Lompat ke isi

Timbal(II) nitrat: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Baris 112: Baris 112:


Ketika larutan [[natrium hidroksida]] pekat ditambahkan ke dalam larutan timbal(II) nitrat, terbentuk [[Garam alkali|basa nitrat]], meskipun sedikit melampaui [[titik ekivalen]]. Menuju setengah titik ekivalen, terbentuk senyawa Pb(NO<sub>3</sub>)<sub>2</sub>·Pb(OH)<sub>2</sub>, yang kemudian setelah titik ini akan terbentuk Pb(NO<sub>3</sub>)<sub>2</sub>·5Pb(OH)<sub>2</sub>. Tidak ada pembentukan {{chem2|Pb(OH)|2}} sederhana pada [[pH]] sekitar 12.<ref name="kirkothmer">{{cite book|first = D.F.|last = Othmer|authorlink = Donald Othmer|title = Kirk-Othmer Encyclopedia of Chemical Technology|edition = second completely revised|volume = 12 (Iron to Manganese)|year = 1967|publisher = [[John Wiley & Sons]]|location = New York|pages = &nbsp;272|isbn = 0-471-02040-0}}</ref><ref name="pauley">{{cite journal|title = Basic Salts of Lead Nitrate Formed in Aqueous Media|first = J. L.|last = Pauley|author2=M. K. Testerman |journal = [[Journal of the American Chemical Society]]|year = 1954|volume = 76|issue = 16|pages = 4220–4222|doi = 10.1021/ja01645a062}}</ref>
Ketika larutan [[natrium hidroksida]] pekat ditambahkan ke dalam larutan timbal(II) nitrat, terbentuk [[Garam alkali|basa nitrat]], meskipun sedikit melampaui [[titik ekivalen]]. Menuju setengah titik ekivalen, terbentuk senyawa Pb(NO<sub>3</sub>)<sub>2</sub>·Pb(OH)<sub>2</sub>, yang kemudian setelah titik ini akan terbentuk Pb(NO<sub>3</sub>)<sub>2</sub>·5Pb(OH)<sub>2</sub>. Tidak ada pembentukan {{chem2|Pb(OH)|2}} sederhana pada [[pH]] sekitar 12.<ref name="kirkothmer">{{cite book|first = D.F.|last = Othmer|authorlink = Donald Othmer|title = Kirk-Othmer Encyclopedia of Chemical Technology|edition = second completely revised|volume = 12 (Iron to Manganese)|year = 1967|publisher = [[John Wiley & Sons]]|location = New York|pages = &nbsp;272|isbn = 0-471-02040-0}}</ref><ref name="pauley">{{cite journal|title = Basic Salts of Lead Nitrate Formed in Aqueous Media|first = J. L.|last = Pauley|author2=M. K. Testerman |journal = [[Journal of the American Chemical Society]]|year = 1954|volume = 76|issue = 16|pages = 4220–4222|doi = 10.1021/ja01645a062}}</ref>
<!--
=== Complexation ===
Lead(II) nitrate is associated with interesting [[supramolecular chemistry]] because of its [[complex (chemistry)|coordination]] to [[nitrogen]] and [[oxygen]] electron-donating compounds. The interest is largely academic, but with several potential applications. For example, combining lead nitrate and [[diethylene glycol|pentaethylene glycol]] (EO<sub>5</sub>) in a solution of [[acetonitrile]] and [[methanol]] followed by slow [[evaporation]] produces a new crystalline material [Pb(NO<sub>3</sub>)<sub>2</sub>(EO<sub>5</sub>)].<ref>{{cite journal|title = Structural Chemistry of Poly (ethylene glycol). Complexes of Lead(II) Nitrate and Lead(II) Bromide|first = Robin D.|last = Rogers|author2=Andrew H. Bond |author3=Debra M. Roden |journal = [[Inorganic Chemistry (journal)|Inorg. Chem.]]|year = 1996|issue = 24|pages = 6964–6973|doi = 10.1021/ic960587b|volume = 35|pmid=11666874}}</ref> In the crystal structure for this compound, the EO<sub>5</sub> chain is wrapped around the lead ion in an [[Celestial sphere|equatorial plane]] similar to that of a [[crown ether]]. The two bidentate nitrate [[ligand]]s are in [[Cis-trans isomerism|trans configuration]]. The total [[coordination number]] is 10, with the lead ion in a bicapped [[square antiprism]] [[molecular geometry]].


