Lompat ke isi

Pengguna:Dedhert.Jr/Uji halaman 01/16

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Grafik fungsi logaritma dengan tiga bilangan pokok yang umum. Titik khusus blog b = 1 diperlihatkan oleh garis bertitik, dan semua kurva fungsi memotong di blog 1 = 0.

Dalam matematika, logaritma merupakan fungsi invers dari eksponensiasi. Dengan kata lain, logaritma suatu nilai x merupakan eksponen dengan bilangan pokok b yang dipangkatkan dengan bilangan sesuatu agar memperoleh nilai x. Kasus sederhana dalam logaritma menghitung jumlah munculnya faktor yang sama dalam perkalian berulang. Sebagai contoh, 1000 = 10 × 10 × 10 = 103 dibaca, "logaritma 1000 dengan bilangan pokok 10 sama dengan 3" atau dinotasikan sebagai 10log (1000) = 3. Logaritma dari x dengan bilangan pokok b dilambangkan blog x. Terkadang logaritma dilambangkan sebagai logb (x) atau tanpa menggunakan tanda kurung. logbx, atau bahkan tanpa menggunakan bilangan pokok, log x.

Ada tiga bilangan pokok logaritma yang umum beserta kegunaannya. Logaritma bilangan pokok 10 (b = 10) disebut sebagai logaritma umum, yang biasanya dipakai dalam ilmu sains dan rekayasa. Adapun logaritma alami dengan bilangan pokok bilangan e (b ≈ 2.718), yang dipakai dengan luas dalam matematika dan fisika karena dapat mempermudah perhitungan integral dan turunan. Adapula logaritma biner menggunakan bilangan pokok 2 (b = 2), yang seringkali dipakai dalam ilmu komputer.

Logaritma diperkenalkan oleh John Napier pada tahun 1614 sebagai alat yang menyederhanakan perhitungan.[1] Logaritma dipakai lebih cepat dalam navigator, ilmu sains, rekayasa, ilmu ukur wilayah, dan bidang lainnya untuk lebih mempermudah perhitungan nilai yang sangat akurat. Dengan menggunakan tabel logaritma, cara yang membosankan dalam mengalikan digit yang banyak dapat digantikan dengan melihat tabel dan penjumlahan yang lebih mudah. Ini dapat dilakukan karena bahwa logaritma dari hasil kali bilangan merupakan logaritma dari jumlah faktor bilangan:

asalkan bahwa b, x dan y bilangan positif dan b ≠ 1. Mistar hitung yang juga berasal dari logaritma dapat mempermudah perhitungan tanpa menggunakan tabel, namun perhitungannya kurang akurat. Leonhard Euler mengaitkan gagasan logaritma saat ini dengan fungsi eksponensial pada abad ke-18, dan juga memperkenalkan huruf e sebagia bilangan pokok logaritma alami.[2]

Skala logaritma mengurangi jumlah luas ke lingkup yang lebih kecil. Misalnya, desibel (dB) adalah satuan yang digunakan untuk menyatakan rasio sebagai logaritma, sebagian besar untuk kekuatan sinyal dan amplitudo (contoh umumnya pada tekanan suara). Dalam kimia, pH mengukur keasaman dari larutan berair melalui logaritma. Logaritma biasa dalam rumus ilmiah, dan dalam pengukuran kompleksitas algoritma dan objek geometris yang disebut fraktal. Logaritma juga membantu untuk menjelaskan frekuensi rasio interval musik, muncul dalam rumus yang menghitung bilangan prima atau hampiran faktorial, memberikan gambaran dalam psikofisika, dan dapat membantu perhitungan akuntansi forensik.

Konsep logaritma sebagai invers dari eksponensiasi juga memperluas ke struktur matematika lain. Namun pada umumnya, logaritma cenderung merupakan fungsi bernilai banyak. Sebagai contoh, logaritma kompleks merupakan invers dari fungsi eksponensial pada bilangan kompleks. Mirip contoh lain, logaritma diskret dalam grup hingga, merupakan invers fungsi eksponensial bernilai banyak yang memiliki kegunaan dalam kriptografi kunci publik.

Alasan

Grafik memperlihatkan kurva logaritmik yang memotong\ sumbu-x di dan mendekati negatif takhingga di sepanjang garis sumbu-y.
Gambar memperlihatkan grafik logaritma dengan bilangan pokok 2 memotong sumbu-x di x = 1 dan melalui titik (2, 1), (4, 2), dan (8, 3), sebagai contoh, log2(8) = 3 dan 23 = 8. Grafik tersebut dengan sembarang mendekati sumbu--y, namun tidak mendekati sumbu-x.

Operasi aritmetika yang paling dasar adalah penambahan, perkalian, dan eksponen. Kebalikan dari penambahan adalah pengurangan, dan kebalikan dari perkalian adalah pembagian. Mirip contoh sebelumnya, logaritma merupakan kebalikan dari operasi eksponesiasi. Eksponensiasi adalah sebuah bilangan bilangan pokok b yang ketika dipangkatkan dengan y memberikan nilai x. Ini dirumuskan sebagai

Sebagai contoh, 2 pangkat 3 memberikan nilai 8. Secara matematis, .

Logaritma dengan bilangan pokok b merupakan operasi invers yang menyediakan nilai keluar y dari nilai masukan x. Dalam artian, ekuivalen dengan , jika b bilangan real positif. (Jika b bukanlah bilangan real positif, eksponensiasi dan logaritma dapat didefinisikan, namun memberikan beberapa nilai, sehingga definisi darinya semakin rumit.)

Salah satu alasan bersejarah utamanya dalam memperkenalkan logaritma adalah rumus

yang dapat mempermudah perhitungan nilai perkalian dan pembagian dengan penjumlahan, pengurangan, dan melihat tabel logaritma. Perhitungan ini ditemukan sebelum adanya penemuan komputer.


Definisi

Logarithm suatu bilangan real positif x terhadap bilangan pokok b[nb 1] merupakan eksponen dengan bilangan pokok b yang dipangkatkan suatu bilangan agar memperoleh nilai x. Dengan kata lain, logaritma bilangan pokok b dari x merupakan bilangan real y sehingga .[3] Logaritma dilambangkan sebagai blog x (dibaca "logaritma x dengan bilangan pokok b"). Adapun definisi yang setara dan lebih ringkasnya mengatakan bahwa fungsi blog invers dengan fungsi .

Sebagai contoh, 2log 16 = 4, karena 24 = 2 × 2 × 2 × 2 = 16. Logaritma juga berupakan nilai negatif, sebagai contoh , karena . Logaritma juga berupa nilai desimal, sebagai contoh 10log 150 kira-kira sama dengan 2.176, karena terletak di antara 2 dan 3, begitu pula 150 terletak antara 102 = 100 dan 103 = 1000. Adapun sifat logaritma bahwa untuk setiap b, blog b = 1 karena b1 = b, dan blog 1 = 0 karena b0 = 1.

Identitas logaritma

Ada beberapa rumus penting, terkadang disebut identitas logaritma, mengaitkan logaritma dengan yang lainnya.[4]

Hasil kali, hasil bagi, pangkat, dan akar

Logaritma suatu hasil kali merupakan jumlah logaritma dari bliangan yang dikalikan dan logaritma hasil bagi dari dua bilangan merupakan selisih logaritma. Logaritma dari bilangan pangkat ke-p sama dengan p dikali logaritma itu sendiri dan logaritma bilangan akar ke-p sama dengan logaritma dibagi dengan p. Berikut adalah tabel yang memuat daftar sifat-sifat logaritma tersebut beserta conohtnya. Masing-masing identitas ini berasal dari hasil substitusi dari definisi logaritma atau pada ruas kiri.

Rumus Contoh
Hasil kali
Hasil bagi
Pangkat
Akar

Mengubah bilangan pokok

Logaritma blog x dapat dihitung sebagai hasil bagi logaritma x dengan logaritma b terhadap bilangan pokok sembarang k. Secara matematis dirumuskan sebagai:

Bukti perubahan antara logaritma dengan bilangan pokok sembarang

Pada identitas

dapat menerapkan klog pada kedua ruas sehingga memperoleh

.

