Voyager 1
Halaman ini sedang dipersiapkan dan dikembangkan sehingga mungkin terjadi perubahan besar. Anda dapat membantu dalam penyuntingan halaman ini. Halaman ini terakhir disunting oleh PinkDash (Kontrib • Log) 161 hari 221 menit lalu. Jika Anda melihat halaman ini tidak disunting dalam beberapa hari, mohon hapus templat ini. |
Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. |
Jenis misi | Eksplorasi planet luar, heliosfer, dan medium antarbintang |
---|---|
Operator | NASA/Jet Propulsion Laboratory |
COSPAR ID | 1977-084A[1] |
SATCAT no. | 10321[2] |
Situs web | voyager |
Durasi misi |
|
Properti wahana | |
Jenis wahana antariksa | Mariner Jupiter-Saturnus |
Produsen | Jet Propulsion Laboratory |
Massa luncur | 815 kg (1.797 pon)[3] |
Massa kering | 7.219 kg (15.915 pon)[4] |
Daya | 470 watt (saat peluncuran) |
Awal misi | |
Tanggal luncur | 5 September 1977, 12:56:00 | UTC
Roket peluncur | Titan IIIE |
Tempat peluncuran | Cape Canaveral Launch Complex 41 |
Terbang lintas Jupiter | |
Posisi terdekat | 5 Maret 1979 |
Jarak | 349.000 km (217.000 mi) |
Terbang lintas Saturnus | |
Posisi terdekat | 12 November 1980 |
Jarak | 124.000 km (77.000 mi) |
Terbang lintas Titan (studi atmosfer) | |
Posisi terdekat | 12 November 1980 |
Jarak | 6.490 km (4.030 mi) |
Voyager 1 adalah wahana antariksa nirawak yang diluncurkan oleh NASA pada 5 September 1977, sebagai bagian dari program Voyager untuk mempelajari bagian luar Tata Surya dan medium antarbintang di luar heliosfer Matahari. Wahana ini diluncurkan 16 hari setelah kembarannya, Voyager 2. Ia berkomunikasi melalui NASA Deep Space Network untuk menerima perintah rutin dan mengirimkan data ke Bumi. Data jarak dan kecepatan real-time disediakan oleh NASA dan JPL.[5] Dengan jarak 162 AU (24 miliar km; 15 miliar mi) dari Bumi hingga November 2023[update],[6] ini adalah objek terjauh buatan manusia dari Bumi.[7]
Sasaran wahana ini termasuk penerbangan melintasi Jupiter, Saturnus, dan satelit terbesar Saturnus, Titan. Meskipun perjalanan wahana ini dapat diubah agar dapat melewati Pluto dengan membatalkan penerbangan melintasi Titan, penjelajahan satelit tersebut menjadi prioritas karena memiliki atmosfer substansial.[8][9][10] Voyager 1 mempelajari cuaca, medan magnet, dan cincin dari dua planet sekaligus merupakan wahana pertama yang menunjukkan citra-citra terperinci satelit alami kedua planet tersebut.
Setelah menyelesaikan misi utamanya dengan terbang melintasi Saturnus pada 12 November 1980, Voyager 1 menjadi yang ketiga dari lima objek buatan yang mencapai kecepatan lepas yang dibutuhkan untuk dapat meninggalkan Tata Surya. Pada 25 Agustus 2012, Voyager 1 menjadi wahana antariksa pertama yang melewati heliosfer dan memasuki medium antarbintang.[11]
Pada tanggal 12 Desember 2023, NASA mengumumkan bahwa sistem data penerbangan Voyager 1 saat ini tidak dapat menggunakan unit modulasi telemetri, sehingga wahana ini tidak dapat mengirimkan data ilmiah. Saat ini tidak diketahui apakah wahana ini akan dapat melanjutkan misinya.[12]
Ikhtisar
Voyager 1 adalah pesawat ruang angkasa tanpa awak seberat 733 kg yang berhasil mengunjungi Jupiter dan Saturnus di akhir tahun 1970-an dan awal 1980-an. Saat ini, Voyager 1 merupakan objek buatan manusia dengan posisi terjauh dari bumi, dengan jarak sekitar 159 Unit Astronomi atau sekitar 23 jam cahaya.[13]
Wahana ini sekarang berada di bagian luar tata surya yang disebut heliosheath, di mana angin matahari terkompresi dan menjadi bergolak oleh interaksi dengan medium antarbintang. Meskipun jauh, Voyager 1 masih berada di wilayah sabuk Kuiper, sebuah sabuk asteroid besar yang terletak di luar orbit Neptunus. Dengan penggerak generator termal radioisotop, Voyager 1 memiliki daya yang cukup untuk mengoperasikan instrumen sampai kira-kira tahun 2025, sebelum akhirnya mati.