=== Kompleksasi ===
The complex formed by lead(II) nitrate, [[lead(II) perchlorate]] and a [[thiazole|bithiazole]] bidentate N-donor ligand is binuclear, with a nitrate group bridging the lead atoms with coordination number of 5 and 6.<ref name=mahjoub>{{cite journal|title = A Dimeric Mixed-Anions Lead(II) Complex: Synthesis and Structural Characterization of [Pb<sub>2</sub>(BTZ)<sub>4</sub>(NO<sub>3</sub>)(H<sub>2</sub>O)](ClO<sub>4</sub>)<sub>3</sub> {BTZ = 4,4'-Bithiazole}|first = Ali Reza|last = Mahjoub|author2 = Ali Morsali|journal = [[Chemistry Letters]]|volume = 30|issue = 12|year = 2001|page= 1234|doi=10.1246/cl.2001.1234}}</ref> One interesting aspect of this type of complexes is the presence of a physical gap in the [[coordination sphere]]; i.e., the ligands are not placed symmetrically around the metal ion. This is potentially due to a lead [[lone pair]] of electrons, also found in lead complexes with an [[imidazole]] ligand.<ref name=wan>{{cite journal|title = 2D 4.8<sup>2</sup> Network with threefold parallel interpenetration from nanometre-sized tripodal ligand and lead(II) nitrate|authors = Shuang-Yi Wan, Jian Fan, Taka-aki Okamura, Hui-Fang Zhu, Xing-Mei Ouyang, Wei-Yin Sun and Norikazu Ueyama|journal = [[Chemical Communications|Chem. Commun.]]|year = 2002|pages = 2520–2521|doi = 10.1039/b207568g|issue = 21}}</ref>
Timbal(II) nitrat terkait dengan [[kimia supramolekul]] yang menakjubkan karena [[komplkes (kimia)|koordinasi]]nya dengan senyawa pendonor elektron [[nitrogen]] dan [[oksigen]]. Daya tariknya lebih pada aspek akademis, tetapi dengan beberapa aplikasi potensial. Misalnya, penggabungan timbal nitrat dan [[Dietilena glikol|pentaetilena glikol]] ({{chem2|EO|5}}) dalam larutan [[asetonitril]] dan [[metanol]] diikuti dengan [[penguapan]] lambat menghasilkan bahan kristal baru [Pb(NO<sub>3</sub>)<sub>2</sub>(EO<sub>5</sub>)].<ref>{{cite journal|title = Structural Chemistry of Poly (ethylene glycol). Complexes of Lead(II) Nitrate and Lead(II) Bromide|first = Robin D.|last = Rogers|author2=Andrew H. Bond |author3=Debra M. Roden |journal = [[Inorganic Chemistry (journal)|Inorg. Chem.]]|year = 1996|issue = 24|pages = 6964–6973|doi = 10.1021/ic960587b|volume = 35|pmid=11666874}}</ref> Dalam struktur kristal senyawa ini, rantai {{chem2|EO|5}} dikelilingi oleh ion timbal dalan suatu [[Sferis selestial|bidang ekuatorial]] yang mirip dengan [[eter mahkota]]. Dua [[ligan]] nitrat bidentat berada dalam bentuk [[Isomerisme cis-trans|konfigurasi trans]]. [[Bilangan koordinasi]] total adalah 10, dengan ion timbal dalam struktur [[geometri molekul]] [[antiprisma persegi]].