Mencari solusi untuk menghasilkan persamaan:

,

Adapun kalkulator ilmiah yang menghitung logaritma dengan bilangan pokok 10 dan e.[5] Logaritma terhadap setiap bilangan pokok b dapat ditentukan menggunakan menggunakan kedua logaritma tersebut melalui rumus sebelumnya:

Diberikan suatu bilangan x dan logaritma y = logbx, dengan b adalah bilangan pokok yang tidak diketahui. Bilangan pokok logaritma dapat dirumuskan sebagai

Rumus tersebut dapat diperlihatkan dengan mengambil persamaan yang mendefinisikan , lalu dipangkatkan dengan

Bilangan pokok khusus

Grafik logaritma dengan bilangan pokok 0,5; 2; dan e

Terdapat tiga bilangan pokok yang umum, di antara semua pilihan bilangan pokok pada logaritma. Ketiga bilangan pokok tersebut adalah b = 10, b = e (konstanta bilangan irasional yang kira-kira sama dengan 2.71828), dan b = 2 (logaritma biner). Dalam analisis matematika, logaritma dengan bilangan pokok e tersebar karena sifat analitik yang dijelaskan di bawah. Di sisi lain, logaritma dengan bilangan pokok 10 mudah dipakai dalam perhitungan manual dalam sistem bilangan desimal:[6]

Jadi, log10x berkaitan dengan jumlah digit desimal suatu bilangan bulat positif x: jumlah digitnya merupakan bilangan bulat terkecil yang lebih besar dari 10log x.[7] Sebagai contoh, 10log 1430 kira-kira sama dengan 3,15. Bilangan berikutnya merupakan jumlah digit dari 1430, yaitu 4. Dalam teori informasi, logaritma alami dipakai dalam nat dan logaritma dengan bilangan pokok 2 dipakai dalam bit sebagai satuan dasar informasi.[8] Logaritma biner juga dipakai dalam sistem biner ada yang dimana-mana dalam ilmu komputer. Dalam teori musik, rasio tinggi nada kedua (yaitu oktaf) ada di mana-mana dan jumlah sen antara setiap dua tinggi nada dirumuskan sebagai konstanta 1200 dikali logaritma dari rasio (yaitu, 100 sen per setengah nada dengan temperamen yang sama). Dalam fotografi, logaritma dengan bilangan pokok dua dipakai untuk mengukur nilai eksposur, tingkatan cahaya, waktu eksposur, tingkap, dan kecepatan film dalam "stop".[9]

Tabel berikut memuat notasi-notasi umum mengenai bilangan pokok beserta bidang yang dipakai. Ada beberapa mata pelajaran yang menulis log x daripada logbx, dan adapula notasi blog x yang juga muncul pada beberapa mata pelajaran.[10] Pada kolom "Notasi ISO" memuat penamaan yang disarankan oleh Organisasi Standardisasi Internasional, yakni ISO 80000-2.[11] Karena notasi log x telah dipakai untuk ketiga bilangan pokok di atas (atau ketika bilangan pokok belum ditentukan), bilangan pokok yang dimaksud harus sering diduga tergantung konteks atau mata pelajarannya. Sebagai contoh, log biasanya mengacu pada 2log dalam ilmu komputer, dan log mengacu pada elog.[12] Dalam konteks lainnya, log seringkali mengacu pada 10log.[13]

Bilangan pokok

b

Nama blog x Notasi ISO Notasi lain Dipakai dalam bidang
2 logaritma biner lb x[14] ld x, log x, lg x,[15] 2log x ilmu komputer, teori informasi, bioinformatika, teori musik, fotografi
e logaritma alami ln x[nb 2] log x (dipakai dalam matematika[19] dan beberapa bahasa pemrograman lainnya[nb 3]), elog x matematika, fisika, kimia,

statistik, ekonomi, teori informasi, dan rekayasa

10 logaritma biasa lg x log x, 10log x

(dipakai dalam rekayasa, biologi, dan astronomi)

bidang berbagai rekayasa (lihat desibel dan lihat di bawah),

tabel logaritma, kalkulator genggam, spektroskop

b logaritma dengan bilangan pokok b blog x matematika

Sejarah

Sejarah logaritma yang dimulai dari Eropa pada abad ketujuh belas merupakan penemuan fungsi baru yang memperluas ranah analisis di luar jangkauan metode aljabar. Metode logaritma dikemukakan secara terbuka oleh John Napier pada tahun 1614, dalam sebuah buku berjudul Mirifici Logarithmorum Canonis Descriptio.[20][21] Sebelum penemuan Napier, ada teknik lain dengan jangkauan metode yang serupa, seperti prosthafaeresis atau penggunaan tabel barisan, yang dikembangkan dengan luas oleh Jost Bürgi sekitar tahun 1600.[22][23] Napier menciptakan istilah untuk logaritma dalam bahasa Latin Tengah, “logaritmus” yang berasal dari gabungan dua kata Yunani, logos “proporsi, rasio, kata” + arithmos “bilangan”. Secara harfiah, "logaritmus" berarti “bilangan rasio”.

Logaritma biasa suatu bilangan adalah indeks pangkat sepuluh yang sama dengan bilangan tersebut.[24] Berbicara tentang angka yang membutuhkan banyak angka adalah kiasan kasar untuk logaritma umum, dan disebut oleh Archimedes sebagai “urutan bilangan”.[25] Logaritma real pertama adalah metode heuristik yang mengubah perkalian menjadi penjumlahan, sehingga memudahkan perhitungan yang cepat. Beberapa metode ini menggunakan tabel yang diturunkan dari identitas trigonometri.[26] Metode tersebut disebut prosthafaeresis.

Penemuan fungsi sekarang dikenal sebagai logaritma alami dimulai sebagai upaya untuk kuadratur dari hiperbola persegi panjang oleh Grégoire de Saint-Vincent, seorang Yesuit Belgia yang tinggal di Praha. Archimedes telah menulis The Quadrature of the Parabola pada abad ke-3 SM, tetapi kuadratur untuk hiperbola menghindari semua upaya sampai Saint-Vincent menerbitkan hasilnya pada tahun 1647. Kaitan yang disediakan logaritma berupa antara barisan dan deret geometri dalam argumen dan nilai barisan dan deret aritmetika, meminta A. A. de Sarasa untuk mengaitkan kuadratur Saint-Vincent dan tradisi logaritma dalam prosthafaeresis, yang mengarah ke sebuah istilah persamaan kata untuk logaritma alami, yaitu "logaritma hiperbolik". Dengan segera, fungsi baru tersebut dihargai oleh Christiaan Huygens dan James Gregory. Notasi Log y diadopsi oleh Leibniz pada tahun 1675,[27] dan tahun berikutnya dia mengaitkannya dengan integral

Sebelum Euler mengembangkan konsep modernnya tentang logaritma alami kompleks, Roger Cotes memiliki hasil yang hampir sama ketika ia menunjukkan pada tahun 1714 bahwa[28]

.

Tabel logaritma, mistar hitung, dan penerapan bersejarah

Penjelasan logaritma dalam Encyclopædia Britannica pada tahun 1797.

Dengan menyederhanakan perhitungan yang rumit sebelum adanya mesin hitung komputer, logaritma berkontribusi pada kemajuan pengetahuan, khususnya astronomi. Logaritma sangat penting terhadap kemajuan dalam survei, navigasi benda langit, dan cabang lainnya. Pierre-Simon Laplace menyebut logaritma sebagai

"...[sebuah] kecerdasan mengagumkan, yang mengurangi pekerjaan berbulan-bulan menjadi beberapa hari, menggandakan kehidupan astronom, dan menghindarinya dari kesalahan dan rasa jijik yang tak terpisahkan dari perhitungan yang panjang."[29]

Karena fungsi f(x) = bx merupakan fungsi invers dari blog x, maka fungsi tersebut disebut sebagai antilogaritma.[30] Saat ini, antilogaritma lebih sering disebut fungsi eksponensial.

