop (k,n)=1}\!\!k = \tfrac12 n\varphi(n) \quad \text{for }n>1</math>
*<math>\sum_{k=1}^n\varphi(k) = \tfrac12 \left(1+ \sum_{k=1}^n \mu(k)\left\lfloor\frac{n}{k}\right\rfloor^2\right)
* <math>\sum_{k=1}^n\varphi(k) = \tfrac12 \left(1+ \sum_{k=1}^n \mu(k)\left\lfloor\frac{n}{k}\right\rfloor^2\right)
=\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;(<ref name=Wal1963>{{cite book | zbl=0146.06003 | last=Walfisz | first=Arnold | authorlink=Arnold Walfisz | title=Weylsche Exponentialsummen in der neueren Zahlentheorie | language=German | series=Mathematische Forschungsberichte | volume=16 | location=Berlin | publisher=[[VEB Deutscher Verlag der Wissenschaften]] | year=1963 }}</ref> cited in<ref>{{citation | last = Lomadse | first = G. | title = The scientific work of Arnold Walfisz | journal = Acta Arithmetica | volume = 10 | issue = 3 | pages = 227–237 | url = http://matwbn.icm.edu.pl/ksiazki/aa/aa10/aa10111.pdf}}</ref>)
=\frac3{\pi^2}n^2+O\left(n(\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;(<ref name=Wal1963>{{cite book | zbl=0146.06003 | last=Walfisz | first=Arnold | authorlink=Arnold Walfisz | title=Weylsche Exponentialsummen in der neueren Zahlentheorie | language=German | series=Mathematische Forschungsberichte | volume=16 | location=Berlin | publisher=[[VEB Deutscher Verlag der Wissenschaften]] | year=1963 }}</ref> cited in<ref>{{citation | last = Lomadse | first = G. | title = The scientific work of Arnold Walfisz | journal = Acta Arithmetica | volume = 10 | issue = 3 | pages = 227–237 | url = http://matwbn.icm.edu.pl/ksiazki/aa/aa10/aa10111.pdf}}</ref>)


*<math>\sum_{k=1}^n\frac{\varphi(k)}{k} = \sum_{k=1}^n\frac{\mu(k)}{k}\left\lfloor\frac{n}{k}\right\rfloor=\frac6{\pi^2}n+O\left((\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;<ref name=Wal1963/>
* <math>\sum_{k=1}^n\frac{\varphi(k)}{k} = \sum_{k=1}^n\frac{\mu(k)}{k}\left\lfloor\frac{n}{k}\right\rfloor=\frac6{\pi^2}n+O\left((\log n)^\frac23(\log\log n)^\frac43\right)</math>&nbsp;<ref name=Wal1963/>
*<math>\sum_{k=1}^n\frac{k}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}n-\frac{\log n}2+O\left((\log n)^\frac23\right)</math>&nbsp;<ref name=Sita>{{cite journal|first=R. |last=Sitaramachandrarao |title=On an error term of Landau II |journal=Rocky Mountain J. Math. |volume=15 |date=1985 |pages=579–588}}</ref>
* <math>\sum_{k=1}^n\frac{k}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}n-\frac{\log n}2+O\left((\log n)^\frac23\right)</math>&nbsp;<ref name=Sita>{{cite journal|first=R. |last=Sitaramachandrarao |title=On an error term of Landau II |journal=Rocky Mountain J. Math. |volume=15 |date=1985 |pages=579–588}}</ref>
*<math>\sum_{k=1}^n\frac{1}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}\left(\log n+\gamma-\sum_{p\text{ prime}}\frac{\log p}{p^2-p+1}\right)+O\left(\frac{(\log n)^\frac23}n\right)</math>&nbsp;<ref name=Sita />
* <math>\sum_{k=1}^n\frac{1}{\varphi(k)} = \frac{315\,\zeta(3)}{2\pi^4}\left(\log n+\gamma-\sum_{p\text{ prime}}\frac{\log p}{p^2-p+1}\right)+O\left(\frac{(\log n)^\frac23}n\right)</math>&nbsp;<ref name=Sita />


:(where {{mvar|γ}} is the [[Euler–Mascheroni constant]]).
:(where {{mvar|γ}} is the [[Euler–Mascheroni constant]]).