Para ilmuwan berharap sebelum kematiannya, Voyager 1 telah mencapai wilayah di luar heliosheath sehingga mampu mengirimkan analisis medium antarbintang untuk pertama kalinya. Voyager 1 memiliki sejarah yang unik. Wahana ini diluncurkan pada 5 September 1977, dan berhasil memberikan gambar resolusi tinggi pertama atas bulan Jupiter dan Saturnus, termasuk Kalisto, Io, Titan, Ganimede, dan banyak lainnya.
Pada Januari 1979, Voyager 1 melewati Jupiter dan hanya berjarak 349.000 kilometer dari pusatnya. Voyager 1 berhasil mengamati adanya aktivitas gunung berapi di bulan Jupiter, Io, yang belum pernah teramati sebelumnya oleh teleskop atau dua wahana lain yang mengunjungi Jupiter sebelumnya, Pioneer 10 dan Pioneer 11. Io mengorbit sangat dekat dengan Jupiter dan memiliki kondisi geologi sangat aktif karena kedekatannya dengan medan magnet Jupiter yang amat kuat.
Pada November 1980, Voyager 1 mengunjungi Saturnus, dengan posisi terdekat dicapai pada tanggal 12 November dengan jarak 124.000 kilometer dari puncak awan Saturnus.Voyager 1 juga berhasil membuat pengamatan pada cincin dan bulan Saturnus, terutama Titan, yang memiliki atmosfer sendiri. Para ilmuwan kemudian mengirim Voyager 1 mendekati Titan untuk mengamatinya lebih jauh, membuat Titan menjadi objek tata surya terakhir yang didekati, sebelum wahana ini melanjutkan perjalanan ke luar tata surya.
Ikhtisar misi
Awalnya, Voyager 1 adalah Mariner 11 untuk Program Mariner. Secara kebetulan, teknologi Gravitational Slingshot yang digunakan waktunya cocok dengan susunan planet yang memungkinkan penggunaan gravitasi planet untuk pesawat luar angkasa tersebut atau Planetary Grand Tour.
Voyager 1 diluncurkan setelah Voyager 2 pada 5 September 1977 dan di atur pada jalur yang membuatnya lebih cepat sampai Jupiter dan Saturnus.
Secara resmi NASA telah menyatakan bahwa Voyager 1 telah meninggalkan tata surya dan kini berada di interstellar space atau ruang antar bintang.
Daya
Voyager 1 mempunyai tiga radioisotope thermoelectric generators (RTGs) dipasang pada boom. Setiap MHW-RTG berisi 24 bola oksida plutonium-238 yang ditekan.[14] Masing-masing RTG membuat sekitar 470 W daya listrik saat peluncuran, dan sisanya dibuang sebagai limbah panas.[15] Keluaran daya RTG menurun seiring waktu karena waktu paruh bahan bakar 87,7 tahun dan degradasi termokopel, tetapi mereka terus berlanjut untuk mendukung beberapa dari operasinya sampai setidaknya tahun 2025.[16][14]
-
Diagram wadah bahan bakar RTG, menunjukkan bola oksida plutonium-238
-
Diagram cangkang RTG, menunjukkan termokopel silikon-germanium penghasil daya
-
Model dari sebuah unit RTG
Komputer
Tidak seperti instrumen Voyager lainnya, pengoperasian kamera untuk cahaya tampak tidak otonom, tetapi dikontrol oleh sebuah tabel penggambaran parameter di dalam sebuah komputer digitalnya, Flight Data Subsystem (FDS). Sejak tahun 1990-an, sebagian besar wahana antariksa telah dilengkapi dengan kamera yang sepenuhnya otonom.[17]
Computer command subsystem (CCS) mengontrol kamera-kameranya. CCS berisi program komputer tetap, seperti decoding perintah, rutinitas deteksi kesalahan dan koreksi kesalahan, rutinitas penunjuk antena, dan rutinitas pengurutan pesawat ruang angkasa. Komputer ini merupakan versi perbaikan dari komputer yang digunakan pada pengorbit Viking tahun 1970-an.[18]