Tabel logaritma

Sebuah alat penting yang memungkinkan penggunaan logaritma adalah tabel logaritma.[31] Tabel pertama disusun oleh Henry Briggs pada tahun 1617 setelah penemuan Napier, namun penemuannya menggunakan 10 sebagai bilangan pokok. Tabel pertamanya memuat logaritma biasa dari semua bilangan bulat yang berkisar antara 1 dengan 1000 yang memiliki ketepatan 14 digit. Selanjutnya, tabel dengan cakupan yang meningkat ditulis. Tabel tersebut mencantumkan nilai untuk setiap bilangan dalam kisaran dan ketepatan tertentu. Karena bilangan yang berbeda dengan faktor 10 memiliki logaritma yang berbeda dengan bilangan bulat, logaritma dengan bilangan pokok 10 digunakan secara universal untuk perhitungan, sehingga disebut logaritma umum. Logaritma umum dipisahkan menjadi bagian bilangan bulat yang dikenal sebagai karakteristik, dan bagian pecahan yang dikenal sebagai mantissa. Tabel logaritma hanya perlu menyertakan mantisa, karena karakteristik logaritma umum dapat dengan mudah ditentukan dengan menghitung angka dari titik desimal.[32] Karakteristik logaritma umum dari sama dengan satu ditambah karakteristik , dan mantissanya sama. Jadi dengan menggunakan tabel logartima dengan tiga digit, nilai logaritma dari 3542 kira-kira sama dengan

Nilainya dengan ketepatan yang sangat tinggi dapat diperoleh melalui interpolasi:

Nilai dapat ditentukan dengan pencarian terbalik pada tabel yang sama, karena logaritma merupakan fungsi monoton.

Perhitungan

Hasil kali atau hasil bagi dari dua bilangan positif c dan d biasanya dihitung sebagai penambahan dan pengurangan logaritma. Hasil kali cd berasal dari antilogaritma dari penambahan dan hasil bagi cd berasal dari antilogaritma dari pengurangan, melalui tabel logaritma di atas:

dan

For manual calculations that demand any appreciable precision, performing the lookups of the two logarithms, calculating their sum or difference, and looking up the antilogarithm is much faster than performing the multiplication by earlier methods such as prosthaphaeresis, which relies on trigonometric identities.

Calculations of powers and roots are reduced to multiplications or divisions and lookups by

and

Trigonometric calculations were facilitated by tables that contained the common logarithms of trigonometric functions.


Mistar hitung

Another critical application was the slide rule, a pair of logarithmically divided scales used for calculation. The non-sliding logarithmic scale, Gunter's rule, was invented shortly after Napier's invention. William Oughtred enhanced it to create the slide rule—a pair of logarithmic scales movable with respect to each other. Numbers are placed on sliding scales at distances proportional to the differences between their logarithms. Sliding the upper scale appropriately amounts to mechanically adding logarithms, as illustrated here:

A slide rule: two rectangles with logarithmically ticked axes, arrangement to add the distance from 1 to 2 to the distance from 1 to 3, indicating the product 6.
Schematic depiction of a slide rule. Starting from 2 on the lower scale, add the distance to 3 on the upper scale to reach the product 6. The slide rule works because it is marked such that the distance from 1 to x is proportional to the logarithm of x.

For example, adding the distance from 1 to 2 on the lower scale to the distance from 1 to 3 on the upper scale yields a product of 6, which is read off at the lower part. The slide rule was an essential calculating tool for engineers and scientists until the 1970s, because it allows, at the expense of precision, much faster computation than techniques based on tables.[33]


Sifat analitik

A deeper study of logarithms requires the concept of a function. A function is a rule that, given one number, produces another number.[34] An example is the function producing the x-th power of b from any real number x, where the base b is a fixed number. This function is written as f(x) = bx. When b is positive and unequal to 1, we show below that f is invertible when considered as a function from the reals to the positive reals.

Keberadaan

Misalkan b adalah bilangan real positif yang tidak sama dengan 1 dan misalkan f(x) = bx.

It is a standard result in real analysis that any continuous strictly monotonic function is bijective between its domain and range. This fact follows from the intermediate value theorem.[35] Now, f is strictly increasing (for b > 1), or strictly decreasing (for 0 < b < 1),[36] is continuous, has domain , and has range . Therefore, f is a bijection from to . In other words, for each positive real number y, there is exactly one real number x such that .

Misalkan menyatakan kebalikan fungsi f. Dalam artian, blog y merupakan bilangan real tunggal x sehingga . Fungsi ini disebut fungsi logaritma dengan bilangan pokok-b atau fungsi logaritmik (atau logaritma saja).

Karakterisasi melalui rumus hasil kali

Pada dasarnya, fungsi blog x juga dapat dikarakterisasikan melalui rumus hasil kali

Lebih tepatnya, logaritma untuk setiap bilangan pokok b > 1 yang hanya merupakan fungsi f naik dari bilangan real positif ke bilangna real memenuhi sifat bahwa f(b) = 1 dan[37]

Grafik fungsi logaritma

The graphs of two functions.
The graph of the logarithm function logb (x) (blue) is obtained by reflecting the graph of the function bx (red) at the diagonal line (x = y).

As discussed above, the function logb is the inverse to the exponential function . Therefore, Their graphs correspond to each other upon exchanging the x- and the y-coordinates (or upon reflection at the diagonal line x = y), as shown at the right: a point (t, u = bt) on the graph of f yields a point (u, t = logbu) on the graph of the logarithm and vice versa. As a consequence, logb (x) diverges to infinity (gets bigger than any given number) if x grows to infinity, provided that b is greater than one. In that case, logb(x) is an increasing function. For b < 1, logb (x) tends to minus infinity instead. When x approaches zero, logbx goes to minus infinity for b > 1 (plus infinity for b < 1, respectively).

Turunan dan antiturunan

A graph of the logarithm function and a line touching it in one point.
The graph of the natural logarithm (green) and its tangent at x = 1.5 (black)

Analytic properties of functions pass to their inverses.[35] Thus, as f(x) = bx is a continuous and differentiable function, so is logby. Roughly, a continuous function is differentiable if its graph has no sharp "corners". Moreover, as the derivative of f(x) evaluates to ln(b) bx by the properties of the exponential function, the chain rule implies that the derivative of logbx is given by[36][38]

That is, the slope of the tangent touching the graph of the base-b logarithm at the point (x, logb (x)) equals 1/(x ln(b)).

The derivative of ln(x) is 1/x; this implies that ln(x) is the unique antiderivative of 1/x that has the value 0 for x = 1. It is this very simple formula that motivated to qualify as "natural" the natural logarithm; this is also one of the main reasons of the importance of the constant e.

The derivative with a generalized functional argument f(x) is

The quotient at the right hand side is called the logarithmic derivative of f. Computing f'(x) by means of the derivative of ln(f(x)) is known as logarithmic differentiation.[39] The antiderivative of the natural logarithm ln(x) is:[40]

Related formulas, such as antiderivatives of logarithms to other bases can be derived from this equation using the change of bases.[41]

Representasi integeral mengenai fungsi logaritma

A hyperbola with part of the area underneath shaded in grey.
The natural logarithm of t is the shaded area underneath the graph of the function f(x) = 1/x (reciprocal of x).

The natural logarithm of t can be defined as the definite integral:

This definition has the advantage that it does not rely on the exponential function or any trigonometric functions; the definition is in terms of an integral of a simple reciprocal. As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition.[42] For example, the product formula ln(tu) = ln(t) + ln(u) is deduced as:

The equality (1) splits the integral into two parts, while the equality (2) is a change of variable (w = x/t). In the illustration below, the splitting corresponds to dividing the area into the yellow and blue parts. Rescaling the left hand blue area vertically by the factor t and shrinking it by the same factor horizontally does not change its size. Moving it appropriately, the area fits the graph of the function f(x) = 1/x again. Therefore, the left hand blue area, which is the integral of f(x) from t to tu is the same as the integral from 1 to u. This justifies the equality (2) with a more geometric proof.

The hyperbola depicted twice. The area underneath is split into different parts.
A visual proof of the product formula of the natural logarithm

The power formula ln(tr) = r ln(t) may be derived in a similar way:

The second equality uses a change of variables (integration by substitution), w = x1/r.

