Tegak lurus
Geometri |
---|
Ahli geometri |
Dalam geometri elementer, dua objek geometri dikatakan tegak lurus atau serenjang (bahasa Inggris: perpendicular) jika kedua objek tersebut saling berpotongan dan membentuk sudut siku-siku atau sudut tegak, dalam artian membentuk sudut 90 derajat atau π/2 radian.[1] Dengan kata lain, tegak lurus dapat didefinisikan sebagai perpotongan dari dua garis, atau dua bidang, atau perpotongan antara sebuah garis dengan sebuah bidang.
Definisi
[sunting | sunting sumber]Sebuah garis dikatakan tegak lurus terhadap garis lainnya jika kedua garis tersebut berpotongan di sebuah sudut tegak. Secara eksplisit, garis pertama tegak lurus terhadap garis kedua jika kedua garis bertemu, dan pada titik perpotongan sudut lurus di salah satu sisi, garis pertama dipotong oleh garis kedua menjadi dua sudut kongruen. Sifat tegak lurus adalah simetris, artinya jika garis pertama tegak lurus terhadap garis kedua, maka garis kedua juga tegak lurus terhadap garis pertama. Oleh sebab itu, dua garis bisa tegak lurus satu sama lainnya tanpa harus digambar secara berurutan.
Berdasarkan gambar di samping, garis tegak lurus terhadap garis jika masing-masing garis diperpanjang di kedua arah untuk membentuk garis tak hingga, sehingga menghasilkan dua garis yang saling tegak lurus. Hal tersebut dapat ditulis dalam bentuk simbol, yaitu , yang berarti garis tegak lurus terhadap garis .[1] Titik disebut dengan kaki tegak lurus dari ke garis , atau kaki pada .[2]
Dalam ruang, dua bidang dikatakan tegak lurus jika sudut dihedral tempat kedua bidang bertemu berbentuk sudut tegak (90 derajat). Dalam matematika, sifat tegak lurus disebut dengan ortogonalitas, dan umum digunakan, misalnya dalam sistem koordinat Kartesius.
Lihat juga
[sunting | sunting sumber]- Ortogonalitas (pada matematika)
- Paralel (geometri)
- Komponen serenjang (pada vektor)
Catatan
[sunting | sunting sumber]Referensi
[sunting | sunting sumber]- Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (edisi ke-2nd), New York: Barnes & Noble, LCCN 52-13504
- Kay, David C. (1969), College Geometry, New York: Holt, Rinehart and Winston, LCCN 69-12075
Pranala luar
[sunting | sunting sumber]- Definition: perpendicular With interactive animation
- How to draw a perpendicular bisector of a line with compass and straight edge Animated demonstration
- How to draw a perpendicular at the endpoint of a ray with compass and straight edge Animated demonstration