Attitude and Articulation Control Subsystem (AACS) mengontrol orientasi arah pesawat ruang angkasa (ketinggiannya). Itu membuat antena penerima tingginya tetap mengarah ke Bumi, mengontrol perubahan ketinggian, dan mengarahkan platform pemindaian. Sistem AACS yang dibuat khusus pada kedua Voyager adalah sama.[19][20]
Instrumen ilmiah
Nama Instrumen | Singkatan. | Deskripsi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imaging Science System (dimatikan) |
(ISS) | Dimanfaatkan sistem dua kamera (narrow-angle/wide-angle) untuk memberikan citra Jupiter, Saturnus dan benda-benda lainnya di sepanjang lintasan. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Radio Science System (dimatikan) |
(RSS) | Memanfaatkan sistem telekomunikasi dari pesawat ruang angkasa Voyager untuk menentukan sifat fisik planet dan satelit (ionosfer, atmosfer, massa, bidang gravitasi, kepadatan) dan jumlah dan distribusi ukuran materi dalam cincin Saturnus dan dimensi cincin. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Infrared Interferometer Spectrometer (dimatikan) |
(IRIS) | Menelaah keseimbangan energi global dan lokal dan komposisi atmosfer. Profil suhu vertikal juga diperoleh dari planet-planet dan satelit serta komposisi, sifat termal, dan ukuran partikel dalam cincin Saturnus. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ultraviolet Spectrometer (aktif) |
(UVS) | Dirancang untuk mengukur sifat atmosfer, dan untuk mengukur radiasi. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triaxial Fluxgate Magnetometer (aktif) |
(MAG) | Dirancang untuk menyelidiki medan magnet Jupiter dan Saturnus, interaksi angin surya dengan magnetospheres planet ini, dan medan magnet dari ruang antarplanet ke batas antara angin matahari dan medan magnet ruang antarbintang, jika menyeberang. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Plasma Spectrometer (cacat) |
(PLS) | Menyelidiki sifat makroskopik dari ion plasma dan langkah-langkah elektron dalam kisaran energi dari 5 eV sampai 1 keV. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low Energy Charged Particle Instrument (aktif) |
(LECP) | Mengukur diferensial dalam fluks energi dan distribusi sudut ion, elektron dan diferensial dalam komposisi ion energi. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sistem Sinar Kosmik (aktif) |
(CRS) | Menentukan asal dan proses percepatan, riwayat hidup, dan kontribusi dinamis sinar kosmik antar bintang, nukleosintesis elemen dalam sumber kosmik-ray, perilaku sinar kosmik dalam medium antarplanet, dan planet terjebak energik-lingkungan partikel. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Penyelidik Astronomi Radio planet (dimatikan) |
(PRA) | Memanfaatkan frekuensi radio penerima menyapu untuk mempelajari sinyal radio-emisi dari Jupiter dan Saturnus. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sistem Photopolarimeter (cacat) |
(PPS) | Memanfaatkan teleskop dengan polarizer untuk mengumpulkan informasi tentang tekstur permukaan dan komposisi Jupiter dan Saturnus dan informasi tentang sifat hamburan atmosfer dan kepadatan untuk kedua planet. More
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sistem gelombang Plasma (aktif) |
(PWS) | Menyediakan kontinu, pengukuran selubung-independen dari profil elektron-density di Jupiter dan Saturnus serta informasi dasar tentang interaksi gelombang-partikel lokal, berguna dalam mempelajari magnetospheres. More
|
-
Voyager 1 seperti digambarkan seorang seniman NASA.
