Lompat ke isi

Waktu paruh: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Luckas-bot (bicara | kontrib)
k r2.7.1) (bot Menambah: be:Перыяд паўраспаду
Riswija (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
 
(11 revisi perantara oleh 10 pengguna tidak ditampilkan)
Baris 1: Baris 1:
{{Tanpa referensi|date=Desember 2021}}
{| class="wikitable" align=right
{{E (konstanta matematika)}}
'''Waktu paruh''' ({{Lang-en|half-life}}, {{Lang-nl|halveringstijd}}) dari sejumlah bahan yang menjadi subjek dari [[peluruhan eksponensial]] adalah [[waktu]] yang dibutuhkan untuk jumlah tersebut berkurang menjadi setengah dari nilai awal. Konsep ini banyak terjadi dalam [[fisika]], untuk mengukur [[peluruhan radioaktif]] dari zat-zat, tetapi juga terjadi dalam banyak bidang lainnya. Tabel di kanan menunjukan pengurangan jumlah dalam jumlah waktu paruh yang terjadi.<ref name=PTFP>{{cite book|title=Physics and Technology for Future Presidents|url=https://archive.org/details/physicstechnolog00mull|url-access=limited|author=Muller, Richard A.|author-link=Richard A. Muller|publisher=[[Princeton University Press]]|date=April 12, 2010|pages=[https://archive.org/details/physicstechnolog00mull/page/n138 128]–129|isbn=9780691135045}}</ref><ref>{{cite web |url=http://www.madsci.org/posts/archives/Mar2003/1047912974.Ph.r.html |title=Re: What happens during half-lifes &#91;sic&#93; when there is only one atom left?|publisher=MADSCI.org|author=Chivers, Sidney |date=March 16, 2003}}</ref><ref>{{cite web |url=https://www.exploratorium.edu/snacks/radioactive-decay-model |title=Radioactive-Decay Model|publisher=Exploratorium.edu |access-date=2012-04-25}}</ref><ref>{{cite web |url=http://astro.gmu.edu/classes/c80196/hw2.html |title=Assignment #2: Data, Simulations, and Analytic Science in Decay |publisher=Astro.GLU.edu |date=September 1996 |author=Wallin, John |url-status=unfit |archive-url=https://web.archive.org/web/20110929005007/http://astro.gmu.edu/classes/c80196/hw2.html |archive-date=2011-09-29}}</ref><ref name="ln(2)">{{cite book|title=Nuclear- and Radiochemistry: Introduction|last=Rösch|first=Frank|publisher=[[Walter de Gruyter]]|date=September 12, 2014|volume=1|isbn=978-3-11-022191-6}}</ref>
[[Berkas:Periodic radiac.svg|600px|jmpl|pus|Tabel periodik berdasarkan waktu paruh.]]

==Persen jumlah berdasarkan waktu paruh==
{| class="wikitable" align="right"
! Setelah x{{br}}waktu paruh !! Persen jumlah{{br}}yang tersisa
! Setelah x{{br}}waktu paruh !! Persen jumlah{{br}}yang tersisa
|-
|-
Baris 24: Baris 30:
| '''...'''|| '''...'''
| '''...'''|| '''...'''
|}
|}
'''Waktu paruh''' (''half-life'') dari sejumlah bahan yang menjadi subjek dari [[peluruhan eksponensial]] adalah [[waktu]] yang dibutuhkan untuk jumlah tersebut berkurang menjadi setengah dari nilai awal. Konsep ini banyak terjadi dalam [[fisika]], untuk mengukur [[peluruhan radioaktif]] dari zat-zat, tetapi juga terjadi dalam banyak bidang lainnya. Tabel di kanan menunjukan pengurangan jumlah dalam jumlah waktu paruh yang terjadi.


== Turunan ==
== Turunan ==
Kuantitas subyek yang mengalami peluruhan eksponensial biasanya diberi lambang ''N''. Nilai ''N'' pada waktu ''t'' ditentukan dengan rumus
Kuantitas subyek yang mengalami peluruhan eksponensial biasanya diberi lambang ''N''. Nilai ''N'' pada waktu ''t'' ditentukan dengan rumus


:<math>N(t) = N_0 e^{-\lambda t} \,</math>, di mana
:<math>N(t):<math>N(t) = N_0 e^{-\lambda t} \,</math>, di mana
* '''<math>N_0</math>''' sebagai nilai awal ''N'' (pada saat ''t=0'')
* '''<math>N_0</math>''' sebagai nilai awal ''N'' (pada saat ''t=0'')
* '''λ''' sebagai [[konstanta]] [[bilangan positif dan negatif|positif]] (''[[konstanta peluruhan]]'').
* '''λ''' sebagai [[konstanta]] [[bilangan positif dan negatif|positif]] (''[[konstanta peluruhan]]'').


Ketika ''t=0'', eksponensialnya setara dengan 1, sedangkan ''N(t)'' setara dengan <math>N_0</math>. Ketika ''t'' mendekati [[tak terbatas]], eksponensialnya mendekati nol.
Ketika ''t=0'', eksponensialnya setara dengan 1, sedangkan ''N(t)'' setara dengan <math>N_0</math>. Ketika ''t'' mendekati [[tak terbatas]], eksponensialnya mendekati nol.