Senyawa kompleks yang dibentuk oleh timbal(II) nitrat, [[timbal(II) perklorat]] dan ligan donor N bidentat [[tiazola|bitiazola]] adalah kompleks inti ganda, dengan gugus nitrat menjembatani atom timbal dengan bilangan koordinasi 5 dan 6.<ref name=mahjoub>{{cite journal|title = A Dimeric Mixed-Anions Lead(II) Complex: Synthesis and Structural Characterization of [Pb<sub>2</sub>(BTZ)<sub>4</sub>(NO<sub>3</sub>)(H<sub>2</sub>O)](ClO<sub>4</sub>)<sub>3</sub> {BTZ = 4,4'-Bithiazole}|first = Ali Reza|last = Mahjoub|author2 = Ali Morsali|journal = [[Chemistry Letters]]|volume = 30|issue = 12|year = 2001|page= 1234|doi=10.1246/cl.2001.1234}}</ref> Salah satu aspek yang menarik dari kompleks jenis ini adalah adanya celah fisik dalam [[lingkungan koordinasi]]; yaitu, ligan tidak berada secara simetris mengelilingi ion logam. Hal ini berpotensi karena [[pasangan elektron sunyi]] pada timbal, juga ditemukan dalam kompleks timbal dengan ligan [[imidazola]].<ref name=wan>{{cite journal|title = 2D 4.8<sup>2</sup> Network with threefold parallel interpenetration from nanometre-sized tripodal ligand and lead(II) nitrate|authors = Shuang-Yi Wan, Jian Fan, Taka-aki Okamura, Hui-Fang Zhu, Xing-Mei Ouyang, Wei-Yin Sun and Norikazu Ueyama|journal = [[Chemical Communications|Chem. Commun.]]|year = 2002|pages = 2520–2521|doi = 10.1039/b207568g|issue = 21}}</ref>
This type of chemistry is not unique to the nitrate salt; other lead(II) compounds such as [[lead(II) bromide]] also form complexes, but the nitrate is frequently used because of its solubility properties and its bidentate nature.


Jenis kimia ini tidak unik hanya untuk garam nitrat; senyawa timbal(II) lainnya seperti [[timbal(II) bromida]] juga membentuk kompleks, tetapi senyawa nitratnya sering digunakan karena kelarutannya dan sifat bidentatnya.
=== Oxidation and decomposition ===
Lead(II) nitrate is an [[oxidizing agent]]. Depending on the reaction, this may be due to the Pb<sup>2+</sup>(aq) ion, which has a standard [[reduction potential]] (E<sup>0</sup>) of −0.125&nbsp;V, or the nitrate ion, which under acidic conditions has an E<sup>0</sup> of +0.956&nbsp;V.<ref name="HillPetrucci">{{cite book|title = General Chemistry|publisher = Prentice Hall|location = Upper Saddle River, New Jersey|year = 1999|page = &nbsp;781|first = John W.|last = Hill|author2=Petrucci, Ralph H. |edition = 2nd|isbn = 0-13-010318-7}}</ref> The nitrate would function at high temperatures or in an acidic condition, while the lead(II) works best in a neutral aqueous solution.


=== Oksidasi dan dekomposisi ===
When heated, lead(II) nitrate crystals decompose to [[lead(II) oxide]], [[Oxygen#Allotropes|oxygen]] and [[nitrogen dioxide]].
Timbal(II) nitrat adalah [[oksidator]]. Ini bisa disebabkan karena ion {{chem2|Pb|2+}}, yang mempunyai [[potensial reduksi]](E°) standar −0,125&nbsp;V, atau ion nitrat yang pada suasana asam mempunyai E° +0,956&nbsp;V.<ref name="HillPetrucci">{{cite book|title = General Chemistry|publisher = Prentice Hall|location = Upper Saddle River, New Jersey|year = 1999|page = &nbsp;781|first = John W.|last = Hill|author2=Petrucci, Ralph H. |edition = 2nd|isbn = 0-13-010318-7}}</ref> Nitrat akan berfungsi pada temperatur tinggi atau dalam suasa asam, sementara timbal(II) berfungsi optimal dalam larutan netral.


