Lompat ke isi

Proteasom

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Proteasom adalah kompleks protein yang mendegradasi suatu protein yang tidak dibutuhkan atau rusak dengan cara proteolisis (reaksi kimia yang memutuskan ikatan peptida). Enzim yang membantu reaksi tersebut disebut protease.

Proteasom adalah bagian dari mekanisme utama di dalam sel yang mengatur konsentrasi protein tertentu dan mendegradasi protein yang gagal melipat. Untuk didegradasi, protein akan ditandai oleh protein kecil disebut ubiquitin. Reaksi penandaan tersebut dikatalisis oleh enzim yang disebut ubiquitin ligase. Setelah protein ditandai, hal tersebut memberi sinyal ke ligase lain untuk menempelkan molekul ubiquitin tambahan. Hasilnya yaitu rantai poliubiquitin yang diikat oleh proteasom, yang memungkinkannya untuk mendegradasi protein yang ditandai. Proses degradasi menghasilkan peptida dengan panjang sekitar tujuh hingga delapan asam amino, yang kemudian dapat didegradasi lebih lanjut menjadi rangkaian asam amino yang lebih pendek dan digunakan dalam mensintesis protein baru.[1]

Proteasom ditemukan pada semua eukariota dan arkea, dan pada beberapa bakteri. Pada eukariota, proteasom terletak baik di dalam nukleus maupun di dalam sitoplasma.[2]

Secara struktur, proteasom adalah kompleks silindris yang mengandung "inti" dari empat cincin bertumpuk yang membentuk pori pusat. Setiap cincin terdiri dari tujuh protein tunggal. Dua cincin bagian dalam terbuat dari tujuh β subunit yang mengandung tiga hingga tujuh situs aktif protease. Situs-situs ini terletak pada permukaan interior cincin, sehingga protein target harus masuk ke pori pusat sebelum terdegradasi. Dua cincin luar masing-masing berisi tujuh α subunit yang berfungsi untuk mempertahankan "gerbang" melalui protein-protein yang memasuki tabung. Subunit ini dikendalikan dengan mengikat struktur "tutup" atau partikel pengatur yang mengenali tag poliubiquitin yang melekat pada substrat protein dan memulai proses degradasi. Sistem keseluruhan ubiquitinasi dan degradasi proteasomal dikenal sebagai sistem ubiquitin-proteasom (ubiquitin–proteasome system, UPS).[3]

Jalur degradasi proteasomal sangat penting untuk banyak proses seluler, termasuk siklus sel, regulasi ekspresi gen, dan respons terhadap stres oksidatif. Pentingnya degradasi proteolitik di dalam sel dan peran ubiquitin dalam jalur proteolitik diakui dalam Penghargaan Nobel Kimia 2004 kepada Aaron Ciechanover, Avram Hershko, dan Irwin Rose.[4]

Penemuan

Struktur dan organisasi

Partikel inti 20S

Partikel pengatur 19S

Perubahan konformasi dari 19S

Regulasi 20S oleh 19S

Partikel pengatur lainnya

Perakitan

Proses degradasi protein

Ubikitinasi dan penargetan

Pembukaan dan translokasi

Proteolisis

Degradasi tidak tergantung ubiquitin

Evolusi

Peran pada proses seluler

Kontrol siklus sel

Progresi siklus sel dikendalikan oleh aksi berurutan dari cyclin-dependent kinase (CDK), diaktifkan oleh siklin spesifik yang membatasi fase-fase siklus sel. Siklin mitosis, yang bertahan di dalam sel hanya beberapa menit, memiliki salah satu rentang hidup terpendek dari semua protein intraseluler. Setelah kompleks CDK-siklin menjalankan fungsinya, siklin tersebut dipoliubiquitinasi dan dihancurkan oleh proteasom, yang memberikan arah untuk siklus sel. Secara khusus, keluar dari mitosis membutuhkan disosiasi tergatung proteasom dari komponen regulasi siklin B dari kompleks faktor pemicu mitosis.[5] Dalam sel vertebrata, "pelinciran" melalui pos pemeriksaan mitosis yang mengarah ke fase keluar M prematur dapat terjadi meskipun penundaan keluar ini oleh pos pemeriksaan gelendong.[6]

