Pengguna:Kekavigi/bak pasir: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
k ~
k ~
Baris 1: Baris 1:
{{Short description|Ruang vektor yang dihasilkan dari kombinasi linear elemen-elemen di suatu himpunan}}
{{Short description|Ruang vektor yang dihasilkan dari kombinasi linear elemen-elemen di suatu himpunan}}
[[Berkas:Basis_for_a_plane.svg|jmpl|Bidang yang direntang oleh vektor '''u''' dan '''v''' di '''R'''<sup>3</sup>.]]
[[Berkas:Basis_for_a_plane.svg|jmpl|Bidang yang direntang oleh vektor '''u''' dan '''v''' di '''R'''<sup>3</sup>.]]
Dalam [[aljabar linear]], '''rentang linear''' atau '''span''' dari sebarang [[Himpunan (matematika)|himpunan]] <math>S</math> berisi [[Vektor Euklides|vektor-vektor]] (yang berasal dari suatu ruang vektor) adalah himpunan semua [[kombinasi linear]] dari vektor-vektor di <math>S</math>.<ref>{{Harvard citation text|Axler|2015}} p. 29, § 2.7</ref> Rentang linear dari <math>S</math> umum disimbolkan dengan <math>\text{span}(S).</math><ref name=":0">{{Harvard citation text|Axler|2015}} pp. 29-30, §§ 2.5, 2.8</ref> Sebagai contoh, dua vektor yang saling [[Kebebasan linear|bebas linear]] akan merentang suatu [[Bidang (geometri)|bidang]]. Rentang dapat dikarakterisasikan<!-- istilah 'dikarakterisasikan' secara praktis sama saja dengan istilah 'didefinisikan', namun saya ragu untuk menggunakan padanan ini. --kekavigi --> sebagai [[Irisan (teori himpunan)|irisan]] dari semua [[Subruang vektor|subruang (vektor)]] yang mengandung <math>S</math>, maupun sebagai subruang yang mengandung <math>S.</math> Alhasil, rentang dari himpunan vektor menghasilkan suatu ruang vektor. Rentang dapat diperumum untuk [[matroid]] dan [[Modul (matematika)|modul]].
Dalam [[aljabar linear]], '''rentang linear''' atau '''span''' dari sebarang [[Himpunan (matematika)|himpunan]] <math>S</math> berisi [[Vektor Euklides|vektor-vektor]] (yang berasal dari suatu ruang vektor) adalah himpunan semua [[kombinasi linear]] dari vektor-vektor di <math>S.</math><ref>{{Harvard citation text|Axler|2015}} p. 29, § 2.7</ref> Rentang linear dari <math>S</math> umum disimbolkan dengan <math>\text{span}(S).</math><ref name=":0">{{Harvard citation text|Axler|2015}} pp. 29-30, §§ 2.5, 2.8</ref> Sebagai contoh, dua vektor yang saling [[Kebebasan linear|bebas linear]] akan merentang suatu [[Bidang (geometri)|bidang]]. Rentang dapat dikarakterisasikan<!-- istilah 'dikarakterisasikan' secara praktis sama saja dengan istilah 'didefinisikan', namun saya ragu untuk menggunakan padanan ini. --kekavigi --> sebagai [[Irisan (teori himpunan)|irisan]] dari semua [[Subruang vektor|subruang (vektor)]] yang mengandung <math>S,</math> maupun sebagai subruang yang mengandung <math>S.</math> Alhasil, rentang dari himpunan vektor menghasilkan suatu ruang vektor. Rentang dapat diperumum untuk [[matroid]] dan [[Modul (matematika)|modul]].


Untuk menyatakan bahwa suatu ruang vektor <math>V</math> adalah rentang linear dari subset <math>S</math>, beberapa pernyataan berikut umum digunakan: <math>S</math> merentang <math>V</math>, <math>S</math> adalah ''himpunan merentang'' dari <math>V</math>, <math>V</math> direntang/dibangkitkan oleh <math>S</math>, atau <math>S</math> adalah [[Pembangkit (matematika)|pembangkit]] atau himpunan pembangkit dari <math>V.</math>
Untuk menyatakan bahwa suatu ruang vektor <math>V</math> adalah rentang linear dari subset <math>S,</math> beberapa pernyataan berikut umum digunakan: <math>S</math> merentang <math>V,</math> <math>S</math> adalah ''himpunan merentang'' dari <math>V,</math> <math>V</math> direntang/dibangkitkan oleh <math>S,</math> atau <math>S</math> adalah [[Pembangkit (matematika)|pembangkit]] atau himpunan pembangkit dari <math>V.</math>