The sum over the reciprocals of natural numbers,

is called the harmonic series. It is closely tied to the natural logarithm: as n tends to infinity, the difference,

converges (i.e. gets arbitrarily close) to a number known as the Euler–Mascheroni constant γ = 0.5772.... This relation aids in analyzing the performance of algorithms such as quicksort.[43]

Transendensi logaritma

Real numbers that are not algebraic are called transcendental;[44] for example, π and e are such numbers, but is not. Almost all real numbers are transcendental. The logarithm is an example of a transcendental function. The Gelfond–Schneider theorem asserts that logarithms usually take transcendental, i.e. "difficult" values.[45]

Perhitungan

The logarithm keys (LOG for base 10 and LN for base e) on a TI-83 Plus graphing calculator

Logarithms are easy to compute in some cases, such as log10 (1000) = 3. In general, logarithms can be calculated using power series or the arithmetic–geometric mean, or be retrieved from a precalculated logarithm table that provides a fixed precision.[46][47] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently.[48] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.[49][50] Moreover, the binary logarithm algorithm calculates lb(x) recursively, based on repeated squarings of x, taking advantage of the relation

Deret pangkat

Deret Taylor
An animation showing increasingly good approximations of the logarithm graph.
The Taylor series of ln(z) centered at z = 1. The animation shows the first 10 approximations along with the 99th and 100th. The approximations do not converge beyond a distance of 1 from the center.

For any real number z that satisfies 0 < z ≤ 2, the following formula holds:[nb 4][51]

This is a shorthand for saying that ln(z) can be approximated to a more and more accurate value by the following expressions:

For example, with z = 1.5 the third approximation yields 0.4167, which is about 0.011 greater than ln(1.5) = 0.405465. This series approximates ln(z) with arbitrary precision, provided the number of summands is large enough. In elementary calculus, ln(z) is therefore the limit of this series. It is the Taylor series of the natural logarithm at z = 1. The Taylor series of ln(z) provides a particularly useful approximation to ln(1 + z) when z is small, |z| < 1, since then

For example, with z = 0.1 the first-order approximation gives ln(1.1) ≈ 0.1, which is less than 5% off the correct value 0.0953.

More efficient series

Another series is based on the area hyperbolic tangent function:

for any real number z > 0.[nb 5][51] Using sigma notation, this is also written as

This series can be derived from the above Taylor series. It converges more quickly than the Taylor series, especially if z is close to 1. For example, for z = 1.5, the first three terms of the second series approximate ln(1.5) with an error of about 3×10−6. The quick convergence for z close to 1 can be taken advantage of in the following way: given a low-accuracy approximation y ≈ ln(z) and putting

the logarithm of z is:

The better the initial approximation y is, the closer A is to 1, so its logarithm can be calculated efficiently. A can be calculated using the exponential series, which converges quickly provided y is not too large. Calculating the logarithm of larger z can be reduced to smaller values of z by writing z = a · 10b, so that ln(z) = ln(a) + b · ln(10).

A closely related method can be used to compute the logarithm of integers. Putting in the above series, it follows that:

If the logarithm of a large integer n is known, then this series yields a fast converging series for log(n+1), with a rate of convergence of .

Hampiran purata aritmetik-geometrik

The arithmetic–geometric mean yields high precision approximations of the natural logarithm. Sasaki and Kanada showed in 1982 that it was particularly fast for precisions between 400 and 1000 decimal places, while Taylor series methods were typically faster when less precision was needed. In their work ln(x) is approximated to a precision of 2p (or p precise bits) by the following formula (due to Carl Friedrich Gauss):[52][53]

Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y). m is chosen such that

to ensure the required precision. A larger m makes the M(x, y) calculation take more steps (the initial x and y are farther apart so it takes more steps to converge) but gives more precision. The constants π and ln(2) can be calculated with quickly converging series.

Algoritma Feynman

While at Los Alamos National Laboratory working on the Manhattan Project, Richard Feynman developed a bit-processing algorithm, to compute the logarithm, that is similar to long division and was later used in the Connection Machine. The algorithm uses the fact that every real number 1 < x < 2 is representable as a product of distinct factors of the form 1 + 2k. The algorithm sequentially builds that product P, starting with P = 1 and k = 1: if P · (1 + 2k) < x, then it changes P to P · (1 + 2k). It then increases by one regardless. The algorithm stops when k is large enough to give the desired accuracy. Because log(x) is the sum of the terms of the form log(1 + 2k) corresponding to those k for which the factor 1 + 2k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2k) for all k. Any base may be used for the logarithm table.[54]

Penerapan

A photograph of a nautilus' shell.
A nautilus displaying a logarithmic spiral

Logarithms have many applications inside and outside mathematics. Some of these occurrences are related to the notion of scale invariance. For example, each chamber of the shell of a nautilus is an approximate copy of the next one, scaled by a constant factor. This gives rise to a logarithmic spiral.[55] Benford's law on the distribution of leading digits can also be explained by scale invariance.[56] Logarithms are also linked to self-similarity. For example, logarithms appear in the analysis of algorithms that solve a problem by dividing it into two similar smaller problems and patching their solutions.[57] The dimensions of self-similar geometric shapes, that is, shapes whose parts resemble the overall picture are also based on logarithms. Logarithmic scales are useful for quantifying the relative change of a value as opposed to its absolute difference. Moreover, because the logarithmic function log(x) grows very slowly for large x, logarithmic scales are used to compress large-scale scientific data. Logarithms also occur in numerous scientific formulas, such as the Tsiolkovsky rocket equation, the Fenske equation, or the Nernst equation.

Skala logaritmik

A graph of the value of one mark over time. The line showing its value is increasing very quickly, even with logarithmic scale.
A logarithmic chart depicting the value of one Goldmark in Papiermarks during the German hyperinflation in the 1920s

Scientific quantities are often expressed as logarithms of other quantities, using a logarithmic scale. For example, the decibel is a unit of measurement associated with logarithmic-scale quantities. It is based on the common logarithm of ratios—10 times the common logarithm of a power ratio or 20 times the common logarithm of a voltage ratio. It is used to quantify the loss of voltage levels in transmitting electrical signals,[58] to describe power levels of sounds in acoustics,[59] and the absorbance of light in the fields of spectrometry and optics. The signal-to-noise ratio describing the amount of unwanted noise in relation to a (meaningful) signal is also measured in decibels.[60] In a similar vein, the peak signal-to-noise ratio is commonly used to assess the quality of sound and image compression methods using the logarithm.[61]

The strength of an earthquake is measured by taking the common logarithm of the energy emitted at the quake. This is used in the moment magnitude scale or the Richter magnitude scale. For example, a 5.0 earthquake releases 32 times (101.5) and a 6.0 releases 1000 times (103) the energy of a 4.0.[62] Apparent magnitude measures the brightness of stars logarithmically.[63] In chemistry the negative of the decimal logarithm, the decimal cologarithm, is indicated by the letter p.[64] For instance, pH is the decimal cologarithm of the activity of hydronium ions (the form hydrogen ions H+ take in water).[65] The activity of hydronium ions in neutral water is 10−7 mol·L−1, hence a pH of 7. Vinegar typically has a pH of about 3. The difference of 4 corresponds to a ratio of 104 of the activity, that is, vinegar's hydronium ion activity is about 10−3 mol·L−1.

Semilog (log–linear) graphs use the logarithmic scale concept for visualization: one axis, typically the vertical one, is scaled logarithmically. For example, the chart at the right compresses the steep increase from 1 million to 1 trillion to the same space (on the vertical axis) as the increase from 1 to 1 million. In such graphs, exponential functions of the form f(x) = a · bx appear as straight lines with slope equal to the logarithm of b. Log-log graphs scale both axes logarithmically, which causes functions of the form f(x) = a · xk to be depicted as straight lines with slope equal to the exponent k. This is applied in visualizing and analyzing power laws.[66]

Psikologi

Logarithms occur in several laws describing human perception:[67][68] Hick's law proposes a logarithmic relation between the time individuals take to choose an alternative and the number of choices they have.[69] Fitts's law predicts that the time required to rapidly move to a target area is a logarithmic function of the distance to and the size of the target.[70] In psychophysics, the Weber–Fechner law proposes a logarithmic relationship between stimulus and sensation such as the actual vs. the perceived weight of an item a person is carrying.[71] (This "law", however, is less realistic than more recent models, such as Stevens's power law.[72])

Psychological studies found that individuals with little mathematics education tend to estimate quantities logarithmically, that is, they position a number on an unmarked line according to its logarithm, so that 10 is positioned as close to 100 as 100 is to 1000. Increasing education shifts this to a linear estimate (positioning 1000 10 times as far away) in some circumstances, while logarithms are used when the numbers to be plotted are difficult to plot linearly.[73][74]

Teori peluang dan statistika

Three asymmetric PDF curves
Three probability density functions (PDF) of random variables with log-normal distributions. The location parameter μ, which is zero for all three of the PDFs shown, is the mean of the logarithm of the random variable, not the mean of the variable itself.
A bar chart and a superimposed second chart. The two differ slightly, but both decrease in a similar fashion.
Distribution of first digits (in %, red bars) in the population of the 237 countries of the world. Black dots indicate the distribution predicted by Benford's law.