Pos pemeriksaan siklus sel sebelumnya seperti pemeriksaan titik pasca-pembatasan antara fase G1 dan fase S juga melibatkan degradasi proteasomal dari cyclin A, yang ubiquitinasinya dipromosikan oleh kompleks pemacu anafase (APC), sebuah ligase ubiquitin E3.[7] APC dan kompleks protein Skp1/Cul1/F-box (kompleks SCF) adalah dua pengatur utama degradasi cyclin dan kontrol pos pemeriksaan; SCF sendiri diatur oleh APC melalui ubiquitinasi protein adaptor, Skp2, yang mencegah aktivitas SCF sebelum transisi G1-S.[8]

Komponen individu dari partikel 19S memiliki peran pengaturannya sendiri. Gankyrin, oncoprotein yang baru-baru ini diidentifikasi, merupakan salah satu subkomponen 19S yang juga mengikat erat CDK4 kinase yang bergantung pada siklin dan memainkan peran kunci dalam mengenali p53 yang ada di mana-mana, melalui afinitasnya terhadap ubiquitin ligase MDM2. Gankyrin bersifat anti-apoptosis dan telah terbukti diekspresikan secara berlebihan pada beberapa jenis sel tumor seperti karsinoma hepatoseluler.[9]

Seperti eukariota, beberapa archaea juga menggunakan proteasom untuk mengontrol siklus sel, khususnya dengan mengontrol pembelahan sel yang dimediasi ESCRT-III.[10]

Apoptosis

Respons pada stres seluler

Peran pada sistem imun

Peran pada penyakit

Proteasom dan subunitnya memiliki signifikansi klinis karena (i) perakitan kompleks yang dikompromikan atau proteasom disfungsional dapat dikaitkan dengan patofisiologi yang mendasari penyakit tertentu, dan (ii) proteasom dapat dimanfaatkan sebagai target obat untuk terapi. Baru-baru ini, lebih banyak upaya telah dilakukan untuk mempertimbangkan proteasome untuk pengembangan penanda dan strategi diagnostik baru. Pemahaman yang lebih baik dan komprehensif tentang patofisiologi proteasom harus mengarah pada aplikasi klinis di masa depan.

Proteasom membentuk komponen penting untuk sistem ubiquitin-proteasome (UPS)[11] dan kontrol kualitas protein seluler (protein quality control, PQC) yang sesuai. Ubiquitinasi protein dan proteolisis dan degradasi selanjutnya oleh proteasom merupakan mekanisme penting dalam regulasi siklus sel, pertumbuhan dan diferensiasi sel, transkripsi gen, transduksi sinyal dan apoptosis.[12] Selanjutnya, perakitan dan fungsi kompleks proteasom yang dikompromikan menyebabkan berkurangnya aktivitas proteolitik dan akumulasi spesies protein yang rusak atau salah lipat. Akumulasi protein tersebut dapat berkontribusi pada patogenesis dan karakteristik fenotipik pada penyakit neurodegeneratif,[13][14] penyakit kardiovaskular,[15][16] respons inflamasi dan penyakit autoimun,[17] dan respons kerusakan DNA sistemik yang mengarah pada keganasan.[18]

Beberapa penelitian eksperimental dan klinis telah menunjukkan bahwa penyimpangan dan deregulasi UPS berkontribusi pada patogenesis beberapa gangguan neurodegeneratif dan myodegeneratif, termasuk penyakit Alzheimer,[19] penyakit Parkinson[20] dan penyakit Pick,[21] amyotrophic lateral sclerosis (ALS),[22] penyakit Huntington,[23] penyakit Creutzfeldt-Jakob,[24] dan penyakit neuron motorik, penyakit poliglutamin (PolyQ), distrofi otot,[25] dan beberapa bentuk penyakit neurodegeneratif yang jarang terkait dengan demensia.[26]

Sebagai bagian dari sistem ubiquitin-proteasom (UPS), proteasom mempertahankan homeostasis protein jantung dan dengan demikian memainkan peran penting dalam cedera iskemik jantung,[27] hipertrofi ventrikel,[28] dan gagal jantung.[29]

