Contoh penyangkal
Contoh tandingan atau contoh penyangkal (bahasa Inggris: counterexample)[1] adalah bentuk penyangkalan apapun dari sebuah generalisasi. Dalam logika, sebuah contoh tandingan digunakan untuk menyangkal sebuah generalisasi dalam bidang matematika dan fisafat.[2] Sebagai contoh, fakta kalau "mahasiswa John Smith tidaklah pemalas" adalah contoh tandingan dari generalisasi "mahasiswa itu pemalas", dan itu merupakan sangkalan dari kuantifikasi semesta "semua mahasiswa itu pemalas".[3]
Dalam matematika, istilah "contoh tandingan" juga digunakan untuk merujuk kepada contoh yang mengilustrasikan pentingnya hipotesis suatu teorema. Hal ini seringkali dilakukan dengan memerhatikan kasus dimana sebagian hipotesis tidak terpenuhi dan kesimpulan dari teoremanya tidak sesuai.[butuh rujukan]
Dalam matematika
Dalam matematika, contoh tandingan seringkali digunakan untuk membuktikan batasan dari teorema yang ada. Dengan menggunakan contoh tandingan untuk menunjukkan suatu konjektur itu salah, periset matematika tidak perlu menggali permasalahan tersebut lebih dalam lagi dan belajar memodifikasi konjektur yang ada untuk memeroleh teorema yang dapat dibuktikan kebenarannya. Terkadang, disebutkan bahwa perkembangan matematika terdiri dari menemukan (dan membuktikan) teorema dan contoh tandingan.[4]
Contoh persegi panjang
Misalkan seorang matematikawan sedang memelajari geometri dan bentuk-bentuk, dan dia ingin membuktikan beberapa teorema mengenai hal itu. Dia memberikan konjektur bahwa "Semua persegi panjang adalah persegi", dan dia tertarik untuk mengetahui apakah pernyataan ini benar atau salah.
Dalam kasus ini, dia dapat membuktikan kebenaran pernyataan tersebut dengan penalaran deduktif, atau dia dapat mencoba mencari contoh tandingan dari pernyataan tersebut, jika dia mencurigai hal itu salah. Dalam kasus terakhir, contoh tandingannya berupa sebuah persegi panjang yang bukan persegi, seperti persegi panjang dengan dua sisi yang panjangnya 7 dan dua sisi lainnya memiliki panjang 5. Akan tetapi, terlepas berhasil menemukan persegi panjang yang bukan persegi, semua persegi panjang yang dia temukan memiliki empat sisi. Maka dari itu, dia membuat konjektur baru "Semua persegi panjang memiliki empat sisi". Pernyataan ini lebih lemah dibandingkan konjektur dia sebelumnya, lantaran setiap persegi memiliki empat sisi, namun tidak semua bentuk yang memiliki empat sisi itu persegi.
Contoh di atas menjelaskan (dengan cara yang disederhanakan) bagaimana matematikawan melemahkan konjektur yang ada ketika menghadapi sebuah contoh tandingan, namun contoh tandingan juga dapat digunakan untuk mendemonstrasikan pentingnya suatu asumsi dan hipotesis. Sebagai contoh, misalkan setelah beberapa saat, matematikawan di atas mengajukan konjektur baru "Semua bentuk yang termasuk persegi panjang dan memiliki empat sisi yang sama adalah persegi". Lalu dia tertarik untuk mengetahui apakah dia dapat menghilangkan salah satu asumsi yang ada, dan tetap memertahankan kebenaran konjektur miliknya. Itu artinya, dia harus memeriksa kebenaran dari dua pernyataan berikut:
- "Semua bentuk yang termasuk persegi panjang adalah persegi."
- "Semua bentuk yang memiliki empat sisi yang sama panjang adalah persegi."
Contoh tandingan dari (1) telah diberikan di atas, dan contoh tandingan dari (2) adalah belah ketupat non-persegi. Maka dari itu, dia sekarang tahu kalau kedua asumsi sama-sama diperlukan.