Ketika dipanaskan, kristal timbal(II) nitrat terdekomposisi menjadi [[timbal(II) oksida]], [[Oksigen#alotropi|oksigen]] dan [[nitrogen dioksida]].
:2 Pb(NO<sub>3</sub>)<sub>2</sub> (s) → 2 PbO (s) + 4 NO<sub>2</sub> (g) + O<sub>2</sub> (g)


<center><math>2\text{ Pb(NO}_3\text{)}_{2(s)} \longrightarrow 2\text{ PbO}_{(s)} + 4\text{NO}_{2(g)} + \text{O}_{2(g)}</math></center>
Because of this property, lead nitrate is sometimes used in [[pyrotechnics]] such as [[fireworks]].<ref name="pyrotechnica"/>


Oleh karena sifat ini, timbal nitrat sering digunakan dalam [[piroteknik]] seperti [[kembang api]].<ref name="pyrotechnica"/>
<!--
== Applications ==
== Applications ==
Due to the hazardous nature of lead(II) nitrate, there is a preference for using alternatives in industrial applications. In the formerly major application of [[lead paint]]s, it has largely been replaced by [[titanium dioxide]].<ref name="millennium">{{cite web|url = http://www.millenniumchem.com/Products+and+Services/Products+by+Type/Titanium+Dioxide+-+Paint+and+Coatings/r_TiO2+Fundamentals/Historical+Development+of+Titanium+Dioxide_EN.htm |title = Historical development of titanium dioxide|publisher = Millennium Inorganic Chemicals|accessdate = 2008-01-04|archiveurl = http://web.archive.org/web/20071021023341/http://www.millenniumchem.com/Products+and+Services/Products+by+Type/Titanium+Dioxide+-+Paint+and+Coatings/r_TiO2+Fundamentals/Historical+Development+of+Titanium+Dioxide_EN.htm |archivedate = October 21, 2007}}</ref> Other historical applications of lead(II) nitrate, such as in matches and fireworks, have declined or ceased as well. Current applications of lead(II) nitrate include use as a heat stabiliser in nylon and polyesters, as a coating for [[thermography|photothermographic]] paper, and in [[rodenticide]]s.<ref name="greenwood"/>
Due to the hazardous nature of lead(II) nitrate, there is a preference for using alternatives in industrial applications. In the formerly major application of [[lead paint]]s, it has largely been replaced by [[titanium dioxide]].<ref name="millennium">{{cite web|url = http://www.millenniumchem.com/Products+and+Services/Products+by+Type/Titanium+Dioxide+-+Paint+and+Coatings/r_TiO2+Fundamentals/Historical+Development+of+Titanium+Dioxide_EN.htm |title = Historical development of titanium dioxide|publisher = Millennium Inorganic Chemicals|accessdate = 2008-01-04|archiveurl = http://web.archive.org/web/20071021023341/http://www.millenniumchem.com/Products+and+Services/Products+by+Type/Titanium+Dioxide+-+Paint+and+Coatings/r_TiO2+Fundamentals/Historical+Development+of+Titanium+Dioxide_EN.htm |archivedate = October 21, 2007}}</ref> Other historical applications of lead(II) nitrate, such as in matches and fireworks, have declined or ceased as well. Current applications of lead(II) nitrate include use as a heat stabiliser in nylon and polyesters, as a coating for [[thermography|photothermographic]] paper, and in [[rodenticide]]s.<ref name="greenwood"/>

Revisi per 25 Februari 2016 07.15

Timbal(II) nitrat
Nama
Nama IUPAC
Lead(II) nitrate
Nama lain
Lead nitrate
Plumbous nitrate
Lead dinitrate
Plumb dulcis
Penanda
Model 3D (JSmol)
3DMet {{{3DMet}}}
ChEBI
ChemSpider
Nomor EC
Nomor RTECS {{{value}}}
Nomor UN 1469
  • InChI=1S/2NO3.Pb/c2*2-1(3)4;/q2*-1;+2 YaY
    Key: RLJMLMKIBZAXJO-UHFFFAOYSA-N YaY
  • InChI=1S/2NO3.Pb/c2*2-1(3)4;/q2*-1;+2
  • Key: RLJMLMKIBZAXJO-UHFFFAOYSA-N
  • [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Pb+2]
Sifat
Pb(NO3)2
Massa molar 331,2g/mol
Penampilan Kristal putih tak berwarna
Densitas 4,53 g/cm3 (20 °C)
Titik lebur 270°C decomposes
37,65 g/100 mL (0 °C)
52 g/100 mL (20 °C)
127 g/100 mL (100 °C)
Kelarutan dalam asam nitrat
dalam etanol
dalam metanol
tak larut
0,04 g/100 mL
1,3 g/100 mL
Indeks bias (nD) 1,782[1]
Struktur
Kubik pusat muka
kuboktahedral
Bahaya
Lembar data keselamatan ICSC 1000, MallBaker MSDS
Repr. Cat. 1/3
Beracun (T)
Berbahaya (Xn)
Berbahaya bagi lingkungan (N)
Frasa-R R61, R20/22, R33, R62, R50/53
Frasa-S S53, S45, S60, S61
Titik nyala Tidak terbakar
Dosis atau konsentrasi letal (LD, LC):
500 mg/kg (marmot, oral)[2]
Senyawa terkait
Anion lain
Timbal(II) sulfat
Timbal(II) klorida
Timbal(II) bromida
Kation lainnya
Timah(II) nitrat
Senyawa terkait
Talium(III) nitrat
Bismut(III) nitrat
Kecuali dinyatakan lain, data di atas berlaku pada suhu dan tekanan standar (25 °C [77 °F], 100 kPa).
N verifikasi (apa ini YaYN ?)
Referensi