== Definisi ==
== Definisi ==
Untuk sebarang [[ruang vektor]] <math>V</math> atas [[Lapangan (matematika)|lapangan]] <math>K</math>, rentang dari suatu himpunan <math>S</math> yang beranggotakan vektor-vektor (tidak harus berhingga) didefinisikan sebagai irisan <math>W</math> dari semua [[Subruang vektor|subruang]] dari <math>V</math> yang mengandung <math>S</math>. Irisan <math>W</math> disebut sebagai subruang yang ''direntang oleh'' <math>S</math>, atau oleh vektor-vektor di <math>S</math>. Kebalikannya, <math>S</math> disebut ''himpunan merentang'' dari <math>W</math>, dan kita katakan <math>S</math> ''merentang <math>W</math>''.
Untuk sebarang [[ruang vektor]] <math>V</math> atas [[Lapangan (matematika)|lapangan]] <math>K,</math> rentang dari suatu himpunan <math>S</math> yang beranggotakan vektor-vektor (tidak harus berhingga) didefinisikan sebagai irisan <math>W</math> dari semua [[Subruang vektor|subruang]] dari <math>V</math> yang mengandung <math>S.</math> Irisan <math>W</math> disebut sebagai subruang yang ''direntang oleh'' <math>S,</math> atau oleh vektor-vektor di <math>S.</math> Kebalikannya, <math>S</math> disebut ''himpunan merentang'' dari <math>W</math>, dan kita katakan <math>S</math> ''merentang <math>W.</math>''


Rentang dari <math>S</math> juga dapat didefinisikan sebagai himpunan dari semua [[kombinasi linear]] terhingga dari vektor-vektor di <math>S</math>.<ref>{{Harvard citation text|Hefferon|2020}} p. 100, ch. 2, Definition 2.13</ref><ref name=":02">{{Harvard citation text|Axler|2015}} pp. 29-30, §§ 2.5, 2.8</ref><ref>{{Harvard citation text|Roman|2005}} pp. 41-42</ref><ref>{{Harvard citation text|MathWorld|2021}} Vector Space Span.</ref> Secara matematis, ini dituliskan sebagai<math display="block"> \operatorname{span}(S) = \left \{ {\left.\sum_{i=1}^k \lambda_i \mathbf v_i \;\right|\; k \in \N, \mathbf v_i \in S, \lambda _i \in K} \right \}.</math>Pada kasus <math>S</math> berukuran tak-hingga, syarat kombinasi linear yang tak-terhingga (yakni, keadaan ketika kombinasi menggunakan konsep penjumlahan tak-hingga, dengan mengasumsikan penjumlahan seperti itu dapat didefinisikan) tidak disertakan dalam definisi.
Rentang dari <math>S</math> juga dapat didefinisikan sebagai himpunan dari semua [[kombinasi linear]] terhingga dari vektor-vektor di <math>S.</math><ref>{{Harvard citation text|Hefferon|2020}} p. 100, ch. 2, Definition 2.13</ref><ref name=":02">{{Harvard citation text|Axler|2015}} pp. 29-30, §§ 2.5, 2.8</ref><ref>{{Harvard citation text|Roman|2005}} pp. 41-42</ref><ref>{{Harvard citation text|MathWorld|2021}} Vector Space Span.</ref> Secara matematis, ini dituliskan sebagai<math display="block"> \operatorname{span}(S) = \left \{ {\left.\sum_{i=1}^k \lambda_i \mathbf v_i \;\right|\; k \in \N, \mathbf v_i \in S, \lambda _i \in K} \right \}.</math>Pada kasus <math>S</math> berukuran tak-hingga, syarat kombinasi linear yang tak-terhingga (yakni, keadaan ketika kombinasi menggunakan konsep penjumlahan tak-hingga, dengan mengasumsikan penjumlahan seperti itu dapat didefinisikan) tidak disertakan dalam definisi.


