Lompat ke isi

Bilangan poligonal: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
NikolasKHF (bicara | kontrib)
Dibuat dengan menerjemahkan halaman "Polygonal number"
 
NikolasKHF (bicara | kontrib)
Tidak ada ringkasan suntingan
 
Baris 4: Baris 4:
== Definisi dan contoh ==
== Definisi dan contoh ==
Misalnya, 10 titik dapat disusun sebagai [[segitiga]]. Maka, 10 dikatakan sebagai bilangan poligonal dengan jumlah poligon adalah 3 (lihat [[bilangan segitiga]]).
Misalnya, 10 titik dapat disusun sebagai [[segitiga]]. Maka, 10 dikatakan sebagai bilangan poligonal dengan jumlah poligon adalah 3 (lihat [[bilangan segitiga]]).

:{|
| align="center" style="line-height: 0;" | [[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]
|}


Namun, 10 titik tidak dapat disusun sebagai [[persegi]]. Sebaliknya, 9 titik dapat disusun sebagai persegi, seperti di bawah (lihat [[bilangan persegi]]).
Namun, 10 titik tidak dapat disusun sebagai [[persegi]]. Sebaliknya, 9 titik dapat disusun sebagai persegi, seperti di bawah (lihat [[bilangan persegi]]).

:{|
| align="center" style="line-height: 0;" | [[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]
|}


Daftar ini tidak eksklusif. Beberapa bilangan dapat masuk dalam beberapa daftar bilangan. Misalnya, 36 titik dapat disusun menjadi persegi dan segitiga. Artinya, 36 termasuk dalam bilangan persegi dan segitiga (lihat [[bilangan persegi segitiga]]).
Daftar ini tidak eksklusif. Beberapa bilangan dapat masuk dalam beberapa daftar bilangan. Misalnya, 36 titik dapat disusun menjadi persegi dan segitiga. Artinya, 36 termasuk dalam bilangan persegi dan segitiga (lihat [[bilangan persegi segitiga]]).

:{| cellpadding="5"
|- align="center" valign="bottom"
| style="line-height: 0; display: inline-block;"|[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]<br>[[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]][[File:GrayDot.svg|16px|*]]
| style="line-height: 0; display: inline-block"|[[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]<br>[[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]][[File:GrayDotX.svg|16px|*]]
|}


Menurut kesepakatan, 1 adalah bilangan poligonal pertama untuk seluruh jumlah sisi. Aturan untuk memperbesar poligon adalah dengan memperpanjang sisi bersebelahan satu poin dan menambahkan sisi di antara dua poin tersebut. Dalam diagram-diagram di bawah, tambahan lapisan ditandai dengan titik merah.
Menurut kesepakatan, 1 adalah bilangan poligonal pertama untuk seluruh jumlah sisi. Aturan untuk memperbesar poligon adalah dengan memperpanjang sisi bersebelahan satu poin dan menambahkan sisi di antara dua poin tersebut. Dalam diagram-diagram di bawah, tambahan lapisan ditandai dengan titik merah.
Baris 79: Baris 93:


: '''1''', 3, '''6''', 10, '''15''', 21, '''28''', 36, '''45''', 55, '''66''', ...
: '''1''', 3, '''6''', 10, '''15''', 21, '''28''', 36, '''45''', 55, '''66''', ...
{{Reflist}}


== Lihat juga ==
== Lihat juga ==
Baris 88: Baris 101:
*
*


== Catatan kaki ==
== Referensi ==
===Catatan kaki===
{{reflist}}


== Referensi umum ==
=== Referensi umum ===


* ''The Penguin Dictionary of Curious and Interesting Numbers'', [[David G. Wells|David Wells]] ([[Penguin Books]], 1997) [{{ISBN|0-14-026149-4}} ].
* ''The Penguin Dictionary of Curious and Interesting Numbers'', [[David G. Wells|David Wells]] ([[Penguin Books]], 1997) {{ISBN|0-14-026149-4}}.
* [http://planetmath.org/encyclopedia/PolygonalNumber.html Bilangan poligonal di PlanetMath]
* [http://planetmath.org/encyclopedia/PolygonalNumber.html Bilangan poligonal di PlanetMath]
* {{MathWorld|urlname=PolygonalNumber|title=Polygonal Number}}
* {{MathWorld|urlname=PolygonalNumber|title=Polygonal Number}}

Revisi terkini sejak 19 Juni 2024 05.22

Dalam matematika, bilangan poligonal adalah bilangan yang menghitung jumlah titik yang dapat disusun dalam bentuk poligon beraturan. Bilangan ini adalah salah satu jenis bilangan bergambar dua dimensi.

Definisi dan contoh

[sunting | sunting sumber]

Misalnya, 10 titik dapat disusun sebagai segitiga. Maka, 10 dikatakan sebagai bilangan poligonal dengan jumlah poligon adalah 3 (lihat bilangan segitiga).

*
**
***
****

Namun, 10 titik tidak dapat disusun sebagai persegi. Sebaliknya, 9 titik dapat disusun sebagai persegi, seperti di bawah (lihat bilangan persegi).

***
***
***

Daftar ini tidak eksklusif. Beberapa bilangan dapat masuk dalam beberapa daftar bilangan. Misalnya, 36 titik dapat disusun menjadi persegi dan segitiga. Artinya, 36 termasuk dalam bilangan persegi dan segitiga (lihat bilangan persegi segitiga).

******
******
******
******
******
******
*
**
***
****
*****
******
*******
********

Menurut kesepakatan, 1 adalah bilangan poligonal pertama untuk seluruh jumlah sisi. Aturan untuk memperbesar poligon adalah dengan memperpanjang sisi bersebelahan satu poin dan menambahkan sisi di antara dua poin tersebut. Dalam diagram-diagram di bawah, tambahan lapisan ditandai dengan titik merah.

Bilangan segitiga

[sunting | sunting sumber]

Bilangan persegi

[sunting | sunting sumber]

Poligon dengan jumlah sisi yang lebih banyak, misalnya pentagon dan heksagon, dapat juga dibuat dengan aturan di atas, namun titik-titiknya tidak lagi memiliki kisi-kisi sempurna seperti di atas.

Bilangan pentagonal

[sunting | sunting sumber]

Bilangan heksagonal

[sunting | sunting sumber]
Suatu bilangan -gonal dapat diuraikan menjadi bilangan segitiga dan bilangan asli.

Jika adalah jumlah sisi dalam poligon, rumus bilangan -gonal ke-, P(s,n), adalah

atau

Bilangan -gonal ke-n juga berhubungan dengan bilangan segitiga Tn sebagai berikut:[1]

Dengan demikian:

Untuk bilangan -gonal tertentu dengan P(s,n) = x, n dapat dicari dengan cara:

dan dapat mencari dengan cara:

.

Setiap bilangan heksagonal juga merupakan bilangan segitiga

[sunting | sunting sumber]

Dengan menerapkan rumus di atas:

dengan kasus 6 sisi (), maka:

namun karena:

maka:

Hal ini menunjukkan bahwa bilangan heksagonal ke- atau juga merupakan bilangan segitiga ke- atau . Bilangan heksagonal dapat dicari dengan mengambil bilangan segitiga ganjil: [1]

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ...

Lihat juga

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]

Catatan kaki

[sunting | sunting sumber]
  1. ^ a b Conway, John H.; Guy, Richard (2012-12-06). The Book of Numbers (dalam bahasa Inggris). Springer Science & Business Media. hlm. 38–41. ISBN 978-1-4612-4072-3. 

Referensi umum

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]