Secara khusus, terdapat waktu <math>t_{1/2} \,</math> sehingga
Secara khusus, terdapat waktu <math>t_{1/2} \,</math> sehingga
Baris 72: Baris 77:
* [[Penguraian eksponensial]]
* [[Penguraian eksponensial]]
* [[Waktu hidup rata-rata]]
* [[Waktu hidup rata-rata]]
* [[Waktu paruh biologis]]

== Referensi ==
{{Reflist}}


[[Kategori:Eksponensial]]
[[Kategori:Eksponensial]]
[[Kategori:Kinetika kimia]]
[[Kategori:Kinetika kimia]]
[[Kategori:Radioaktivitas]]
[[Kategori:Radioaktivitas]]

[[af:Halfleeftyd]]
[[an:Periodo de semidesintegración]]
[[ar:عمر النصف]]
[[ast:Periodu de semidesintegración]]
[[be:Перыяд паўраспаду]]
[[bg:Период на полуразпад]]
[[bs:Vrijeme poluraspada]]
[[ca:Període de semidesintegració]]
[[cs:Poločas přeměny]]
[[cv:Çурма аркану тапхăрĕ]]
[[cy:Hanner oes]]
[[da:Halveringstid]]
[[de:Halbwertszeit]]
[[el:Χρόνος ημιζωής]]
[[en:Half-life]]
[[eo:Duoniĝa tempo]]
[[es:Periodo de semidesintegración]]
[[et:Poolestusaeg]]
[[eu:Semidesintegrazio-periodo]]
[[fa:نیمه‌عمر]]
[[fi:Puoliintumisaika]]
[[fr:Demi-vie]]
[[ga:Leathré]]
[[he:מחצית חיים]]
[[hi:अर्धायु काल]]
[[hr:Vrijeme poluraspada]]
[[ht:Demi-vi]]
[[hu:Felezési idő]]
[[is:Helmingunartími]]
[[it:Emivita (fisica)]]
[[ja:半減期]]
[[ka:ნახევრად დაშლის პერიოდი]]
[[kk:Жартылай ыдырау мерзімі]]
[[kn:ಅರ್ಧಾಯುಷ್ಯ]]
[[ko:반감기]]
[[lt:Pusėjimo trukmė]]
[[lv:Pussabrukšanas periods]]
[[mk:Период на полураспаѓање]]
[[ml:അർദ്ധായുസ്സ്]]
[[ms:Separuh hayat]]
[[nds:Halfweertstiet]]
[[nl:Halveringstijd]]
[[nn:Halveringstid]]
[[no:Halveringstid]]
[[pl:Czas połowicznego rozpadu]]
[[pnb:ادھ جیون]]
[[pt:Meia-vida]]
[[qu:Kuskan ismuykuy mit'a]]
[[ro:Dezintegrare]]
[[ru:Период полураспада]]
[[sh:Vreme poluraspada]]
[[simple:Half-life (element)]]
[[sk:Polčas premeny]]
[[sl:Razpolovni čas]]
[[sr:Време полураспада]]
[[sv:Halveringstid]]
[[ta:அரைவாழ்வுக் காலம்]]
[[th:ครึ่งชีวิต]]
[[tr:Yarılanma süresi]]
[[uk:Період напіврозпаду]]
[[ur:نصف حیات]]
[[vi:Chu kỳ bán rã]]
[[zh:半衰期]]
[[zh-yue:半衰期]]

Revisi terkini sejak 20 Oktober 2024 09.11

Waktu paruh (bahasa Inggris: half-life, bahasa Belanda: halveringstijd) dari sejumlah bahan yang menjadi subjek dari peluruhan eksponensial adalah waktu yang dibutuhkan untuk jumlah tersebut berkurang menjadi setengah dari nilai awal. Konsep ini banyak terjadi dalam fisika, untuk mengukur peluruhan radioaktif dari zat-zat, tetapi juga terjadi dalam banyak bidang lainnya. Tabel di kanan menunjukan pengurangan jumlah dalam jumlah waktu paruh yang terjadi.[1][2][3][4][5]

Tabel periodik berdasarkan waktu paruh.

Persen jumlah berdasarkan waktu paruh

[sunting | sunting sumber]
Setelah x
waktu paruh
Persen jumlah
yang tersisa
0 100%
1 50%
2 25%
3 12,5%
4 6,25%
5 3,125%
6 1,5625%
7 0,78125%
... ...
N
... ...

Kuantitas subyek yang mengalami peluruhan eksponensial biasanya diberi lambang N. Nilai N pada waktu t ditentukan dengan rumus

, di mana

Ketika t=0, eksponensialnya setara dengan 1, sedangkan N(t) setara dengan . Ketika t mendekati tak terbatas, eksponensialnya mendekati nol.

Secara khusus, terdapat waktu sehingga

Mengganti rumus di atas, akan didapatkan:

Maka waktu paruhnya 69.3% dari mean lifetime.

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ Muller, Richard A. (April 12, 2010). Physics and Technology for Future PresidentsAkses gratis dibatasi (uji coba), biasanya perlu berlangganan. Princeton University Press. hlm. 128–129. ISBN 9780691135045. 
  2. ^ Chivers, Sidney (March 16, 2003). "Re: What happens during half-lifes [sic] when there is only one atom left?". MADSCI.org. 
  3. ^ "Radioactive-Decay Model". Exploratorium.edu. Diakses tanggal 2012-04-25. 
  4. ^ Wallin, John (September 1996). "Assignment #2: Data, Simulations, and Analytic Science in Decay". Astro.GLU.edu. Diarsipkan dari versi asli tanggal 2011-09-29. 
  5. ^ Rösch, Frank (September 12, 2014). Nuclear- and Radiochemistry: Introduction. 1. Walter de Gruyter. ISBN 978-3-11-022191-6.