== Contoh ==
== Contoh ==
Ruang vektor [[Bilangan riil|riil]] <math>\mathbb R^3</math> dapat direntang oleh himpunan <math>\{(-1,0,0),\,(0,1,0),\,(0,0,1)\} </math>. Himpunan ini juga merupakan suatu [[Basis (aljabar linear)|basis]] dari <math>\mathbb R^3</math>. Jika <math>(-1,0,0)</math> digantikan dengan <math>(1,0,0)</math>, himpunan tersebut merupakan [[Basis (aljabar linear)|basis standar]] dari <math>\mathbb R^3</math>. Contoh himpunan pembangkit lain dari <math>\mathbb R^3</math> adalah <math>\{(1,2,3),\, (0, 1, 2),\, (-1, \tfrac{1}{2}, 3),\, (1, 1, 1)\}</math>, namun himpunan ini bukan basis karena bersifat [[Kebebasan linear|bergantung linear]].
Ruang vektor [[Bilangan riil|riil]] <math>\mathbb R^3</math> dapat direntang oleh himpunan <math>\{(-1,0,0),\,(0,1,0),\,(0,0,1)\} </math>. Himpunan ini juga merupakan suatu [[Basis (aljabar linear)|basis]] dari <math>\mathbb R^3</math>. Jika <math>(-1,0,0)</math> digantikan dengan <math>(1,0,0)</math>, himpunan tersebut merupakan [[Basis (aljabar linear)|basis standar]] dari <math>\mathbb R^3</math>. Contoh himpunan pembangkit lain dari <math>\mathbb R^3</math> adalah <math>\{(1,2,3),\, (0, 1, 2),\, (-1, \tfrac{1}{2}, 3),\, (1, 1, 1)\}</math>, namun himpunan ini bukan basis karena bersifat [[Kebebasan linear|bergantung linear]].


Himpunan <math>\{(1, 0, 0),\,(0, 1, 0),\,(1,1,0)\}</math> bukan himpunan merentang dari <math>\mathbb R^3</math>, karena rentangnya adalah subruang semua vektor di <math>\mathbb R^3</math> yang komponen terakhirnya bernilai <math>0.</math> Subruang tersebut juga direntang oleh himpunan <math>\{(1,0,0),\,(0,1,0)\}, </math> karena <math>(1,1,0)</math> adalah kombinasi linear dari <math>(1,0,0)</math> dan <math>(0,1,0).</math>


Himpunan kosong adalah himpunan merentang dari <math>\{(0, 0, 0)\}, </math> karena himpunan kosong adalah subset dari semua subruang vektor yang mungkin di <math>\mathbb R^3,</math> dan <math>\{(0, 0, 0)\} </math> adalah irisan dari semua subruang tersebut.
The set {{math|{(1, 0, 0), (0, 1, 0), (1, 1, 0)}}} is not a spanning set of <math>\mathbb R^3</math>, since its span is the space of all vectors in <math>\mathbb R^3</math> whose last component is zero. That space is also spanned by the set {(1, 0, 0), (0, 1, 0)}, as (1, 1, 0) is a linear combination of (1, 0, 0) and (0, 1, 0). Thus, the spanned space is not <math>\mathbb R^3.</math> It can be identified with <math>\mathbb R^2</math> by removing the third components equal to zero.


Himpunan semua [[monomial]] <math>x^n,</math> dengan <math>n</math> adalah bilangan bulat non-negatif, merentang ruang [[polinomial]].
The empty set is a spanning set of {(0, 0, 0)}, since the empty set is a subset of all possible vector spaces in <math>\mathbb R^3</math>, and {(0, 0, 0)} is the intersection of all of these vector spaces.

The set of [[Monomial|monomials]] {{mvar|x<sup>n</sup>}}, where {{mvar|n}} is a non-negative integer, spans the space of [[Polynomial|polynomials]].


== Teorema ==
== Teorema ==


=== Equivalence of definitions ===
=== Kesetaraan antar definisi ===
Untuk sebarang ruang vektor <math>V</math> atas lapangan <math>K,</math> himpunan semua kombinasi linear dari subset <math>S</math> dari <math>V,</math> adalah subruang terkecil dari <math>V</math> yang mengandung <math>S.</math>
The set of all linear combinations of a subset {{mvar|S}} of {{mvar|V}}, a vector space over {{mvar|K}}, is the smallest linear subspace of {{mvar|V}} containing {{mvar|S}}.