Timbal(II) nitrat adalah suatu senyawa anorganik dengan rumus kimia Pb(NO3)2. Senyawa ini umumnya dijumpai sebagai kristal tak berwarna atau serbuk putih dan, tidak seperti kebanyakan garam timbal(II) lainnya, larut dalam air.

Senyawa ini telah dikenal sejak Abad Pertengahan dengan nama plumb dulcis, produksi timbal(II) nitrat baik dari logam timbal maupun timbal oksida dalam asam nitrat merupakan produksi skala kecil, untuk digunakan langsung dalam pembuatan senyawa timbal lainnya. Pada abad ke-19 timbal(II) nitrat mulai diproduksi secara komersial di Eropa dan Amerika Serikat. Menurut catatan sejarah, penggunaan utamanya adalah sebagai bahan baku produksi pigmen untuk cat timbal, tetapi cat sejenis ini sudah digantikan oleh cat yang lebih aman berbahan dasar titanium dioksida. Penggunaan industri lainnya mencakup penstabil panas dalam nilon dan poliester, dan sebagai pelapis kertas fototermografi. Sejak tahun 2000an, timal(II) nitrat mulai digunakan dalan sianidasi emas.

Timbal(II) nitrat bersifat toksik, suatu oksidator, dan digolongkan sebagai berpotensi karsinogenik pada manusia oleh Badan Internasional Penelitian Kanker (International Agency for Research on Cancer). Akibatnya, timbal(II) nitrat harus ditangani dan disimpan dengan tindakan pencegahan keselamatan yang memadai untuk mencegah terhirup, tertelan, dan terkena kulit. Oleh karena sifat alaminya yang berbahaya, aplikasi terbatas timbal (II) nitrat berada di bawah pengawasan ketat.

Sejarah

Sejak Abad Pertengahan, timbal(II) nitrat telah diproduksi sebagai bahan baku produksi pigmen berwarna dalam cat timbal, seperti krom kuning (timbal(II) kromat), krom jingga (timbal(II) hidroksida kromat) dan senyawa timbal sejenis. Pigmen-pigmen ini digunakan untuk pewarnaan dan pencetakan kaliko dan tekstil lainnya.[3]

Pada tahun 1597, alkimiawan Jerman Andreas Libavius adalah yang pertama menjelaskan senyawa ini, dengan merujuk pada nama abad pertengahan plumb dulcis dan calx plumb dulcis, yang berarti timbal manis, karena rasanya.[4] Meskipun awalnya tidak dipahami selama beberapa abad berikutnya, sifat dekrepitasi timbal(II) nitrat menjadikannya digunakan dalam korek api dan bahan peledak khusus seperti timbal azida.[5]

Proses produksi pernah dan masih mengikuti cara kimia sederhana, melarutkan timbal dalam aqua fortis (asam nitrat), dan secara berkala diambil endapannya. Namun, produksi tetap skala kecil selama berabad-abad, dan produksi komersial timbal(II) nitrat sebagai bahan baku untuk pembuatan senyawa timbal lainnya tidak dilaporkan sampai 1835.[6][7] Pada tahun 1974, A.S. mengkonsumsi senyawa timbal, tidak termasuk pigmen dan aditif bensin, adalah 642 ton.[8]

Struktur

Struktur kristal [111] planar

Struktur kristal timbal(II) nitrat padat telah ditentukan menggunakan difraksi neutron.[9][10] Senyawa mengkristal dalam sistem kubik dengan atom timbal dalam sistem kubik pusat muka. Golongan ruangnya adalah Pa3Z=4 (notasi kisi Bravais), yang masing-masing sisi kubus memiliki panjang 784 pikometer.