Contoh matematis lainnya
Contoh tandingan dari pernyataan "Semua bilangan prima adalah bilangan ganjil" adalah bilangan 2, karena bilangan 2 adalah bilangan prima, tetapi bukan bilangan ganjil.[2] Bilangan 7 atau 10 bukanlah contoh tandingan, karena keduanya tidaklah cukup untuk melawan pernyataan tersebut. Dalam kasus ini, bilangan 2 adalah satu-satunya contoh tandingan dari pernyataan tersebut, walaupun itu saja sudah cukup untuk menjadikan pernyataannya kontradiksi. Dengan cara serupa, pernyataan "Semua bilangan asli adalah bilangan prima atau bilangan komposit" memiliki bilangan 1 sebagai contoh tandingan, karena 1 bukanlah bilangan prima maupun komposit.
Konjektur jumlahan pangkat Euler dibantah dengan contoh tandingan. Ia menyatakan kalau setidaknya diperlukan pangkat ke- untuk menghasilkan pangkat ke- lainnya. Konjektur ini terbukti salah pada tahun 1966,[5] dengan melibatkan nilai ; contoh tandingan lainnya telah banyak ditemukan, serta beberapa contoh tandingan untuk .[6]
Contoh lainnya meliputi bantahan dari konjektur Seifert, konjektur Pólya, konjektur dari masalah keempat belas Hilbert, konjektur Tait, dan konjektur Ganea.
Pada Filsafat
Lihat juga
Referensi
- ^ Yohanes, Rudi Santoso (2019). "Peranan Contoh Penyangkal dalam Pembelajaran Matematika".
- ^ a b "Mathwords: Counterexample" [Mathwords: Contoh tandingan]. www.mathwords.com. Diakses tanggal 2019-11-28.
- ^ Weisstein, Eric W. "Counterexample" [Contoh Tandingan]. mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2019-11-28.
- ^ "What Is Counterexample?" [Apa Itu Contoh Tandingan?]. www.cut-the-knot.org (dalam bahasa Inggris). Diakses tanggal 2019-11-28.
- ^ Lander, Parkin (1966). "Counterexample to Euler's conjecture on sums of like powers" [Contoh tandingan dari konjektur Euler mengenai jumlahan pangkat serupa] (PDF). Bulletin of the American Mathematical Society (dalam bahasa Inggris). Americal Mathematical Society. 72 (6): 1079. doi:10.1090/s0002-9904-1966-11654-3 . ISSN 0273-0979. Diakses tanggal 2 August 2018.
- ^ Elkies, Noam (October 1988). "On " (PDF). Mathematics of Computation (dalam bahasa Inggris). 51 (184): 825–835.
Bacaan lanjutan
- Imre Lakatos, Proofs and Refutations Cambridge University Press, 1976, ISBN 0521290384
- James Franklin dan Albert Daoud, Proof in Mathematics: An Introduction (Bukti dalam Matematika: Pengantar), Kew, Sydney, 2011. ISBN 978-0-646-54509-7, bab 6.
- Lynn Arthur Steen dan J. Arthur Seebach Jr.: Counterexamples in Topology (Contoh tadingan pada Topologi), Springer, New York 1978, ISBN 0-486-68735-X.
- Joseph P. Romano dan Andrew F. Siegel: Counterexamples in Probability and Statistics (Contoh tandingan pada Statistika dan Peluang), Chapman & Hall, New York, London 1986, ISBN 0-412-98901-8.
- Gary L. Wise dan Eric B. Hall: Counterexamples in Probability and Real Analysis (Contoh tandingan pada Analisis Riil dan Peluang). Oxford University Press, New York 1993. ISBN 0-19-507068-2.
- Bernard R. Gelbaum, John M. H. Olmsted: Counterexamples in Analysis (Contoh tandingan pada Analisis). Corrected reprint of the second (1965) edition, Dover Publications, Mineola, NY 2003, ISBN 0-486-42875-3.
- Jordan M. Stoyanov: Counterexamples in Probability (Contoh tandingan pada Peluang). Second edition, Wiley, Chichester 1997, ISBN 0-471-96538-3.
- Michael Copobianco & John Mulluzzo (1978) Examples and Counterexamples in Graph Theory (Contoh tandingan pada Teori Graf), Elsevier North-Holland ISBN 0-444-00255-3.
Pranala luar
- Kutipan tentang Contoh penyangkal di Wikikutip