: ''Proof.'' We first prove that {{math|span ''S''}} is a subspace of {{mvar|V}}. Since {{mvar|S}} is a subset of {{mvar|V}}, we only need to prove the existence of a zero vector {{math|'''0'''}} in {{math|span ''S''}}, that {{math|span ''S''}} is closed under addition, and that {{math|span ''S''}} is closed under scalar multiplication. Letting <math>S = \{ \mathbf v_1, \mathbf v_2, \ldots, \mathbf v_n \}</math>, it is trivial that the zero vector of {{mvar|V}} exists in {{math|span ''S''}}, since <math>\mathbf 0 = 0 \mathbf v_1 + 0 \mathbf v_2 + \cdots + 0 \mathbf v_n</math>. Adding together two linear combinations of {{mvar|S}} also produces a linear combination of {{mvar|S}}: <math>(\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n) + (\mu_1 \mathbf v_1 + \cdots + \mu_n \mathbf v_n) = (\lambda_1 + \mu_1) \mathbf v_1 + \cdots + (\lambda_n + \mu_n) \mathbf v_n</math>, where all <math>\lambda_i, \mu_i \in K</math>, and multiplying a linear combination of {{mvar|S}} by a scalar <math>c \in K</math> will produce another linear combination of {{mvar|S}}: <math>c(\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n) = c\lambda_1 \mathbf v_1 + \cdots + c\lambda_n \mathbf v_n</math>. Thus {{math|span ''S''}} is a subspace of {{mvar|V}}.
: ''Bukti.'' Pertama kita tunjukkan bahwa <math>\text{span}(S)</math> adalah subruang dari <math>V.</math> Karena <math>S</math> adalah subset dari <math>V,</math> kita cukup membuktikan bahwa vektor <math>\mathbf 0</math> anggota dari <math>\text{span}(S), </math> bahwa <math>\text{span}(S)</math> dibawah penjumlahan, dan bahwa <math>\text{span}(S)</math> tertutup dibawah perkalian skalar. Misalkan <math>S = \{ \mathbf v_1, \mathbf v_2, \ldots, \mathbf v_n \}</math>, mudah ditunjukkan bahwa vektor nol di <math>V</math> ada di <math>\text{span}(S), </math> karena <math>\mathbf 0 = 0 \mathbf v_1 + 0 \mathbf v_2 + \cdots + 0 \mathbf v_n. </math> Menjumlahkan sebarang dua kombinasi linear dari <math>S</math> akan menghasilkan kombinasi linear dari <math>S</math>: <math display="block">(\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n) + (\mu_1 \mathbf v_1 + \cdots + \mu_n \mathbf v_n) = (\lambda_1 + \mu_1) \mathbf v_1 + \cdots + (\lambda_n + \mu_n) \mathbf v_n,</math>dengan semua <math>\lambda_i, \mu_i \in K</math>, dan mengalikan sebarang kombinasi linear dari <math>S</math> dengan sebarang skalar <math>c \in K</math> akan menghasilkan kombinasi linear dari <math>S</math>: <math display="block">c(\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n) = c\lambda_1 \mathbf v_1 + \cdots + c\lambda_n \mathbf v_n. </math>Alhasil, <math>\text{span}(S)</math> adalah subruang dari <math>V.</math>


: Suppose that {{mvar|W}} is a linear subspace of {{mvar|V}} containing {{mvar|S}}. It follows that <math>S \subseteq \operatorname{span} S</math>, since every {{math|'''v'''<sub>''i''</sub>}} is a linear combination of {{mvar|S}} (trivially). Since {{mvar|W}} is closed under addition and scalar multiplication, then every linear combination <math>\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n</math> must be contained in {{mvar|W}}. Thus, {{math|span ''S''}} is contained in every subspace of {{mvar|V}} containing {{mvar|S}}, and the intersection of all such subspaces, or the smallest such subspace, is equal to the set of all linear combinations of {{mvar|S}}.
: Misalkan <math>W</math> adalah subruang <math>V</math> yang mengandung <math>S.</math> Perhatikan bahwa <math>S \subseteq \operatorname{span} S,</math> karena semua <math>\mathbf{v}_i</math> merupakan kombinasi linear dari <math>S</math> (secara langsung). Karena <math>W</math> tertutup dibawah penjumlahan dan perkalian skalar, maka setiap kombinasi linear <math>\lambda_1 \mathbf v_1 + \cdots + \lambda_n \mathbf v_n</math> harus berada di <math>W.</math> Akibatnya, <math>\text{span}(S)</math> terkandung di semua subruang dari <math>V</math> yang mengandung <math>S.</math> Lebih lanjut, irisan semua subruang tersebut, yakni subruang terkecil, sama dengan himpunan semua kombinasi linear dari <math>S.</math>