Selain itu, bukti terakumulasi bahwa UPS memainkan peran penting dalam transformasi keganasan. Proteolisis UPS memainkan peran utama dalam respons sel kanker terhadap sinyal stimulasi yang sangat penting untuk perkembangan kanker. Oleh karena itu, ekspresi gen melalui degradasi faktor transkripsi, seperti p53, c-jun, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, protein pengikat elemen yang diatur sterol dan reseptor androgen semuanya dikendalikan oleh UPS dan dengan demikian terlibat dalam perkembangan berbagai keganasan.[30] Selain itu, UPS mengatur degradasi produk gen supresor tumor seperti adenomatous polyposis coli (APC) pada kanker kolorektal, retinoblastoma (Rb), dan penekan tumor von Hippel–Lindau (VHL), serta sejumlah proto-onkogen (Raf, Myc, Myb, Rel, Src, Mos, ABL). UPS juga terlibat dalam regulasi respon inflamasi. Aktivitas ini biasanya dikaitkan dengan peran proteasom dalam aktivasi NF-κB yang selanjutnya mengatur ekspresi sitokin pro-inflamasi seperti TNF-α, IL-β, IL-8, molekul adhesi (ICAM-1, VCAM-1, P-selectin) dan prostaglandin dan oksida nitrat (NO).[31] Selain itu, UPS juga berperan dalam respons inflamasi sebagai pengatur proliferasi leukosit, terutama melalui proteolisis siklin dan degradasi inhibitor CDK.[32] Terakhir, pasien penyakit autoimun dengan SLE, sindrom Sjögren dan rheumatoid arthritis (RA) secara dominan menunjukkan proteasom yang bersirkulasi yang dapat diterapkan sebagai biomarker klinis.[33]

Inhibitor proteasom

Sruktur kimia dari bortezomib (bentuk terboronasi dari MG132), suatu inhibitor proteasom yang digunakan pada kemoterapi kanker multiple myeloma

Inhibitor proteasome memiliki aktivitas anti-tumor yang efektif dalam kultur sel yaitu menginduksi apoptosis dengan mengganggu degradasi yang diatur dari protein siklus sel pro-pertumbuhan. Pendekatan selektif menginduksi apoptosis dalam sel tumor telah terbukti efektif dalam model hewan dan percobaan manusia.

Laktasistin, suatu produk alami yang disintesis oleh bakteri Streptomyces, merupakan inhibitor proteasom non-peptida pertama yang ditemukan[34] dan digunakan secara luas sebagai bahan penelitian dalam biokimia dan biologi sel. Laktasistin secara kovalen memodifikasi treonin terminal amino dari subunit katalitik dari proteasom, khususnya subunit 5 yang bertanggung jawab atas aktivitas mirip kimotripsin proteasom. Penemuan ini membantu menetapkan proteasom sebagai kelas protease baru yang mekanistik: protease treonin terminal amino.

Bortezomib (Boronated MG132), sebuah molekul yang dipasarkan sebagai Velcade, adalah inhibitor proteasom pertama yang dalam penggunaan klinis sebagai agen kemoterapi. Bortezomib digunakan dalam pengobatan multiple myeloma.[35] Khususnya, multiple myeloma telah diamati menghasilkan peningkatan kadar peptida turunan proteasom dalam serum darah yang menurun ke tingkat normal sebagai respons terhadap kemoterapi yang berhasil.[36] Penelitian pada hewan telah menunjukkan bahwa bortezomib mungkin juga memiliki efek klinis yang signifikan pada kanker pankreas.[37][38] Penelitian pra-klinis dan klinis awal telah dimulai untuk menguji efektivitas bortezomib dalam mengobati kanker terkait sel B lainnya,[39] khususnya beberapa jenis limfoma non-Hodgkin.[40] Hasil klinis juga tampaknya membenarkan penggunaan inhibitor proteasom yang dikombinasikan dengan kemoterapi, untuk leukemia limfoblastik akut sel B.[41] Inhibitor proteasom dapat membunuh beberapa jenis sel leukemia yang resisten terhadap glukokortikoid.[42]