Noktah hitam menggambarkan atom timbal, noktah putih gugus nitrat 27 pikometer di atas bidang atom timbal. Pada konfigurasi ini, setiap atom timbal [[Ikatan kimia|terikat dengan duabelas atom oksigen (panjang ikatan:281 pikometer). Semua panjang atom N–O juga sama pada 127&nbs;pikometer.

Ketertarikan peneliti pada struktur kristal timbal(II) nitrat terutama didasarkan pada kemungkinan rotasi internal bebas gugus nitrat dalam kisi kristal pada kenaikan temperatur, tetapi ini hingga saat ini belum terbukti.[10]

Preparasi dan produksi

Timbal(II) nitrat dapat diperoleh dengan melarutkan logam timbal dalam larutan asam nitrat:[8][11]

Cara yang lebih lazim adalah dengan melarutkan timbal(II) oksida dalam asam nitrat:[8]

Dalam kasus lain, karena pelarutnya adalah asam nitrat pekat (sedangkan timbal(II) nitrat memiliki kelarutan yang sangat rendah) dan larutan yang dihasilkan mengandung ion nitrat, kristal timbal(II) nitrat anhidrat terbentuk secara spontan sebagai hasil dari efek ion sejenis:[11]

Memungkinkan juga untuk mengekstrak nitrat dari bahan organik seperti pupuk atau urin. Ekstraksi nitrat menggunakan metode ini tidak sekuat nitrat berderajat kemurnian industri, tetapi dapat digunakan untuk produksi serbuk mesiu.

Hampir semua timbal(II) nitrat yang tersedia secara komersial diproduksi sesuai dengan bahan skala laboratorium.[12] Dipasok dalam kemasan kantong 25 kg hingga kantong jumbo 1.000&nbps;kg, dan dalam kemasan laboratorium. Hal ini dilakukan baik oleh produsen umum bahan kimia laboratorium maupun produsen timbal dan senyawa timbal. Tidak ada produksi skala besar yang telah dilaporkan.

Dalam perlakuan limbah timbal menggunakan asam nitrat, misalnya, dalam pengolahan limbah timbal-bismut dari pengilangan timbal, larutan tak murni timbal(II) nitrat dibuat sebagai produk sampingan. Larutan ini dilaporkan untuk digunakan dalam proses sianidasi emas.[13]

Reaksi

Selain timbal(II) asetat, timbal(II) nitrat adalah satu-satunya senyawa timbal umum yang dapat larut. Timbal(II) nitrat mudah larut dalam air menghasilkan larutan jernih tak berwarna.[14] Sebagai senyawa ion, pelarutan timbal(II) nitrat melibatkan disosiasi menjadi ion-ion konstituennya.

Timbal(II) nitrat membentuk larutan yang sedikit asam, dengan pH antara 3,0 sampai 4,0 untuk larutan 20% dalam air.[15]

Ketika larutan natrium hidroksida pekat ditambahkan ke dalam larutan timbal(II) nitrat, terbentuk basa nitrat, meskipun sedikit melampaui titik ekivalen. Menuju setengah titik ekivalen, terbentuk senyawa Pb(NO3)2·Pb(OH)2, yang kemudian setelah titik ini akan terbentuk Pb(NO3)2·5Pb(OH)2. Tidak ada pembentukan Pb(OH) sederhana pada pH sekitar 12.[11][16]