Logarithms arise in probability theory: the law of large numbers dictates that, for a fair coin, as the number of coin-tosses increases to infinity, the observed proportion of heads approaches one-half. The fluctuations of this proportion about one-half are described by the law of the iterated logarithm.[75]

Logarithms also occur in log-normal distributions. When the logarithm of a random variable has a normal distribution, the variable is said to have a log-normal distribution.[76] Log-normal distributions are encountered in many fields, wherever a variable is formed as the product of many independent positive random variables, for example in the study of turbulence.[77]

Logarithms are used for maximum-likelihood estimation of parametric statistical models. For such a model, the likelihood function depends on at least one parameter that must be estimated. A maximum of the likelihood function occurs at the same parameter-value as a maximum of the logarithm of the likelihood (the "log likelihood"), because the logarithm is an increasing function. The log-likelihood is easier to maximize, especially for the multiplied likelihoods for independent random variables.[78]

Benford's law describes the occurrence of digits in many data sets, such as heights of buildings. According to Benford's law, the probability that the first decimal-digit of an item in the data sample is d (from 1 to 9) equals log10 (d + 1) − log10 (d), regardless of the unit of measurement.[79] Thus, about 30% of the data can be expected to have 1 as first digit, 18% start with 2, etc. Auditors examine deviations from Benford's law to detect fraudulent accounting.[80]

Kompleksitas perhitungan

Analysis of algorithms is a branch of computer science that studies the performance of algorithms (computer programs solving a certain problem).[81] Logarithms are valuable for describing algorithms that divide a problem into smaller ones, and join the solutions of the subproblems.[82]

For example, to find a number in a sorted list, the binary search algorithm checks the middle entry and proceeds with the half before or after the middle entry if the number is still not found. This algorithm requires, on average, log2 (N) comparisons, where N is the list's length.[83] Similarly, the merge sort algorithm sorts an unsorted list by dividing the list into halves and sorting these first before merging the results. Merge sort algorithms typically require a time approximately proportional to N · log(N).[84] The base of the logarithm is not specified here, because the result only changes by a constant factor when another base is used. A constant factor is usually disregarded in the analysis of algorithms under the standard uniform cost model.[85]

A function f(x) is said to grow logarithmically if f(x) is (exactly or approximately) proportional to the logarithm of x. (Biological descriptions of organism growth, however, use this term for an exponential function.[86]) For example, any natural number N can be represented in binary form in no more than log2N + 1 bits. In other words, the amount of memory needed to store N grows logarithmically with N.

Entropi dan kekacauan

An oval shape with the trajectories of two particles.
Billiards on an oval billiard table. Two particles, starting at the center with an angle differing by one degree, take paths that diverge chaotically because of reflections at the boundary.

Entropy is broadly a measure of the disorder of some system. In statistical thermodynamics, the entropy S of some physical system is defined as

The sum is over all possible states i of the system in question, such as the positions of gas particles in a container. Moreover, pi is the probability that the state i is attained and k is the Boltzmann constant. Similarly, entropy in information theory measures the quantity of information. If a message recipient may expect any one of N possible messages with equal likelihood, then the amount of information conveyed by any one such message is quantified as log2N bits.[87]

Lyapunov exponents use logarithms to gauge the degree of chaoticity of a dynamical system. For example, for a particle moving on an oval billiard table, even small changes of the initial conditions result in very different paths of the particle. Such systems are chaotic in a deterministic way, because small measurement errors of the initial state predictably lead to largely different final states.[88] At least one Lyapunov exponent of a deterministically chaotic system is positive.

Fraktal

Parts of a triangle are removed in an iterated way.
The Sierpinski triangle (at the right) is constructed by repeatedly replacing equilateral triangles by three smaller ones.

Logarithms occur in definitions of the dimension of fractals.[89] Fractals are geometric objects that are self-similar in the sense that small parts reproduce, at least roughly, the entire global structure. The Sierpinski triangle (pictured) can be covered by three copies of itself, each having sides half the original length. This makes the Hausdorff dimension of this structure ln(3)/ln(2) ≈ 1.58. Another logarithm-based notion of dimension is obtained by counting the number of boxes needed to cover the fractal in question.

Musik

Four different octaves shown on a linear scale.
Four different octaves shown on a logarithmic scale.
Four different octaves shown on a linear scale, then shown on a logarithmic scale (as the ear hears them).

Logarithms are related to musical tones and intervals. In equal temperament, the frequency ratio depends only on the interval between two tones, not on the specific frequency, or pitch, of the individual tones. For example, the note A has a frequency of 440 Hz and B-flat has a frequency of 466 Hz. The interval between A and B-flat is a semitone, as is the one between B-flat and B (frequency 493 Hz). Accordingly, the frequency ratios agree:

Therefore, logarithms can be used to describe the intervals: an interval is measured in semitones by taking the base-21/12 logarithm of the frequency ratio, while the base-21/1200 logarithm of the frequency ratio expresses the interval in cents, hundredths of a semitone. The latter is used for finer encoding, as it is needed for non-equal temperaments.[90]

Interval(the two tones are played at the same time) 1/12 tone play Semitone play Just major third play Major third play Tritone play Octave play
Frequency ratio r
Corresponding number of semitones
Corresponding number of cents

Teori bilangan

Natural logarithms are closely linked to counting prime numbers (2, 3, 5, 7, 11, ...), an important topic in number theory. For any integer x, the quantity of prime numbers less than or equal to x is denoted π(x). The prime number theorem asserts that π(x) is approximately given by

in the sense that the ratio of π(x) and that fraction approaches 1 when x tends to infinity.[91] As a consequence, the probability that a randomly chosen number between 1 and x is prime is inversely proportional to the number of decimal digits of x. A far better estimate of π(x) is given by the offset logarithmic integral function Li(x), defined by

The Riemann hypothesis, one of the oldest open mathematical conjectures, can be stated in terms of comparing π(x) and Li(x).[92] The Erdős–Kac theorem describing the number of distinct prime factors also involves the natural logarithm.

The logarithm of n factorial, n! = 1 · 2 · ... · n, is given by

This can be used to obtain Stirling's formula, an approximation of n! for large n.[93]

Perumuman

Logaritma kompleks

An illustration of the polar form: a point is described by an arrow or equivalently by its length and angle to the x-axis.
Polar form of z = x + iy. Both φ and φ' are arguments of z.

All the complex numbers a that solve the equation

are called complex logarithms of z, when z is (considered as) a complex number. A complex number is commonly represented as z = x + iy, where x and y are real numbers and i is an imaginary unit, the square of which is −1. Such a number can be visualized by a point in the complex plane, as shown at the right. The polar form encodes a non-zero complex number z by its absolute value, that is, the (positive, real) distance r to the origin, and an angle between the real (x) axis Re and the line passing through both the origin and z. This angle is called the argument of z.

The absolute value r of z is given by

Using the geometrical interpretation of sine and cosine and their periodicity in 2π, any complex number z may be denoted as

for any integer number k. Evidently the argument of z is not uniquely specified: both φ and φ' = φ + 2kπ are valid arguments of z for all integers k, because adding 2kπ radians or k⋅360°[nb 6] to φ corresponds to "winding" around the origin counter-clock-wise by k turns. The resulting complex number is always z, as illustrated at the right for k = 1. One may select exactly one of the possible arguments of z as the so-called principal argument, denoted Arg(z), with a capital A, by requiring φ to belong to one, conveniently selected turn, e.g. π < φπ[94] or 0 ≤ φ < 2π.[95] These regions, where the argument of z is uniquely determined are called branches of the argument function.

A density plot. In the middle there is a black point, at the negative axis the hue jumps sharply and evolves smoothly otherwise.
The principal branch (-π, π) of the complex logarithm, Log(z). The black point at z = 1 corresponds to absolute value zero and brighter colors refer to bigger absolute values. The hue of the color encodes the argument of Log(z).