Ritonavir dikembangkan sebagai inhibitor protease dan digunakan untuk menargetkan infeksi HIV. Namun, telah terbukti menghambat proteasom serta protease bebas; secara spesifik, aktivitas proteasome yang mirip kimotripsin dihambat oleh ritonavir, sedangkan aktivitas mirip tripsin agak meningkat.[43] Studi pada model hewan menunjukkan bahwa ritonavir mungkin memiliki efek penghambatan pada pertumbuhan sel glioma.[44]

Inhibitor proteasom juga menjanjikan dalam mengobati penyakit autoimun pada model hewan. Misalnya, penelitian pada tikus yang membawa cangkok kulit manusia menemukan pengurangan ukuran lesi dari psoriasis setelah pengobatan dengan inhibitor proteasom.[45] Inhibitor juga menunjukkan efek positif pada model asma tikus.[46]

Referensi

  1. ^ Molecular cell biology. Harvey F. Lodish, Arnold Berk, Chris Kaiser, Monty Krieger, Matthew P. Scott, Anthony Bretscher (edisi ke-6th ed). New York: W.H. Freeman. 2008. ISBN 0-7167-4366-3. OCLC 83758878. 
  2. ^ Peters, J. M.; Franke, W. W.; Kleinschmidt, J. A. (1994-03-11). "Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm". The Journal of Biological Chemistry. 269 (10): 7709–7718. ISSN 0021-9258. PMID 8125997. 
  3. ^ Nassif, Nicholas D.; Cambray, Samantha E.; Kraut, Daniel A. (2014-05). "Slipping up: partial substrate degradation by ATP-dependent proteases". IUBMB life. 66 (5): 309–317. doi:10.1002/iub.1271. ISSN 1521-6551. PMID 24823973. 
  4. ^ "The Nobel Prize in Chemistry 2004". NobelPrize.org (dalam bahasa Inggris). Diakses tanggal 2022-02-18. 
  5. ^ Chesnel, Franck; Bazile, Franck; Pascal, Aude; Kubiak, Jacek Z. (2006-08). "Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos". Cell Cycle (Georgetown, Tex.). 5 (15): 1687–1698. doi:10.4161/cc.5.15.3123. ISSN 1551-4005. PMID 16921258. 
  6. ^ Brito, Daniela A.; Rieder, Conly L. (2006-06-20). "Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint". Current biology: CB. 16 (12): 1194–1200. doi:10.1016/j.cub.2006.04.043. ISSN 0960-9822. PMC 2749311alt=Dapat diakses gratis. PMID 16782009. 
  7. ^ Havens, Courtney G.; Ho, Alan; Yoshioka, Naohisa; Dowdy, Steven F. (2006-06). "Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species". Molecular and Cellular Biology. 26 (12): 4701–4711. doi:10.1128/MCB.00303-06. ISSN 0270-7306. PMC 1489138alt=Dapat diakses gratis. PMID 16738333. 
  8. ^ Bashir, Tarig; Dorrello, N. Valerio; Amador, Virginia; Guardavaccaro, Daniele; Pagano, Michele (2004-03-11). "Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase". Nature. 428 (6979): 190–193. doi:10.1038/nature02330. ISSN 1476-4687. PMID 15014502. 
  9. ^ Higashitsuji, Hiroaki; Liu, Yu; Mayer, R. John; Fujita, Jun (2005-10). "The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation". Cell Cycle (Georgetown, Tex.). 4 (10): 1335–1337. doi:10.4161/cc.4.10.2107. ISSN 1551-4005. PMID 16177571. 
  10. ^ Tarrason Risa, Gabriel; Hurtig, Fredrik; Bray, Sian; Hafner, Anne E.; Harker-Kirschneck, Lena; Faull, Peter; Davis, Colin; Papatziamou, Dimitra; Mutavchiev, Delyan R. (2020-08-07). "The proteasome controls ESCRT-III-mediated cell division in an archaeon". Science (New York, N.Y.). 369 (6504): eaaz2532. doi:10.1126/science.aaz2532. ISSN 1095-9203. PMC 7116001alt=Dapat diakses gratis. PMID 32764038. 
