Lompat ke isi

Barisan: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Hadithfajri (bicara | kontrib)
Tidak ada ringkasan suntingan
Ariyanto (bicara | kontrib)
k Bersih-bersih (via JWB)
Baris 51: Baris 51:


In cases where the set of indexing numbers is understood, such as in [[analysis (mathematics)|analysis]], the subscripts and superscripts are often left off. That is, one simply writes ''a<sub>k</sub>'' for an arbitrary sequence. In analysis, k would be understood to run from 1 to ∞. However, sequences are often indexed starting from zero, as in
In cases where the set of indexing numbers is understood, such as in [[analysis (mathematics)|analysis]], the subscripts and superscripts are often left off. That is, one simply writes ''a<sub>k</sub>'' for an arbitrary sequence. In analysis, k would be understood to run from 1 to ∞. However, sequences are often indexed starting from zero, as in
:<math>(a_k)_{k=0}^\infty = ( a_0, a_1, a_2,... ).</math>
:<math>(a_k)_{k=0}^\infty = (a_0, a_1, a_2,...).</math>
In some cases the elements of the sequence are related naturally to a sequence of integers whose pattern can be easily inferred. In these cases the index set may be implied by a listing of the first few abstract elements. For instance, the sequence of squares of [[odd number]]s could be denoted in any of the following ways.
In some cases the elements of the sequence are related naturally to a sequence of integers whose pattern can be easily inferred. In these cases the index set may be implied by a listing of the first few abstract elements. For instance, the sequence of squares of [[odd number]]s could be denoted in any of the following ways.


Baris 98: Baris 98:


{{anchor|Doubly infinite|Doubly-infinite sequences}}
{{anchor|Doubly infinite|Doubly-infinite sequences}}
Normally, the term ''infinite sequence'' refers to a sequence which is infinite in one direction, and finite in the other—the sequence has a first element, but no final element (a ''singly infinite sequence''). A sequence that is infinite in both directions—it has neither a first nor a final element—is called a '''bi-infinite sequence''', '''two-way infinite sequence''', or '''doubly infinite sequence'''. For instance, a function from ''all'' [[integers]] into a set, such as the sequence of all even integers ( …, −4, −2, 0, 2, 4, 6, 8… ), is bi-infinite. This sequence could be denoted <math>(2n)_{n=-\infty}^{\infty}</math>. Formally, a bi-infinite sequence can be defined as a mapping from '''Z'''.
Normally, the term ''infinite sequence'' refers to a sequence which is infinite in one direction, and finite in the other—the sequence has a first element, but no final element (a ''singly infinite sequence''). A sequence that is infinite in both directions—it has neither a first nor a final element—is called a '''bi-infinite sequence''', '''two-way infinite sequence''', or '''doubly infinite sequence'''. For instance, a function from ''all'' [[integers]] into a set, such as the sequence of all even integers (…, −4, −2, 0, 2, 4, 6, 8…), is bi-infinite. This sequence could be denoted <math>(2n)_{n=-\infty}^{\infty}</math>. Formally, a bi-infinite sequence can be defined as a mapping from '''Z'''.


One can interpret singly infinite sequences as elements of the [[group ring|semigroup ring]] of the [[natural numbers]] ''R''['''N'''], and doubly infinite sequences as elements of the [[group ring]] of the [[integer]]s ''R''['''Z''']. This perspective is used in the [[Cauchy product]] of sequences.
One can interpret singly infinite sequences as elements of the [[group ring|semigroup ring]] of the [[natural numbers]] ''R''['''N'''], and doubly infinite sequences as elements of the [[group ring]] of the [[integer]]s ''R''['''Z''']. This perspective is used in the [[Cauchy product]] of sequences.

Revisi per 3 Desember 2022 10.54

Dalam matematika, barisan secara sederhana dapat dibayangkan sebagai suatu daftar benda (seperti bilangan, fungsi, peubah acak, dsb) yang diatur dalam suatu urutan tertentu[1]. Secara lebih tepat, suatu barisan dapat dipandang sebagai suatu fungsi dengan daerah asalnya adalah bilangan asli[2]. Tiap-tiap benda dalam barisan diberi nomor urut atau indeks untuk menunjukkan tempatnya benda tersebut dalam barisan itu. Benda dengan indeks i disebut suku ke-i. Banyak suku dalam barisan (mungkin tak terhingga) disebut panjang barisan. Berbeda dengan himpunan, urutan suku dalam barisan sangat penting. Unsur yang tepat sama dapat muncul berulang kali pada tempat berbeda dalam suatu barisan.

Kebanyakan suku-suku barisan dibariskan menurut pola tertentu, yang dapat dirumuskan seperti barisan aritmatika dan barisan geometri, atau dibentuk dengan aturan tertentu seperti barisan Fibonacci. Namun secara umum barisan tidak perlu mengikut pola tertentu.

Penulisan barisan

Barisan secara sederhana dapat dibayangkan sebagai daftar benda-benda yang berbaris. Masing-masing anggota barisan disebut suku dan masing-masing suku lazim ditulis dengan lambang , sebagai melambangkan suku ke-n. Secara lebih persis, barisan adalah aturan yang mengaitkan bilangan asli ke anggota suatu himpunan, yakni dikaitkan dengan , dikaitkan dengan , dan seterusnya. Barisan itu sendiri biasa dituliskan dengan lambang atau [3] atau [4].

Penentuan barisan

Barisan dapat ditentukan dengan beberapa cara. Di antaranya adalah dengan mendaftarkan langsung urutan suku-sukunya, yakni dengan bentuk untuk barisan hingga atau untuk barisan tak terhingga. Seperti barisan adalah barisan sembilan bilangan digit-digit pi, atau seperti barisan yang merupakan barisan bilangan genap.

Barisan juga dapat ditentukan menuliskan rumus umum suku barisan tersebut Seperti barisan , yang menyatakan barisan balikan kuadrat bilangan asli . Beberapa barisan juga dapat didefinisikan secara rekursif. Contoh paling terkenal bagi

Sifat barisan

Kekonvergenan barisan

Kemonotonan barisan

Jenis

Konsep terkait

Operasi

Lihat pula

Referensi

  1. ^ Spiegel, Murray R. (1986). Teori dan soal-soal matematika dasar. Diterjemahkan oleh Drs. Kasir Iskandar, M.Sc. Jakarta: Erlangga. OCLC 975000500. 
  2. ^ Afidah Khairunnisa (2018). Matematika Dasar. Depok: Rajawali Pers. ISBN 978-979-769-764-8. 
  3. ^ Hendra Gunawan (2016). Pengantar Analisis Real. Bandung: Penerbit ITB. ISBN 978-602-7861-58-9. 
  4. ^ Endang Cahya; Makbul Muksar (2011). Analisis Real. Tanggerang Selatan: Universitas Terbuka. ISBN 978-979-011-674-0. 

Pranala luar

  • Definisi kamus barisan di Wikikamus
  • Hazewinkel, Michiel, ed. (2001) [1994], "Sequence", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4 
  • The On-Line Encyclopedia of Integer Sequences
  • Journal of Integer Sequences (free)
  • (Inggris) sequence (ID: barisan) di PlanetMath.