Euler's formula connects the trigonometric functions sine and cosine to the complex exponential:

Using this formula, and again the periodicity, the following identities hold:[96]

where ln(r) is the unique real natural logarithm, ak denote the complex logarithms of z, and k is an arbitrary integer. Therefore, the complex logarithms of z, which are all those complex values ak for which the ak-th power of e equals z, are the infinitely many values

for arbitrary integers k.

Taking k such that φ + 2kπ is within the defined interval for the principal arguments, then ak is called the principal value of the logarithm, denoted Log(z), again with a capital L. The principal argument of any positive real number x is 0; hence Log(x) is a real number and equals the real (natural) logarithm. However, the above formulas for logarithms of products and powers do not generalize to the principal value of the complex logarithm.[97]

The illustration at the right depicts Log(z), confining the arguments of z to the interval (−π, π]. This way the corresponding branch of the complex logarithm has discontinuities all along the negative real x axis, which can be seen in the jump in the hue there. This discontinuity arises from jumping to the other boundary in the same branch, when crossing a boundary, i.e. not changing to the corresponding k-value of the continuously neighboring branch. Such a locus is called a branch cut. Dropping the range restrictions on the argument makes the relations "argument of z", and consequently the "logarithm of z", multi-valued functions.

Kebalikan dari fungsi eksponensial lainnya

Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential.[98] Another example is the p-adic logarithm, the inverse function of the p-adic exponential. Both are defined via Taylor series analogous to the real case.[99] In the context of differential geometry, the exponential map maps the tangent space at a point of a manifold to a neighborhood of that point. Its inverse is also called the logarithmic (or log) map.[100]

In the context of finite groups exponentiation is given by repeatedly multiplying one group element b with itself. The discrete logarithm is the integer n solving the equation

where x is an element of the group. Carrying out the exponentiation can be done efficiently, but the discrete logarithm is believed to be very hard to calculate in some groups. This asymmetry has important applications in public key cryptography, such as for example in the Diffie–Hellman key exchange, a routine that allows secure exchanges of cryptographic keys over unsecured information channels.[101] Zech's logarithm is related to the discrete logarithm in the multiplicative group of non-zero elements of a finite field.[102]

Further logarithm-like inverse functions include the double logarithm ln(ln(x)), the super- or hyper-4-logarithm (a slight variation of which is called iterated logarithm in computer science), the Lambert W function, and the logit. They are the inverse functions of the double exponential function, tetration, of f(w) = wew,[103] and of the logistic function, respectively.[104]

Konsep yang berkaitan

From the perspective of group theory, the identity log(cd) = log(c) + log(d) expresses a group isomorphism between positive reals under multiplication and reals under addition. Logarithmic functions are the only continuous isomorphisms between these groups.[105] By means of that isomorphism, the Haar measure (Lebesgue measuredx on the reals corresponds to the Haar measure dx/x on the positive reals.[106] The non-negative reals not only have a multiplication, but also have addition, and form a semiring, called the probability semiring; this is in fact a semifield. The logarithm then takes multiplication to addition (log multiplication), and takes addition to log addition (LogSumExp), giving an isomorphism of semirings between the probability semiring and the log semiring.

Logarithmic one-forms df/f appear in complex analysis and algebraic geometry as differential forms with logarithmic poles.[107]

The polylogarithm is the function defined by

It is related to the natural logarithm by Li1 (z) = −ln(1 − z). Moreover, Lis (1) equals the Riemann zeta function ζ(s).[108]

Lihat pula

Catatan

  1. ^ Perbatasan x dan b dijelaskan pada bagian "Sifat analitik".
  2. ^ Beberapa para matematikawan yang menolak notasi ini. Pada otobiografinya tahun 1985, Paul Halmos mengkritik apa yang ia anggap "notasi ln sebagai kekanak-kanakan", yang menurutnya bahkan tidak pernah digunakan oleh matematikawan.[16] Notasi tersebut ditemukan oleh seorang matematikawan bernama Irving Stringham.[17][18]
  3. ^ For example C, Java, Haskell, and BASIC.
  4. ^ The same series holds for the principal value of the complex logarithm for complex numbers z satisfying |z − 1| < 1.
  5. ^ The same series holds for the principal value of the complex logarithm for complex numbers z with positive real part.
  6. ^ See radian for the conversion between 2π and 360 degree.