  11. ^ Kleiger, Gary; Mayor, Thibault (2014-06). "Perilous journey: a tour of the ubiquitin-proteasome system". Trends in Cell Biology. 24 (6): 352–359. doi:10.1016/j.tcb.2013.12.003. ISSN 1879-3088. PMC 4037451alt=Dapat diakses gratis. PMID 24457024. 
  12. ^ Goldberg, A. L.; Stein, R.; Adams, J. (1995-08). "New insights into proteasome function: from archaebacteria to drug development". Chemistry & Biology. 2 (8): 503–508. doi:10.1016/1074-5521(95)90182-5. ISSN 1074-5521. PMID 9383453. 
  13. ^ Sulistio, Yanuar Alan; Heese, Klaus (2016-03). "The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease". Molecular Neurobiology. 53 (2): 905–931. doi:10.1007/s12035-014-9063-4. ISSN 1559-1182. PMID 25561438. 
  14. ^ Ortega, Zaira; Lucas, Jose J. (2014). "Ubiquitin-proteasome system involvement in Huntington's disease". Frontiers in Molecular Neuroscience. 7: 77. doi:10.3389/fnmol.2014.00077. ISSN 1662-5099. PMC 4179678alt=Dapat diakses gratis. PMID 25324717. 
  15. ^ Sandri, Marco; Robbins, Jeffrey (2014-06). "Proteotoxicity: an underappreciated pathology in cardiac disease". Journal of Molecular and Cellular Cardiology. 71: 3–10. doi:10.1016/j.yjmcc.2013.12.015. ISSN 1095-8584. PMC 4011959alt=Dapat diakses gratis. PMID 24380730. 
  16. ^ Wang, Zhao V.; Hill, Joseph A. (2015-02-03). "Protein quality control and metabolism: bidirectional control in the heart". Cell Metabolism. 21 (2): 215–226. doi:10.1016/j.cmet.2015.01.016. ISSN 1932-7420. PMC 4317573alt=Dapat diakses gratis. PMID 25651176. 
  17. ^ Karin, M.; Delhase, M. (2000-02). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. ISSN 1044-5323. PMID 10723801. 
  18. ^ Ermolaeva, Maria A.; Dakhovnik, Alexander; Schumacher, Björn (2015-09). "Quality control mechanisms in cellular and systemic DNA damage responses". Ageing Research Reviews. 23 (Pt A): 3–11. doi:10.1016/j.arr.2014.12.009. ISSN 1872-9649. PMC 4886828alt=Dapat diakses gratis. PMID 25560147. 
  19. ^ Checler, F.; da Costa, C. A.; Ancolio, K.; Chevallier, N.; Lopez-Perez, E.; Marambaud, P. (2000-07-26). "Role of the proteasome in Alzheimer's disease". Biochimica Et Biophysica Acta. 1502 (1): 133–138. doi:10.1016/s0925-4439(00)00039-9. ISSN 0006-3002. PMID 10899438. 
  20. ^ Chung, K. K.; Dawson, V. L.; Dawson, T. M. (2001-11). "The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders". Trends in Neurosciences. 24 (11 Suppl): S7–14. doi:10.1016/s0166-2236(00)01998-6. ISSN 0166-2236. PMID 11881748. 
  21. ^ Ikeda, Kenji; Akiyama, Haruhiko; Arai, Tetsuaki; Ueno, Hideki; Tsuchiya, Kuniaki; Kosaka, Kenji (2002-07). "Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia". Acta Neuropathologica. 104 (1): 21–28. doi:10.1007/s00401-001-0513-5. ISSN 0001-6322. PMID 12070660. 
  22. ^ Ikeda, Kenji; Akiyama, Haruhiko; Arai, Tetsuaki; Ueno, Hideki; Tsuchiya, Kuniaki; Kosaka, Kenji (2002-07). "Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia". Acta Neuropathologica. 104 (1): 21–28. doi:10.1007/s00401-001-0513-5. ISSN 0001-6322. PMID 12070660. 
  23. ^ Chung, K. K.; Dawson, V. L.; Dawson, T. M. (2001-11). "The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders". Trends in Neurosciences. 24 (11 Suppl): S7–14. doi:10.1016/s0166-2236(00)01998-6. ISSN 0166-2236. PMID 11881748. 