=== Size of spanning set is at least size of linearly independent set ===
=== Size of spanning set is at least size of linearly independent set ===
Baris 65: Baris 64:
Let {{mvar|X}} be a normed space and let {{mvar|E}} be any non-empty subset of {{mvar|X}}. Then{{ordered list|<math>\overline{\operatorname{Sp}}(E)</math> is a closed linear subspace of ''X'' which contains ''E'',|<math>\overline{\operatorname{Sp}}(E) = \overline{\operatorname{Sp}(E)}</math>, viz. <math>\overline{\operatorname{Sp}}(E)</math> is the closure of <math>\operatorname{Sp}(E)</math>,|<math>E^\perp = (\operatorname{Sp}(E))^\perp = \left(\overline{\operatorname{Sp}(E)}\right)^\perp.</math>|list-style-type=lower-alpha}}(So the usual way to find the closed linear span is to find the linear span first, and then the closure of that linear span.)
Let {{mvar|X}} be a normed space and let {{mvar|E}} be any non-empty subset of {{mvar|X}}. Then{{ordered list|<math>\overline{\operatorname{Sp}}(E)</math> is a closed linear subspace of ''X'' which contains ''E'',|<math>\overline{\operatorname{Sp}}(E) = \overline{\operatorname{Sp}(E)}</math>, viz. <math>\overline{\operatorname{Sp}}(E)</math> is the closure of <math>\operatorname{Sp}(E)</math>,|<math>E^\perp = (\operatorname{Sp}(E))^\perp = \left(\overline{\operatorname{Sp}(E)}\right)^\perp.</math>|list-style-type=lower-alpha}}(So the usual way to find the closed linear span is to find the linear span first, and then the closure of that linear span.)


== See also ==
== Catatan kaki ==
<references responsive="" />

* [[Affine hull]]
* [[Conical combination]]
* [[Convex hull]]

== Citations ==
<references />


== Sources ==
== Daftar pustaka ==


=== Textbooks ===
=== Buku ===


* {{Cite book|last=Axler|first=Sheldon Jay|year=2015|title=Linear Algebra Done Right|publisher=[[Springer Science+Business Media | Springer]]|isbn=978-3-319-11079-0|edition=3rd|author-link=Sheldon Axler}}
* {{Cite book|last=Axler|first=Sheldon Jay|year=2015|title=Linear Algebra Done Right|publisher=[[Springer Science+Business Media | Springer]]|isbn=978-3-319-11079-0|edition=3rd|author-link=Sheldon Axler}}
Baris 85: Baris 78:
* Lay, David C. (2021) ''Linear Algebra and Its Applications (6th Edition)''. Pearson.
* Lay, David C. (2021) ''Linear Algebra and Its Applications (6th Edition)''. Pearson.


=== Web ===
=== Situs ===


* {{cite web|last1=Lankham|first1=Isaiah|last2=Nachtergaele|first2=Bruno|author2-link=Bruno Nachtergaele|date=13 February 2010|title=Linear Algebra - As an Introduction to Abstract Mathematics|url=https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_course_notes.pdf|publisher=University of California, Davis|access-date=27 September 2011|last3=Schilling|first3=Anne|author3-link=Anne Schilling}}
* {{cite web|last1=Lankham|first1=Isaiah|last2=Nachtergaele|first2=Bruno|author2-link=Bruno Nachtergaele|date=13 February 2010|title=Linear Algebra - As an Introduction to Abstract Mathematics|url=https://www.math.ucdavis.edu/~anne/linear_algebra/mat67_course_notes.pdf|publisher=University of California, Davis|access-date=27 September 2011|last3=Schilling|first3=Anne|author3-link=Anne Schilling}}
Baris 91: Baris 84:
* {{Cite web|date=5 April 2020|title=Linear hull|url=https://encyclopediaofmath.org/wiki/Linear_hull|website=[[Encyclopedia of Mathematics]]|access-date=16 Feb 2021|ref=CITEREFEncyclopedia_of_Mathematics2020}}
* {{Cite web|date=5 April 2020|title=Linear hull|url=https://encyclopediaofmath.org/wiki/Linear_hull|website=[[Encyclopedia of Mathematics]]|access-date=16 Feb 2021|ref=CITEREFEncyclopedia_of_Mathematics2020}}