Referensi

  1. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614; a lecture, University of California Libraries, Cambridge : University Press 
  2. ^ Remmert, Reinhold. (1991), Theory of complex functions, New York: Springer-Verlag, ISBN 0387971955, OCLC 21118309 
  3. ^ Kate, S.K.; Bhapkar, H.R. (2009), Basics Of Mathematics, Pune: Technical Publications, ISBN 978-81-8431-755-8 , chapter 1
  4. ^ Semua pernyataan di bagian ini dapat ditemukan pada Shailesh Shirali 2002, bagian 4. Sebagai contoh, (Douglas Downing 2003, hlm. 275), atau Kate & Bhapkar 2009, hlm. 1-1.
  5. ^ Bernstein, Stephen; Bernstein, Ruth (1999), Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-005023-5 , hlm. 21
  6. ^ Downing, Douglas (2003), Algebra the Easy Way, Barron's Educational Series, Hauppauge, NY: Barron's, ISBN 978-0-7641-1972-9 , chapter 17, p. 275
  7. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , p. 20
  8. ^ Van der Lubbe, Jan C. A. (1997), Information Theory, Cambridge University Press, hlm. 3, ISBN 978-0-521-46760-5 
  9. ^ Allen, Elizabeth; Triantaphillidou, Sophie (2011), The Manual of Photography, Taylor & Francis, hlm. 228, ISBN 978-0-240-52037-7 
  10. ^ Franz Embacher; Petra Oberhuemer, Mathematisches Lexikon (dalam bahasa Jerman), mathe online: für Schule, Fachhochschule, Universität unde Selbststudium, diakses tanggal 22 March 2011 
  11. ^ Quantities and units – Part 2: Mathematics (ISO 80000-2:2019); EN ISO 80000-2
  12. ^ Goodrich, Michael T.; Tamassia, Roberto (2002), Algorithm Design: Foundations, Analysis, and Internet Examples, John Wiley & Sons, hlm. 23, One of the interesting and sometimes even surprising aspects of the analysis of data structures and algorithms is the ubiquitous presence of logarithms ... As is the custom in the computing literature, we omit writing the base b of the logarithm when b = 2. 
  13. ^ Parkhurst, David F. (2007), Introduction to Applied Mathematics for Environmental Science (edisi ke-illustrated), Springer Science & Business Media, hlm. 288, ISBN 978-0-387-34228-3 
  14. ^ Gullberg, Jan (1997), Mathematics: from the birth of numbers.Perlu mendaftar (gratis), New York: W. W. Norton & Co, ISBN 978-0-393-04002-9 
  15. ^ See footnote 1 in Perl, Yehoshua; Reingold, Edward M. (December 1977), "Understanding the complexity of interpolation search", Information Processing Letters, 6 (6): 219–22, doi:10.1016/0020-0190(77)90072-2 
  16. ^ Paul Halmos (1985), I Want to Be a Mathematician: An Automathography, Berlin, New York: Springer-Verlag, ISBN 978-0-387-96078-4 
  17. ^ Irving Stringham (1893), Uniplanar algebra: being part I of a propædeutic to the higher mathematical analysis, The Berkeley Press, hlm. xiii 
  18. ^ Roy S. Freedman (2006), Introduction to Financial Technology, Amsterdam: Academic Press, hlm. 59, ISBN 978-0-12-370478-8 
  19. ^ See Theorem 3.29 in Rudin, Walter (1984), Principles of mathematical analysis (edisi ke-3rd ed., International student), Auckland: McGraw-Hill International, ISBN 978-0-07-085613-4 
  20. ^ Napier, John (1614), Mirifici Logarithmorum Canonis Descriptio [The Description of the Wonderful Rule of Logarithms] (dalam bahasa Latin), Edinburgh, Scotland: Andrew Hart 
  21. ^ Hobson, Ernest William (1914), John Napier and the invention of logarithms, 1614, Cambridge: The University Press 
  22. ^ Folkerts, Menso; Launert, Dieter; Thom, Andreas (2016), "Jost Bürgi's method for calculating sines", Historia Mathematica, 43 (2): 133–147, arXiv:1510.03180alt=Dapat diakses gratis, doi:10.1016/j.hm.2016.03.001, MR 3489006 
  23. ^ Templat:Mactutor
  24. ^ William Gardner (1742) Tables of Logarithms
  25. ^ Pierce, R. C. Jr. (January 1977), "A brief history of logarithms", The Two-Year College Mathematics Journal, 8 (1): 22–26, doi:10.2307/3026878, JSTOR 3026878 
  26. ^ Enrique Gonzales-Velasco (2011) Journey through Mathematics – Creative Episodes in its History, §2.4 Hyperbolic logarithms, p. 117, Springer ISBN 978-0-387-92153-2
  27. ^ Florian Cajori (1913) "History of the exponential and logarithm concepts", American Mathematical Monthly 20: 5, 35, 75, 107, 148, 173, 205.
  28. ^ Stillwell, J. (2010), Mathematics and Its History (edisi ke-3rd), Springer 
  29. ^ Bryant, Walter W. (1907), A History of Astronomy, London: Methuen & Co , p. 44
  30. ^ Abramowitz, Milton; Stegun, Irene A., ed. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (edisi ke-10th), New York: Dover Publications, ISBN 978-0-486-61272-0 , section 4.7., p. 89
  31. ^ Campbell-Kelly, Martin (2003), The history of mathematical tables: from Sumer to spreadsheets, Oxford scholarship online, Oxford University Press, ISBN 978-0-19-850841-0 , section 2
  32. ^ Spiegel, Murray R.; Moyer, R.E. (2006), Schaum's outline of college algebra, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-145227-4 , p. 264
  33. ^ Maor, Eli (2009), E: The Story of a Number, Princeton University Press, sections 1, 13, ISBN 978-0-691-14134-3 
  34. ^ Devlin, Keith (2004), Sets, functions, and logic: an introduction to abstract mathematics, Chapman & Hall/CRC mathematics (edisi ke-3rd), Boca Raton, Fla: Chapman & Hall/CRC, ISBN 978-1-58488-449-1 , or see the references in function
  35. ^ a b Lang, Serge (1997), Undergraduate analysis, Undergraduate Texts in Mathematics (edisi ke-2nd), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2698-5, ISBN 978-0-387-94841-6, MR 1476913 , section III.3
  36. ^ a b Lang 1997, section IV.2
  37. ^ Dieudonné, Jean (1969), Foundations of Modern Analysis, 1, Academic Press, hlm. 84  item (4.3.1)
  38. ^ "Calculation of d/dx(Log(b,x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 March 2011 
  39. ^ Kline, Morris (1998), Calculus: an intuitive and physical approach, Dover books on mathematics, New York: Dover Publications, ISBN 978-0-486-40453-0 , p. 386
  40. ^ "Calculation of Integrate(ln(x))", Wolfram Alpha, Wolfram Research, diakses tanggal 15 March 2011 
  41. ^ Abramowitz & Stegun, eds. 1972, p. 69
  42. ^ Courant, Richard (1988), Differential and integral calculus. Vol. I, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-60842-4, MR 1009558 , section III.6
  43. ^ Havil, Julian (2003), Gamma: Exploring Euler's Constant, Princeton University Press, ISBN 978-0-691-09983-5 , sections 11.5 and 13.8
  44. ^ Nomizu, Katsumi (1996), Selected papers on number theory and algebraic geometry, 172, Providence, RI: AMS Bookstore, hlm. 21, ISBN 978-0-8218-0445-2 
  45. ^ Baker, Alan (1975), Transcendental number theory, Cambridge University Press, ISBN 978-0-521-20461-3 , p. 10
  46. ^ Muller, Jean-Michel (2006), Elementary functions (edisi ke-2nd), Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4372-0 , sections 4.2.2 (p. 72) and 5.5.2 (p. 95)
  47. ^ Hart; Cheney; Lawson; et al. (1968), Computer Approximations, SIAM Series in Applied Mathematics, New York: John Wiley , section 6.3, pp. 105–11
  48. ^ Zhang, M.; Delgado-Frias, J.G.; Vassiliadis, S. (1994), "Table driven Newton scheme for high precision logarithm generation", IEE Proceedings - Computers and Digital Techniques, 141 (5): 281–92, doi:10.1049/ip-cdt:19941268, ISSN 1350-2387 , section 1 for an overview
  49. ^ Meggitt, J.E. (April 1962), "Pseudo Division and Pseudo Multiplication Processes", IBM Journal of Research and Development, 6 (2): 210–26, doi:10.1147/rd.62.0210 
  50. ^ Kahan, W. (20 May 2001), Pseudo-Division Algorithms for Floating-Point Logarithms and Exponentials 
  51. ^ a b Abramowitz & Stegun, eds. 1972, p. 68
  52. ^ Sasaki, T.; Kanada, Y. (1982), "Practically fast multiple-precision evaluation of log(x)", Journal of Information Processing, 5 (4): 247–50, diakses tanggal 30 March 2011 
  53. ^ Ahrendt, Timm (1999), "Fast Computations of the Exponential Function", Stacs 99, Lecture notes in computer science, 1564, Berlin, New York: Springer, hlm. 302–12, doi:10.1007/3-540-49116-3_28, ISBN 978-3-540-65691-3 
  54. ^ Hillis, Danny (15 January 1989), "Richard Feynman and The Connection Machine", Physics Today, 42 (2): 78, Bibcode:1989PhT....42b..78H, doi:10.1063/1.881196 
  55. ^ Maor 2009, p. 135
  56. ^ Frey, Bruce (2006), Statistics hacks, Hacks Series, Sebastopol, CA: O'Reilly, ISBN 978-0-596-10164-0 , chapter 6, section 64
  57. ^ Ricciardi, Luigi M. (1990), Lectures in applied mathematics and informatics, Manchester: Manchester University Press, ISBN 978-0-7190-2671-3 , p. 21, section 1.3.2
  58. ^ Bakshi, U.A. (2009), Telecommunication Engineering, Pune: Technical Publications, ISBN 978-81-8431-725-1 , section 5.2
  59. ^ Maling, George C. (2007), "Noise", dalam Rossing, Thomas D., Springer handbook of acoustics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-30446-5 , section 23.0.2
  60. ^ Tashev, Ivan Jelev (2009), Sound Capture and Processing: Practical Approaches, New York: John Wiley & Sons, hlm. 98, ISBN 978-0-470-31983-3 