  24. ^ Manaka, H.; Kato, T.; Kurita, K.; Katagiri, T.; Shikama, Y.; Kujirai, K.; Kawanami, T.; Suzuki, Y.; Nihei, K. (1992-05-11). "Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt-Jakob disease". Neuroscience Letters. 139 (1): 47–49. doi:10.1016/0304-3940(92)90854-z. ISSN 0304-3940. PMID 1328965. 
  25. ^ Mathews, Katherine D.; Moore, Steven A. (2003-01). "Limb-girdle muscular dystrophy". Current Neurology and Neuroscience Reports. 3 (1): 78–85. doi:10.1007/s11910-003-0042-9. ISSN 1528-4042. PMID 12507416. 
  26. ^ Mayer, R. John (2003-03). "From neurodegeneration to neurohomeostasis: the role of ubiquitin". Drug News & Perspectives. 16 (2): 103–108. doi:10.1358/dnp.2003.16.2.829327. ISSN 0214-0934. PMID 12792671. 
  27. ^ Calise, Justine; Powell, Saul R. (2013-02-01). "The ubiquitin proteasome system and myocardial ischemia". American Journal of Physiology. Heart and Circulatory Physiology. 304 (3): H337–349. doi:10.1152/ajpheart.00604.2012. ISSN 1522-1539. PMC 3774499alt=Dapat diakses gratis. PMID 23220331. 
  28. ^ Predmore, Jaime M.; Wang, Ping; Davis, Frank; Bartolone, Sarah; Westfall, Margaret V.; Dyke, David B.; Pagani, Francis; Powell, Saul R.; Day, Sharlene M. (2010-03-02). "Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies". Circulation. 121 (8): 997–1004. doi:10.1161/CIRCULATIONAHA.109.904557. ISSN 1524-4539. PMC 2857348alt=Dapat diakses gratis. PMID 20159828. 
  29. ^ Powell, Saul R. (2006-07). "The ubiquitin-proteasome system in cardiac physiology and pathology". American Journal of Physiology. Heart and Circulatory Physiology. 291 (1): H1–H19. doi:10.1152/ajpheart.00062.2006. ISSN 0363-6135. PMID 16501026. 
  30. ^ Adams, Julian (2003-04-01). "Potential for proteasome inhibition in the treatment of cancer". Drug Discovery Today. 8 (7): 307–315. doi:10.1016/s1359-6446(03)02647-3. ISSN 1359-6446. PMID 12654543. 
  31. ^ Karin, M.; Delhase, M. (2000-02). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. ISSN 1044-5323. PMID 10723801. 
  32. ^ Ben-Neriah, Yinon (2002-01). "Regulatory functions of ubiquitination in the immune system". Nature Immunology. 3 (1): 20–26. doi:10.1038/ni0102-20. ISSN 1529-2908. PMID 11753406. 
  33. ^ Egerer, Karl; Kuckelkorn, Ulrike; Rudolph, Paul E.; Rückert, Jens C.; Dörner, Thomas; Burmester, Gerd-R.; Kloetzel, Peter-M.; Feist, Eugen (2002-10). "Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases". The Journal of Rheumatology. 29 (10): 2045–2052. ISSN 0315-162X. PMID 12375310. 
  34. ^ Fenteany, G.; Standaert, R. F.; Lane, W. S.; Choi, S.; Corey, E. J.; Schreiber, S. L. (1995-05-05). "Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin". Science (New York, N.Y.). 268 (5211): 726–731. doi:10.1126/science.7732382. ISSN 0036-8075. PMID 7732382. 
  35. ^ Fisher, Richard I.; Bernstein, Steven H.; Kahl, Brad S.; Djulbegovic, Benjamin; Robertson, Michael J.; de Vos, Sven; Epner, Elliot; Krishnan, Amrita; Leonard, John P. (2006-10-20). "Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 24 (30): 4867–4874. doi:10.1200/JCO.2006.07.9665. ISSN 1527-7755. PMID 17001068. 