*<math>\sum_\stackrel{1\le k\le n}{\operatorname{gcd}(k,m)=1} \!\!\!\! 1 = n \frac {\varphi(m)}{m} + O \left ( 2^{\omega(m)} \right )</math>
* <math>\sum_\stackrel{1\le k\le n}{\operatorname{gcd}(k,m)=1} \!\!\!\! 1 = n \frac {\varphi(m)}{m} + O \left ( 2^{\omega(m)} \right )</math>
:where {{math|''m'' > 1}} is a positive integer and {{math|''ω''(''m'')}} is the number of distinct prime factors of {{mvar|m}}.<ref>Bordellès in the [[#Pranala luar|external links]]</ref>
:where {{math|''m'' > 1}} is a positive integer and {{math|''ω''(''m'')}} is the number of distinct prime factors of {{mvar|m}}.<ref>Bordellès in the [[#Pranala luar|external links]]</ref>



Revisi per 26 Mei 2020 10.55

Fungsi Phi Euler φ(m) atau ⍉(m) menyatakan kardinal himpunan bilangan asli dimana fpb(m,n) = 1.


Dikemukakan oleh Leonhard Euler (L. 15 April 1707, Swiss. w. 18 September 1783, Rusia). Pada kisaran tahun 1750-an. Lalu, Notasi φ(m) atau ⍉(m) ditulis pertama kali oleh Gauss pada tahun

Contoh :

Bilangan bulat positif yang < 9 adalah 1, 2, 3, 4, 5, 6, 7, 8. Diantara bilangan-bilangan tersebut yang saling prima terhadap 9 adalah 1, 2, 4, 5, 7, 8, maka banyaknya bilangan yang saling prima terhadap 9 adalah sebanyak 6 sehingga φ(9) = 6.

Identitas :

φ(1) = 0

φ(2) = 1

φ(P) = P - 1 untuk P prima

φ(mn) = φ(m)φ(n) jika fpb(m,n)=1

φ(Pⁿ) = Pⁿ⁻¹ (P-1)

φ(P₁×P₂×...×Pₙ) = (P₁-1)(P₂-1)(P₃-1)...(Pₙ-1)

  • φ(m,n) = Φ(m).φ(n) .
Note the special cases
Compare this to the formula
(See least common multiple.)
  • φ(n) is even for n ≥ 3. Moreover, if n has r distinct odd prime factors, 2r | φ(n)
  • For any a > 1 and n > 6 such that 4 ∤ n there exists an l ≥ 2n such that l | φ(an − 1).
where rad(n) is the radical of n.
  •  [1]
  •  ([2] cited in[3])
  •  [2]
  •  [4]
  •  [4]
(where γ is the Euler–Mascheroni constant).
where m > 1 is a positive integer and ω(m) is the number of distinct prime factors of m.[5]

Pengembangan Fungsi Phi Euler :

  1. ^ Dineva (in external refs), prop. 1
  2. ^ a b Walfisz, Arnold (1963). Weylsche Exponentialsummen in der neueren Zahlentheorie. Mathematische Forschungsberichte (dalam bahasa German). 16. Berlin: VEB Deutscher Verlag der Wissenschaften. Zbl 0146.06003. 
  3. ^ Lomadse, G., "The scientific work of Arnold Walfisz" (PDF), Acta Arithmetica, 10 (3): 227–237 
  4. ^ a b Sitaramachandrarao, R. (1985). "On an error term of Landau II". Rocky Mountain J. Math. 15: 579–588. 
  5. ^ Bordellès in the external links