  61. ^ Chui, C.K. (1997), Wavelets: a mathematical tool for signal processing, SIAM monographs on mathematical modeling and computation, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-384-8 
  62. ^ Crauder, Bruce; Evans, Benny; Noell, Alan (2008), Functions and Change: A Modeling Approach to College Algebra (edisi ke-4th), Boston: Cengage Learning, ISBN 978-0-547-15669-9 , section 4.4.
  63. ^ Bradt, Hale (2004), Astronomy methods: a physical approach to astronomical observations, Cambridge Planetary Science, Cambridge University Press, ISBN 978-0-521-53551-9 , section 8.3, p. 231
  64. ^ Nørby, Jens (2000). "The origin and the meaning of the little p in pH". Trends in Biochemical Sciences. 25 (1): 36–37. doi:10.1016/S0968-0004(99)01517-0. PMID 10637613. 
  65. ^ IUPAC (1997), A. D. McNaught, A. Wilkinson, ed., Compendium of Chemical Terminology ("Gold Book") (edisi ke-2nd), Oxford: Blackwell Scientific Publications, doi:10.1351/goldbookalt=Dapat diakses gratis, ISBN 978-0-9678550-9-7 
  66. ^ Bird, J.O. (2001), Newnes engineering mathematics pocket book (edisi ke-3rd), Oxford: Newnes, ISBN 978-0-7506-4992-6 , section 34
  67. ^ Goldstein, E. Bruce (2009), Encyclopedia of Perception, Encyclopedia of Perception, Thousand Oaks, CA: Sage, ISBN 978-1-4129-4081-8 , pp. 355–56
  68. ^ Matthews, Gerald (2000), Human Performance: Cognition, Stress, and Individual Differences, Hove: Psychology Press, ISBN 978-0-415-04406-6 , p. 48
  69. ^ Welford, A.T. (1968), Fundamentals of skill, London: Methuen, ISBN 978-0-416-03000-6, OCLC 219156 , p. 61
  70. ^ Paul M. Fitts (June 1954), "The information capacity of the human motor system in controlling the amplitude of movement", Journal of Experimental Psychology, 47 (6): 381–91, doi:10.1037/h0055392, PMID 13174710  , reprinted in Paul M. Fitts (1992), "The information capacity of the human motor system in controlling the amplitude of movement" (PDF), Journal of Experimental Psychology: General, 121 (3): 262–69, doi:10.1037/0096-3445.121.3.262, PMID 1402698, diakses tanggal 30 March 2011 
  71. ^ Banerjee, J.C. (1994), Encyclopaedic dictionary of psychological terms, New Delhi: M.D. Publications, hlm. 304, ISBN 978-81-85880-28-0, OCLC 33860167 
  72. ^ Nadel, Lynn (2005), Encyclopedia of cognitive science, New York: John Wiley & Sons, ISBN 978-0-470-01619-0 , lemmas Psychophysics and Perception: Overview
  73. ^ Siegler, Robert S.; Opfer, John E. (2003), "The Development of Numerical Estimation. Evidence for Multiple Representations of Numerical Quantity" (PDF), Psychological Science, 14 (3): 237–43, CiteSeerX 10.1.1.727.3696alt=Dapat diakses gratis, doi:10.1111/1467-9280.02438, PMID 12741747, diarsipkan dari versi asli (PDF) tanggal 17 May 2011, diakses tanggal 7 January 2011 
  74. ^ Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008), "Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures", Science, 320 (5880): 1217–20, Bibcode:2008Sci...320.1217D, CiteSeerX 10.1.1.362.2390alt=Dapat diakses gratis, doi:10.1126/science.1156540, PMC 2610411alt=Dapat diakses gratis, PMID 18511690 
  75. ^ Breiman, Leo (1992), Probability, Classics in applied mathematics, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-296-4 , section 12.9
  76. ^ Aitchison, J.; Brown, J.A.C. (1969), The lognormal distribution, Cambridge University Press, ISBN 978-0-521-04011-2, OCLC 301100935 
  77. ^ Jean Mathieu and Julian Scott (2000), An introduction to turbulent flow, Cambridge University Press, hlm. 50, ISBN 978-0-521-77538-0 
  78. ^ Rose, Colin; Smith, Murray D. (2002), Mathematical statistics with Mathematica, Springer texts in statistics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-95234-5 , section 11.3
  79. ^ Tabachnikov, Serge (2005), Geometry and Billiards, Providence, RI: American Mathematical Society, hlm. 36–40, ISBN 978-0-8218-3919-5 , section 2.1
  80. ^ Durtschi, Cindy; Hillison, William; Pacini, Carl (2004), "The Effective Use of Benford's Law in Detecting Fraud in Accounting Data" (PDF), Journal of Forensic Accounting, V: 17–34, diarsipkan dari versi asli (PDF) tanggal 29 August 2017, diakses tanggal 28 May 2018 
  81. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, ISBN 978-3-540-21045-0 , pp. 1–2
  82. ^ Harel, David; Feldman, Yishai A. (2004), Algorithmics: the spirit of computing, New York: Addison-Wesley, ISBN 978-0-321-11784-7 , p. 143
  83. ^ Knuth, Donald (1998), The Art of Computer Programming, Reading, MA: Addison-Wesley, ISBN 978-0-201-89685-5 , section 6.2.1, pp. 409–26
  84. ^ Donald Knuth 1998, section 5.2.4, pp. 158–68
  85. ^ Wegener, Ingo (2005), Complexity theory: exploring the limits of efficient algorithms, Berlin, New York: Springer-Verlag, hlm. 20, ISBN 978-3-540-21045-0 
  86. ^ Mohr, Hans; Schopfer, Peter (1995), Plant physiologyPerlu mendaftar (gratis), Berlin, New York: Springer-Verlag, ISBN 978-3-540-58016-4 , chapter 19, p. 298
  87. ^ Eco, Umberto (1989), The open work, Harvard University Press, ISBN 978-0-674-63976-8 , section III.I
  88. ^ Sprott, Julien Clinton (2010), "Elegant Chaos: Algebraically Simple Chaotic Flows", Elegant Chaos: Algebraically Simple Chaotic Flows. Edited by Sprott Julien Clinton. Published by World Scientific Publishing Co. Pte. Ltd, New Jersey: World Scientific, Bibcode:2010ecas.book.....S, doi:10.1142/7183, ISBN 978-981-283-881-0 , section 1.9
  89. ^ Helmberg, Gilbert (2007), Getting acquainted with fractals, De Gruyter Textbook, Berlin, New York: Walter de Gruyter, ISBN 978-3-11-019092-2 
  90. ^ Wright, David (2009), Mathematics and music, Providence, RI: AMS Bookstore, ISBN 978-0-8218-4873-9 , chapter 5
  91. ^ Bateman, P.T.; Diamond, Harold G. (2004), Analytic number theory: an introductory course, New Jersey: World Scientific, ISBN 978-981-256-080-3, OCLC 492669517 , theorem 4.1
  92. ^ P. T. Bateman & Diamond 2004, Theorem 8.15
  93. ^ Slomson, Alan B. (1991), An introduction to combinatorics, London: CRC Press, ISBN 978-0-412-35370-3 , chapter 4
  94. ^ Ganguly, S. (2005), Elements of Complex Analysis, Kolkata: Academic Publishers, ISBN 978-81-87504-86-3 , Definition 1.6.3
  95. ^ Nevanlinna, Rolf Herman; Paatero, Veikko (2007), "Introduction to complex analysis", London: Hilger, Providence, RI: AMS Bookstore, Bibcode:1974aitc.book.....W, ISBN 978-0-8218-4399-4 , section 5.9
  96. ^ Moore, Theral Orvis; Hadlock, Edwin H. (1991), Complex analysis, Singapore: World Scientific, ISBN 978-981-02-0246-0 , section 1.2
  97. ^ Wilde, Ivan Francis (2006), Lecture notes on complex analysis, London: Imperial College Press, ISBN 978-1-86094-642-4 , theorem 6.1.
  98. ^ Higham, Nicholas (2008), Functions of Matrices. Theory and Computation, Philadelphia, PA: SIAM, ISBN 978-0-89871-646-7 , chapter 11.
  99. ^ Neukirch, Jürgen (1999), Algebraische Zahlentheorie, Grundlehren der mathematischen Wissenschaften, 322, Berlin: Springer-Verlag, ISBN 978-3-540-65399-8, MR 1697859, Zbl 0956.11021 , section II.5.
  100. ^ Hancock, Edwin R.; Martin, Ralph R.; Sabin, Malcolm A. (2009), Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings, Springer, hlm. 379, ISBN 978-3-642-03595-1 
  101. ^ Stinson, Douglas Robert (2006), Cryptography: Theory and Practice (edisi ke-3rd), London: CRC Press, ISBN 978-1-58488-508-5 
  102. ^ Lidl, Rudolf; Niederreiter, Harald (1997), Finite fieldsPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-39231-0 
  103. ^ Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, Donald (1996), "On the Lambert W function" (PDF), Advances in Computational Mathematics, 5: 329–59, doi:10.1007/BF02124750, ISSN 1019-7168, diarsipkan dari versi asli (PDF) tanggal 14 December 2010, diakses tanggal 13 February 2011 
  104. ^ Cherkassky, Vladimir; Cherkassky, Vladimir S.; Mulier, Filip (2007), Learning from data: concepts, theory, and methods, Wiley series on adaptive and learning systems for signal processing, communications, and control, New York: John Wiley & Sons, ISBN 978-0-471-68182-3 , p. 357
  105. ^ Bourbaki, Nicolas (1998), General topology. Chapters 5–10, Elements of Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-64563-4, MR 1726872 , section V.4.1
  106. ^ Ambartzumian, R.V. (1990), Factorization calculus and geometric probabilityPerlu mendaftar (gratis), Cambridge University Press, ISBN 978-0-521-34535-4 , section 1.4
  107. ^ Esnault, Hélène; Viehweg, Eckart (1992), Lectures on vanishing theorems, DMV Seminar, 20, Basel, Boston: Birkhäuser Verlag, CiteSeerX 10.1.1.178.3227alt=Dapat diakses gratis, doi:10.1007/978-3-0348-8600-0, ISBN 978-3-7643-2822-1, MR 1193913 , section 2
  108. ^ Apostol, T.M. (2010), "Dedhert.Jr/Uji halaman 01/16", dalam Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 

Pranala luar