  36. ^ Jakob, Christian; Egerer, Karl; Liebisch, Peter; Türkmen, Seval; Zavrski, Ivana; Kuckelkorn, Ulrike; Heider, Ulrike; Kaiser, Martin; Fleissner, Claudia (2007-03-01). "Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma". Blood. 109 (5): 2100–2105. doi:10.1182/blood-2006-04-016360. ISSN 0006-4971. PMID 17095627. 
  37. ^ Shah, S. A.; Potter, M. W.; McDade, T. P.; Ricciardi, R.; Perugini, R. A.; Elliott, P. J.; Adams, J.; Callery, M. P. (2001 Apr 2-27). "26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer". Journal of Cellular Biochemistry. 82 (1): 110–122. doi:10.1002/jcb.1150. ISSN 0730-2312. PMID 11400168. 
  38. ^ Nawrocki, Steffan T.; Sweeney-Gotsch, Bridget; Takamori, Ryan; McConkey, David J. (2004-01). "The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts". Molecular Cancer Therapeutics. 3 (1): 59–70. ISSN 1535-7163. PMID 14749476. 
  39. ^ Schenkein, David (2002-06). "Proteasome inhibitors in the treatment of B-cell malignancies". Clinical Lymphoma. 3 (1): 49–55. doi:10.3816/clm.2002.n.011. ISSN 1526-9655. PMID 12141956. 
  40. ^ O'Connor, Owen A.; Wright, John; Moskowitz, Craig; Muzzy, Jamie; MacGregor-Cortelli, Barbara; Stubblefield, Michael; Straus, David; Portlock, Carol; Hamlin, Paul (2005-02-01). "Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 23 (4): 676–684. doi:10.1200/JCO.2005.02.050. ISSN 0732-183X. PMID 15613699. 
  41. ^ Messinger, Yoav H.; Gaynon, Paul S.; Sposto, Richard; van der Giessen, Jeannette; Eckroth, Elena; Malvar, Jemily; Bostrom, Bruce C.; Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Consortium (2012-07-12). "Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study". Blood. 120 (2): 285–290. doi:10.1182/blood-2012-04-418640. ISSN 1528-0020. PMID 22653976. 
  42. ^ Lambrou, George I.; Papadimitriou, Lina; Chrousos, George P.; Vlahopoulos, Spiros A. (2012-04). "Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: Multiple, diverse signals converging on a few key downstream regulators". Molecular and Cellular Endocrinology (dalam bahasa Inggris). 351 (2): 142–151. doi:10.1016/j.mce.2012.01.003. 
  43. ^ Schmidtke, G.; Holzhütter, H. G.; Bogyo, M.; Kairies, N.; Groll, M.; de Giuli, R.; Emch, S.; Groettrup, M. (1999-12-10). "How an inhibitor of the HIV-I protease modulates proteasome activity". The Journal of Biological Chemistry. 274 (50): 35734–35740. doi:10.1074/jbc.274.50.35734. ISSN 0021-9258. PMID 10585454. 
  44. ^ Laurent, Nathalie; de Boüard, Sophie; Guillamo, Jean-Sébastien; Christov, Christo; Zini, Roland; Jouault, Hélène; Andre, Patrice; Lotteau, Vincent; Peschanski, Marc (2004-02). "Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo". Molecular Cancer Therapeutics. 3 (2): 129–136. ISSN 1535-7163. PMID 14985453. 
  45. ^ Zollner, Thomas M.; Podda, Maurizio; Pien, Christine; Elliott, Peter J.; Kaufmann, Roland; Boehncke, Wolf-Henning (2002-03). "Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model". The Journal of Clinical Investigation. 109 (5): 671–679. doi:10.1172/JCI12736. ISSN 0021-9738. PMC 150886alt=Dapat diakses gratis. PMID 11877475. 
  46. ^ Elliott, P. J.; Pien, C. S.; McCormack, T. A.; Chapman, I. D.; Adams, J. (1999-08). "Proteasome inhibition: A novel mechanism to combat asthma". The Journal of Allergy and Clinical Immunology. 104 (2 Pt 1): 294–300. doi:10.1016/s0091-6749(99)70369-6. ISSN 0091-6749. PMID 10452747.