Manifold Riemann
Tampilan
Dalam geometri diferensial, sebuah manifold Riemann atau ruang Riemannan adalah sebuah manifold mulus real yang dilengkapi dengan sebuah darab dalam di ruang garis singgung di setiap titik . Jika dan adalah medan vektor pada , maka merupakan sebuah fungsi mulus. Keluarga dari darab dalam disebut sebuah metrik Riemann (tensor). Istilah ini diambil dari nama matematikawan Jerman Bernhard Riemann. Studi mengenai manifold Riemann ini melingkupi subjek yang disebut geometri Riemann.
Metrik Riemann (tensor) membuatnya memungkinkan untuk mendefinisikan berbagai titik geometrik pada sebuah manifold Riemann, seperti sudut, jarak kurva, luas (atau volume), kelengkungan, gradien fungsi dan kedivergenan medan vektor.
Referensi
[sunting | sunting sumber]- Jost, Jürgen (2008), Riemannian Geometry and Geometric Analysis (edisi ke-5th), Berlin, New York: Springer-Verlag, ISBN 978-3-540-77340-5
- do Carmo, Manfredo (1992), Riemannian geometry, Basel, Boston, Berlin: Birkhäuser, ISBN 978-0-8176-3490-2 [1]
Pranala luar
[sunting | sunting sumber]- L.A. Sidorov (2001) [1994], "Riemannian metric", dalam Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4