-
Alat simulasi ruang angkasa Voyager 1
-
Gold-Plated Record dipasang di Voyager 1
-
Lokasi instrumen ilmiah ditunjukkan dalam sebuah diagram
Masa depan wahana
Sisa umur
Pada Desember 2017, NASA berhasil menyalakan keempat pendorong trajectory correction maneuver (TCM) Voyager 1 untuk pertama kalinya sejak tahun 1980. Pendorong TCM digunakan sebagai pengganti sekumpulan jet yang terdegradasi untuk membantu menjaga antena wahana tetap mengarah ke Bumi. Penggunaan pendorong TCM memungkinkan Voyager 1 terus mengirimkan data ke NASA selama dua hingga tiga tahun lagi.[24][25]
Karena daya listrik yang tersedia semakin berkurang, tim Voyager harus memprioritaskan instrumen untuk tetap menyala dan instrumen yang diharuskan untuk dimatikan. Pemanas dan sistem pesawat ruang angkasa lainnya telah dimatikan satu per satu sebagai bagian dari manajemen daya. Instrumen medan dan partikel yang paling mungkin mengirimkan kembali data penting tentang heliosfer dan ruang antarbintang telah diprioritaskan untuk tetap beroperasi. Para insinyur memperkirakan pesawat ruang angkasa tersebut akan terus mengoperasikan setidaknya satu instrumen sains hingga sekitar tahun 2025.[26]
Profil misi
Garis waktu perjalanan
Lintasan Voyager 1 terlihat dari Bumi, menyimpang dari ecliptic pada tahun 1981 di Saturnus dan sekarang mengarah ke konstelasi constellation Ofiukus |
Tanggal | Kejadian |
---|---|
05-09-1997 | Kapal luar angkasa meluncur pada 12:56:00 UTC. |
10-12-1997 | Memasuki sabuk asteroid. |
19-12-1977 | Voyager 1 menyusul Voyager 2. (lihat diagram) |
08-09-1978 | Keluar sabuk asteroid. |
06-01-1979 | Memulai fase pengamatan Jupiter. |
05-03-1979 | Bertemu dengan satelit Yovian. |
06:54 | Terbang melintas Amalthea pada 420,200 km. |
12:05:26 | Pendekatan paling dekat Jupiter pada 348,890 km dari pusat massa. |
15:14 | Terbang melintas Io pada 20,570 km. |
18:19 | Terbang melintas Europa pada 733,760 km. |
06-03-1979 | |
02:15 | Terbang melintas di Ganymede pada 114,710 km. |
17:08 | Terbang melintas di Callisto pada 126,400 km. |
13-04-1979 | Fase selesai |
22-08-1980 | Mulai fase pengamatan Saturnus. |
12-11-1980 | Bertemu dengan satelit Saturnus. |
05:41:21 | Terbang melintas Titan pada 6,490 km. |
22:16:32 | Terbang melintas Tethys pada 415,670 km. |
23:46:30 | Pendekatan terdekat Saturnus pada 184,300 km dari pusat massa. |
13-11-1980 | |
01:43:12 | Terbang melintas Mimas pada 88,440 km. |
01:51:16 | Terbang melintas Enceladus pada 202,040 km. |
06:21:53 | Terbang melintas Rhea pada 73,980 km. |
16:44:41 | Terbang melintas Hyperion pada 880,440 km. |
14-11-1980 | Fase selesai |
14-11-1980 | Memulai misi tambahan. |
Golden record
Kedua wahana antariksa Voyager membawa cakram audio visual berlapis emas, sebuah kompilasi dimaksudkan untuk menampilkan keberagaman kehidupan dan kultur di Bumi jika salah satu pesawat ruang angkasa tersebut pernah ditemukan oleh penemu makhluk luar bumi mana pun.[27][28] Rekaman tersebut, dibuat di bawah arahan tim termasuk Carl Sagan dan Timothy Ferris, termasuk foto dari Bumi dan bentuk kehidupannya, berbagai informasi ilmiah, salam lisan dari orang-orang seperti Sekretaris Jenderal Perserikatan Bangsa-Bangsa (Kurt Waldheim) dan Presiden Amerika Serikat (Jimmy Carter) dan medley, "Sounds of Earth", yang mencakup suara ikan paus, tangisan bayi, deburan ombak di pantai, dan koleksi musik dari berbagai budaya dan era termasuk karya-karya Wolfgang Amadeus Mozart, Blind Willie Johnson, Chuck Berry dan Valya Balkanska. Musik klasik Timur dan Barat lainnya juga disertakan, serta pertunjukan musik pribumi dan rakyat dari seluruh dunia. Rekaman tersebut berisi ucapan salam dalam 55 bahasa yang berbeda.[29] Proyek tersebut bertujuan untuk menggambarkan kekayaan dari kehidupan di Bumi dan berdiri sebagai bukti kreativitas manusia dan keinginan untuk terhubung dengan kosmos.[28][30]
Referensi
- ^ "Voyager 1". NSSDC Master Catalog. NASA/NSSDC. Diakses tanggal December 26, 2019.
- ^ "Voyager 1". N2YO. Diakses tanggal 26 Desember 2019.
- ^ "NASA – Voyager Facts". NASA's Goddard Space Flight Center website. Diarsipkan dari versi asli tanggal December 10, 2022. Diakses tanggal May 20, 2023.
- ^ "Voyager 1". NASA's Solar System Exploration website. Diarsipkan dari versi asli tanggal April 18, 2019. Diakses tanggal December 4, 2022.