Kompleksasi

Timbal(II) nitrat terkait dengan kimia supramolekul yang menakjubkan karena koordinasinya dengan senyawa pendonor elektron nitrogen dan oksigen. Daya tariknya lebih pada aspek akademis, tetapi dengan beberapa aplikasi potensial. Misalnya, penggabungan timbal nitrat dan pentaetilena glikol (EO) dalam larutan asetonitril dan metanol diikuti dengan penguapan lambat menghasilkan bahan kristal baru [Pb(NO3)2(EO5)].[17] Dalam struktur kristal senyawa ini, rantai EO dikelilingi oleh ion timbal dalan suatu bidang ekuatorial yang mirip dengan eter mahkota. Dua ligan nitrat bidentat berada dalam bentuk konfigurasi trans. Bilangan koordinasi total adalah 10, dengan ion timbal dalam struktur geometri molekul antiprisma persegi.

Senyawa kompleks yang dibentuk oleh timbal(II) nitrat, timbal(II) perklorat dan ligan donor N bidentat bitiazola adalah kompleks inti ganda, dengan gugus nitrat menjembatani atom timbal dengan bilangan koordinasi 5 dan 6.[18] Salah satu aspek yang menarik dari kompleks jenis ini adalah adanya celah fisik dalam lingkungan koordinasi; yaitu, ligan tidak berada secara simetris mengelilingi ion logam. Hal ini berpotensi karena pasangan elektron sunyi pada timbal, juga ditemukan dalam kompleks timbal dengan ligan imidazola.[19]

Jenis kimia ini tidak unik hanya untuk garam nitrat; senyawa timbal(II) lainnya seperti timbal(II) bromida juga membentuk kompleks, tetapi senyawa nitratnya sering digunakan karena kelarutannya dan sifat bidentatnya.

Oksidasi dan dekomposisi

Timbal(II) nitrat adalah oksidator. Ini bisa disebabkan karena ion Pb, yang mempunyai potensial reduksi(E°) standar −0,125 V, atau ion nitrat yang pada suasana asam mempunyai E° +0,956 V.[20] Nitrat akan berfungsi pada temperatur tinggi atau dalam suasa asam, sementara timbal(II) berfungsi optimal dalam larutan netral.

Ketika dipanaskan, kristal timbal(II) nitrat terdekomposisi menjadi timbal(II) oksida, oksigen dan nitrogen dioksida.

Oleh karena sifat ini, timbal nitrat sering digunakan dalam piroteknik seperti kembang api.[5]