== External links ==
== Pranala luar ==


* [https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/linear_combinations/v/linear-combinations-and-span Linear Combinations and Span: Understanding linear combinations and spans of vectors], khanacademy.org.
* [https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/linear_combinations/v/linear-combinations-and-span Linear Combinations and Span: Understanding linear combinations and spans of vectors], khanacademy.org.

Revisi per 20 Maret 2024 03.30

Bidang yang direntang oleh vektor u dan v di R3.

Dalam aljabar linear, rentang linear atau span dari sebarang himpunan berisi vektor-vektor (yang berasal dari suatu ruang vektor) adalah himpunan semua kombinasi linear dari vektor-vektor di [1] Rentang linear dari umum disimbolkan dengan [2] Sebagai contoh, dua vektor yang saling bebas linear akan merentang suatu bidang. Rentang dapat dikarakterisasikan sebagai irisan dari semua subruang (vektor) yang mengandung maupun sebagai subruang yang mengandung Alhasil, rentang dari himpunan vektor menghasilkan suatu ruang vektor. Rentang dapat diperumum untuk matroid dan modul.

Untuk menyatakan bahwa suatu ruang vektor adalah rentang linear dari subset beberapa pernyataan berikut umum digunakan: merentang adalah himpunan merentang dari direntang/dibangkitkan oleh atau adalah pembangkit atau himpunan pembangkit dari

Definisi

Untuk sebarang ruang vektor atas lapangan rentang dari suatu himpunan yang beranggotakan vektor-vektor (tidak harus berhingga) didefinisikan sebagai irisan dari semua subruang dari yang mengandung Irisan disebut sebagai subruang yang direntang oleh atau oleh vektor-vektor di Kebalikannya, disebut himpunan merentang dari , dan kita katakan merentang

Rentang dari juga dapat didefinisikan sebagai himpunan dari semua kombinasi linear terhingga dari vektor-vektor di [3][4][5][6] Secara matematis, ini dituliskan sebagai

Pada kasus berukuran tak-hingga, syarat kombinasi linear yang tak-terhingga (yakni, keadaan ketika kombinasi menggunakan konsep penjumlahan tak-hingga, dengan mengasumsikan penjumlahan seperti itu dapat didefinisikan) tidak disertakan dalam definisi.

Contoh

Ruang vektor riil dapat direntang oleh himpunan . Himpunan ini juga merupakan suatu basis dari . Jika digantikan dengan , himpunan tersebut merupakan basis standar dari . Contoh himpunan pembangkit lain dari adalah , namun himpunan ini bukan basis karena bersifat bergantung linear.

Himpunan bukan himpunan merentang dari , karena rentangnya adalah subruang semua vektor di yang komponen terakhirnya bernilai Subruang tersebut juga direntang oleh himpunan karena adalah kombinasi linear dari dan

Himpunan kosong adalah himpunan merentang dari karena himpunan kosong adalah subset dari semua subruang vektor yang mungkin di dan adalah irisan dari semua subruang tersebut.

Himpunan semua monomial dengan adalah bilangan bulat non-negatif, merentang ruang polinomial.

Teorema

Kesetaraan antar definisi

Untuk sebarang ruang vektor atas lapangan himpunan semua kombinasi linear dari subset dari adalah subruang terkecil dari yang mengandung

Bukti. Pertama kita tunjukkan bahwa adalah subruang dari Karena adalah subset dari kita cukup membuktikan bahwa vektor anggota dari bahwa dibawah penjumlahan, dan bahwa tertutup dibawah perkalian skalar. Misalkan , mudah ditunjukkan bahwa vektor nol di ada di karena Menjumlahkan sebarang dua kombinasi linear dari akan menghasilkan kombinasi linear dari :
dengan semua , dan mengalikan sebarang kombinasi linear dari dengan sebarang skalar akan menghasilkan kombinasi linear dari :
Alhasil, adalah subruang dari
Misalkan adalah subruang yang mengandung Perhatikan bahwa karena semua merupakan kombinasi linear dari (secara langsung). Karena tertutup dibawah penjumlahan dan perkalian skalar, maka setiap kombinasi linear harus berada di Akibatnya, terkandung di semua subruang dari yang mengandung Lebih lanjut, irisan semua subruang tersebut, yakni subruang terkecil, sama dengan himpunan semua kombinasi linear dari