- ^ "Voyager – Mission Status". Jet Propulsion Laboratory. National Aeronautics and Space Administration. Diarsipkan dari versi asli tanggal January 1, 2018. Diakses tanggal January 7, 2023.
- ^ "Voyager – Mission Status". Jet Propulsion Laboratory. National Aeronautics and Space Administration. Diarsipkan dari versi asli tanggal January 1, 2018. Diakses tanggal January 7, 2023.
- ^ "Voyager 1". BBC Solar System. Diarsipkan dari versi asli tanggal February 3, 2018. Diakses tanggal September 4, 2018.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamafaq
- ^ "New Horizons conducts flyby of Pluto in historic Kuiper Belt encounter". Diakses tanggal 2 September 2015.
- ^ "What If Voyager Had Explored Pluto?". Diakses tanggal 2 September 2015.
- ^ Barnes, Brooks (12 September 2013). "In a Breathtaking First, NASA Craft Exits the Solar System". New York Times. Diakses tanggal 12 September 2013.
- ^ Paul, Andrew (2023-12-14). "Voyager 1 is sending back bad data, but NASA is on it". Popular Science (dalam bahasa Inggris). Diakses tanggal 2023-12-15.
- ^ "Voyager - Mission Status" [Voyager - Status Misi]. Jet Propulsion Laboratory (dalam bahasa Inggris). National Aeronautics and Space Administration. Diakses tanggal 5 April 2023.
- ^ a b Furlong, Richard R.; Wahlquist, Earl J. (1999). "U.S. space missions using radioisotope power systems" (PDF). Nuclear News. 42 (4): 26–34. Diarsipkan dari versi asli (PDF) tanggal October 16, 2018. Diakses tanggal January 2, 2011.
- ^ "Spacecraft Lifetime". JPL. Diarsipkan dari versi asli tanggal March 1, 2017. Diakses tanggal August 19, 2013.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamajpl-1989
- ^ "pds-rings". Diarsipkan dari versi asli tanggal November 7, 2021. Diakses tanggal May 23, 2015.
- ^ Tomayko, James E. (August 3, 1987). "Distributed Computing On Board Voyager and Galileo (chapter 6)". Dalam Kent, Allen; Williams, James G. Computers in Spaceflight: The NASA Experience. Encyclopedia of Computer Science and Technology. 18. Supplement 3. NASA. Bibcode:1988csne.book.....T. ISBN 978-0-8247-2268-5. Diarsipkan dari versi asli tanggal October 18, 2023. Diakses tanggal December 16, 2023 – via NASA History.
- ^ "au.af". Diarsipkan dari versi asli tanggal October 16, 2015. Diakses tanggal May 23, 2015.
- ^ "airandspace". Diarsipkan dari versi asli tanggal April 6, 2016. Diakses tanggal May 23, 2015.
- ^ "Voyager 1 Narrow Angle Camera Description". NASA. Diakses tanggal January 17, 2011.
- ^ "Voyager 1 Wide Angle Camera Description". NASA. Diakses tanggal January 17, 2011.
- ^ "Voyager Signal Spotted By Earth Radio Telescopes". NASA. NASA TV. September 5, 2013. Diarsipkan dari versi asli tanggal May 14, 2015. Diakses tanggal May 20, 2015.
- ^ "Voyager 1 spacecraft thrusters fire up after decades idle". The Irish Times. December 4, 2017. Diarsipkan dari versi asli tanggal April 28, 2019. Diakses tanggal December 4, 2017.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamathrusters
- ^ "Voyager – Frequently Asked Questions". voyager.jpl.nasa.gov (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal August 13, 2023. Diakses tanggal June 26, 2020.
- ^ Ferris, Timothy (May 2012). "Timothy Ferris on Voyagers' Never-Ending Journey". Smithsonian Magazine. Diarsipkan dari versi asli tanggal November 4, 2013. Diakses tanggal August 19, 2013.
- ^ a b Gambino, Megan. "What Is on Voyager's Golden Record?". Smithsonian Magazine (dalam bahasa Inggris). Diarsipkan dari versi asli tanggal April 8, 2020. Diakses tanggal January 15, 2024.
- ^ "Voyager Golden record". JPL. Diarsipkan dari versi asli tanggal September 27, 2011. Diakses tanggal August 18, 2013.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaferris-2017
Pranala luar
- (Inggris) Situs Voyager dari NASA
- (Indonesia) [1][pranala nonaktif permanen]