Lihat juga

Referensi

  1. ^ Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. hlm. 475. ISBN 0-07-049439-8. 
  2. ^ "Senyawa timbal (sebagai Pb)". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH). 
  3. ^ Partington, James Riddick (1950). A Text-book of Inorganic Chemistry. MacMillan. hlm.  838. 
  4. ^ Libavius, Andreas (1595). Alchemia Andreæ Libavii. Francofurti: Iohannes Saurius. 
  5. ^ a b Barkley, J.B. (October 1978). "Lead nitrate as an oxidizer in blackpowder". Pyrotechnica. Post Falls, Idaho: Pyrotechnica Publications. 4: 16–18. 
  6. ^ "Lead". Encyclopædia Britannica Eleventh Edition. Diakses tanggal 2006-10-11. 
  7. ^ Macgregor, John (1847). Progress of America to year 1846. London: Whittaker & Co. ISBN 0-665-51791-2. 
  8. ^ a b c Greenwood, Norman N.; Earnshaw, A. (1997). Chemistry of the Elements (edisi ke-2nd). Oxford: Butterworth-Heinemann. hlm. 388, 456. ISBN 0-7506-3365-4. 
  9. ^ Hamilton, W.C. (1957). "A neutron crystallographic study of lead nitrate". Acta Crystallogr. 10 (2): 103–107. doi:10.1107/S0365110X57000304. 
  10. ^ a b Nowotny, H.; G. Heger (1986). "Structure refinement of lead nitrate". Acta Crystallogr. C. 42 (2): 133–35. doi:10.1107/S0108270186097032. 
  11. ^ a b c Othmer, D.F. (1967). Kirk-Othmer Encyclopedia of Chemical Technology. 12 (Iron to Manganese) (edisi ke-second completely revised). New York: John Wiley & Sons. hlm.  272. ISBN 0-471-02040-0. 
  12. ^ Adlam, George Henry Joseph; Price, Leslie Slater (1938). A Higher School Certificate Inorganic Chemistry. London: John Murray. 
  13. ^ "Product catalog; other products". Tilly, Belgium: Sidech. Diakses tanggal 2008-01-05. 
  14. ^ Ferris, L.M. (1959). "Lead nitrate—Nitric acid—Water system". Journal of Chemicals and Engineering Date. 5 (3): 242–242. doi:10.1021/je60007a002. 
  15. ^ http://www.mallbaker.com/americas/msds/english/L3130_msds_us_Default.pdf
  16. ^ Pauley, J. L.; M. K. Testerman (1954). "Basic Salts of Lead Nitrate Formed in Aqueous Media". Journal of the American Chemical Society. 76 (16): 4220–4222. doi:10.1021/ja01645a062. 
  17. ^ Rogers, Robin D.; Andrew H. Bond; Debra M. Roden (1996). "Structural Chemistry of Poly (ethylene glycol). Complexes of Lead(II) Nitrate and Lead(II) Bromide". Inorg. Chem. 35 (24): 6964–6973. doi:10.1021/ic960587b. PMID 11666874. 
  18. ^ Mahjoub, Ali Reza; Ali Morsali (2001). "A Dimeric Mixed-Anions Lead(II) Complex: Synthesis and Structural Characterization of [Pb2(BTZ)4(NO3)(H2O)](ClO4)3 {BTZ = 4,4'-Bithiazole}". Chemistry Letters. 30 (12): 1234. doi:10.1246/cl.2001.1234. 
  19. ^ Shuang-Yi Wan, Jian Fan, Taka-aki Okamura, Hui-Fang Zhu, Xing-Mei Ouyang, Wei-Yin Sun and Norikazu Ueyama (2002). "2D 4.82 Network with threefold parallel interpenetration from nanometre-sized tripodal ligand and lead(II) nitrate". Chem. Commun. (21): 2520–2521. doi:10.1039/b207568g. 
  20. ^ Hill, John W.; Petrucci, Ralph H. (1999). General Chemistry (edisi ke-2nd). Upper Saddle River, New Jersey: Prentice Hall. hlm.  781. ISBN 0-13-010318-7. 

Pranala luar

  • Woodbury, William D. (1982). "Lead". Mineral yearbook metals and minerals. Bureau of Mines:  515–42. Diakses tanggal 2008-01-18. 
  • "Lead". NIOSH Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. September 2005. NIOSH 2005-149. Diakses tanggal 2008-01-19. 
  • "Lead and Lead Compounds Fact Sheet". National Pollutant Inventory. Australian Government, Department of the Environment and Water Resources. July 2007. Diarsipkan dari versi asli tanggal January 11, 2008. Diakses tanggal 2008-01-19. 
  • "Lead". A Healthy home environment, Health hazards. US Alliance for healthy homes. Diakses tanggal 2008-01-19. 
  • "Demonstration movie: Bright Orange Yellow How can you get it". Diakses tanggal 2008-01-19. 
Lembar Data Keselamatan Bahan (MSDS)
HNO3 He
LiNO3 Be(NO''"; B(NO''"; C N O FNO3 Ne
NaNO3 Mg(NO''"; Al(NO''"; Si P S ClONO2 Ar
KNO3 Ca(NO''"; Sc(NO''"; Ti(NO''"; VO(NO''"; Cr(NO''"; Mn(NO''"; Fe(NO''"; Co(NO''";,
Co(NO''";
Ni(NO''"; Cu(NO''"; Zn(NO''"; Ga(NO''"; Ge As Se Br Kr
RbNO Sr(NO''"; Y Zr(NO''"; Nb Mo Tc Ru Rh Pd(NO''"; AgNO Cd(NO''"; In Sn Sb Te I Xe(NO''";
CsNO Ba(NO''";   Hf Ta W Re Os Ir Pt Au Hg,
Hg(NO''";
Tl(NO''"; Pb(NO''"; Bi(NO''"; Po At Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
La Ce(NO''";,
Ce(NO''";
Pr Nd Pm Sm Eu Gd(NO''"; Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UO Np Pu Am Cm Bk Cf Es Fm Md No Lr