Size of spanning set is at least size of linearly independent set

Every spanning set S of a vector space V must contain at least as many elements as any linearly independent set of vectors from V.

Proof. Let be a spanning set and be a linearly independent set of vectors from V. We want to show that .
Since S spans V, then must also span V, and must be a linear combination of S. Thus is linearly dependent, and we can remove one vector from S that is a linear combination of the other elements. This vector cannot be any of the wi, since W is linearly independent. The resulting set is , which is a spanning set of V. We repeat this step n times, where the resulting set after the pth step is the union of and m - p vectors of S.
It is ensured until the nth step that there will always be some vi to remove out of S for every adjoint of v, and thus there are at least as many vi's as there are wi's—i.e. . To verify this, we assume by way of contradiction that . Then, at the mth step, we have the set and we can adjoin another vector . But, since is a spanning set of V, is a linear combination of . This is a contradiction, since W is linearly independent.

Spanning set can be reduced to a basis

Let V be a finite-dimensional vector space. Any set of vectors that spans V can be reduced to a basis for V, by discarding vectors if necessary (i.e. if there are linearly dependent vectors in the set). If the axiom of choice holds, this is true without the assumption that V has finite dimension. This also indicates that a basis is a minimal spanning set when V is finite-dimensional.

Generalizations

Generalizing the definition of the span of points in space, a subset X of the ground set of a matroid is called a spanning set if the rank of X equals the rank of the entire ground set[butuh rujukan].

The vector space definition can also be generalized to modules.[7][8] Given an R-module A and a collection of elements a1, ..., an of A, the submodule of A spanned by a1, ..., an is the sum of cyclic modules

consisting of all R-linear combinations of the elements ai. As with the case of vector spaces, the submodule of A spanned by any subset of A is the intersection of all submodules containing that subset.

Closed linear span (functional analysis)

In functional analysis, a closed linear span of a set of vectors is the minimal closed set which contains the linear span of that set.

Suppose that X is a normed vector space and let E be any non-empty subset of X. The closed linear span of E, denoted by or , is the intersection of all the closed linear subspaces of X which contain E.

One mathematical formulation of this is

The closed linear span of the set of functions xn on the interval [0, 1], where n is a non-negative integer, depends on the norm used. If the L2 norm is used, then the closed linear span is the Hilbert space of square-integrable functions on the interval. But if the maximum norm is used, the closed linear span will be the space of continuous functions on the interval. In either case, the closed linear span contains functions that are not polynomials, and so are not in the linear span itself. However, the cardinality of the set of functions in the closed linear span is the cardinality of the continuum, which is the same cardinality as for the set of polynomials.

Notes

The linear span of a set is dense in the closed linear span. Moreover, as stated in the lemma below, the closed linear span is indeed the closure of the linear span.

Closed linear spans are important when dealing with closed linear subspaces (which are themselves highly important, see Riesz's lemma).

A useful lemma

Let X be a normed space and let E be any non-empty subset of X. Then

  1. is a closed linear subspace of X which contains E,
  2. , viz. is the closure of ,

(So the usual way to find the closed linear span is to find the linear span first, and then the closure of that linear span.)

Catatan kaki

  1. ^ (Axler 2015) p. 29, § 2.7
  2. ^ (Axler 2015) pp. 29-30, §§ 2.5, 2.8
  3. ^ (Hefferon 2020) p. 100, ch. 2, Definition 2.13
  4. ^ (Axler 2015) pp. 29-30, §§ 2.5, 2.8
  5. ^ (Roman 2005) pp. 41-42
  6. ^ (MathWorld 2021) Vector Space Span.
  7. ^ (Roman 2005) p. 96, ch. 4
  8. ^ (Lane & Birkhoff 1999) p. 193, ch. 6

Daftar pustaka

Buku

Situs

Pranala luar