Lompat ke isi

Kimia organologam

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 2 September 2024 15.47 oleh Kim Nansa (bicara | kontrib) (Fitur saranan suntingan: 3 pranala ditambahkan.)
(beda) ← Revisi sebelumnya | Revisi terkini (beda) | Revisi selanjutnya → (beda)
n-Butillitium, suatu senyawa organologam. Empat atom litium (ungu) membentuk tetrahedron, dengan empat gugus butil menempel pada sisi muka (karbon berwarna hitam, hidrogen berwarna putih).

Kimia organologam adalah studi mengenai senyawa organologam, senyawa kimia yang mengandung setidaknya satu ikatan kimia antara atom karbon dari sebuah molekul organik dan logam, termasuk alkali, alkali tanah, dan logam transisi, dan terkadang diperluas untuk mencakup metaloid seperti boron, silikon, dan timah, pula.[1] Selain ikatan untuk fragmen atau molekul organil, ikatan dengan karbon 'anorganik', seperti karbon monoksida (karbonil logam), sianida, atau karbida, umumnya dianggap organologam juga. Beberapa senyawa yang terkait seperti logam transisi hidrida dan kompleks logam fosfina sering dimasukkan dalam diskusi senyawa organologam, meskipun secara tegas, mereka tidak selalu merupakan organologam. Istilah yang terkait tetapi berbeda "senyawa metalorganik" mengacu pada senyawa yang mengandung logam yang kurang memiliki ikatan logam-karbon langsung tetapi yang mengandung ligan organik. Logam β-diketonat, alkoksida, dialkilamida, dan kompleks logam fosfina merupakan anggota perwakilan dari golongan ini. Bidang kimia organologam menggabungkan aspek-aspek kimia anorganik dan organik tradisional.[2]

Senyawa organologam secara luas digunakan baik secara stoikiometrik dalam penelitian dan reaksi kimia industri, maupun dalam peran katalis untuk meningkatkan laju reaksi tersebut (misalnya, seperti dalam penggunaan katalisis homogen), di mana molekul target termasuk polimer, obat-obatan, dan banyak jenis produk praktis lainnya.

Perkembangan awal dalam kimia organologam termasuk sintesis senyawa metil arsenat oleh Louis Claude Cadet yang terkait dengan kakodil, penemuan William Christopher Zeise[3] mengenai kompleks platinum-etilena,[4] penemuan Edward Frankland mengenai dietil- dan dimetil seng, penemuan Ludwig Mond atas Ni(CO)4,[1] dan senyawa organomagnesium Victor Grignard. (Meskipun tidak selalu diakui sebagai senyawa organologam, biru Prusia, kompleks besi-sianida bervalensi-campuran, pertama kali disiapkan pada tahun 1706 oleh pembuat cat Johann Jacob Diesbach sebagai polimer koordinasi pertama dan bahan sintetis yang mengandung ikatan logam-karbon.[1]) Produk yang melimpah dan beragam dari batubara dan minyak bumi mengarah pada katalisis Ziegler-Natta, Fischer-Tropsch, hidroformilasi yang melibatkan CO, H2, dan alkena sebagai bahan baku dan ligan.

Pengakuan kimia organologam sebagai subbidang yang berbeda memuncak dalam Hadiah Nobel untuk Ernst Fischer dan Geoffrey Wilkinson untuk karyanya pada metalosena. Pada tahun 2005, Yves Chauvin, Robert H. Grubbs dan Richard R. Schrock berbagi Hadiah Nobel untuk metatesis olefin dikatalisis-logam.[5]

Reaksi organologam

[sunting | sunting sumber]

Sintesis banyak molekul organik difasilitasi oleh kompleks organologam. Metatesis ikatan sigma adalah metode sintetis untuk membentuk ikatan sigma karbon-karbon baru. Metatesis ikatan sigma biasanya digunakan dengan kompleks-kompleks logam transisi awal yang berada dalam keadaan oksidasi tertinggi.[6] Menggunakan logam-logam transisi yang berada dalam keadaan oksidasi tertinggi mencegah reaksi lain terjadi, seperti adisi oksidatif. Selain metatesis ikatan sigma, metatesis olefin digunakan untuk mensintesis berbagai ikatan pi karbon-karbon. Baik metatesis ikatan sigma atau metatesis olefin mengubah keadaan oksidasi logam.[7][8] Banyak metode lain yang digunakan untuk membentuk ikatan karbon-karbon yang baru, termasuk eliminasi beta-hidrida dan reaksi penyisipan.

Aplikasi industri

[sunting | sunting sumber]
Suatu kompleks organotitanium dengan geometri yang dibatasi adalah suatu prakatalis untuk polimerisasi olefin.

Senyawa organologam menemukan penggunaan luasnya dalam reaksi komersial, baik sebagai katalisis homogen dan sebagai pereaksi stoikiometri. Misalnya, senyawa organolitium, organomagnesium, dan organoaluminium, contoh dari yang sangat basa dan sangat mereduksi, berguna secara stoikiometri, tetapi juga mengkatalisis banyak reaksi polimerisasi.[2]

Hampir semua proses yang melibatkan karbon monoksida bergantung pada katalis, contoh-contoh penting digambarkan sebagai karbonilasi.[9] Produksi asam asetat dari metanol dan karbon monoksida dikatalisis melalui kompleks logam karbonil dalam proses Monsanto dan proses Cativa. Kebanyakan aldehida sintetis diproduksi melalui hidroformilasi. Sebagian besar alkohol sintetis, setidaknya yang lebih besar dari etanol, diproduksi oleh hidrogenasi aldehida turunan hidroformilasi. Demikian pula, proses Wacker digunakan dalam oksidasi etilena menjadi asetaldehida.[10]

Hampir semua proses industri yang melibatkan polimer turunan alkena bergantung pada katalis organologam. Polietilena dan polipropilena dunia dihasilkan secara heterogen melalui katalis Ziegler–Natta dan secara homogen, misalnya, melalui katalis geometri terbatas.[11]

Sebagian besar proses yang melibatkan hidrogen bergantung pada katalis berbasis logam. Sedangkan hidrogenasi massal, misalnya produksi margarin, bergantung pada katalis heterogen, Untuk produksi bahan kimia, hidrogenasi ini bergantung pada kompleks organologam terlarut atau melibatkan zat antara organologam.[12] Kompleks organologam memungkinkan hidrogenasi ini dilakukan secara asimetris.

Banyak semikonduktor diproduksi dari trimetilgalium, trimetilindium, trimetilaluminium, dan trimetilantimoni. Senyawa volatil ini terdekomposisi bersama dengan amonia, arsina, fosfina dan hidrida terkait pada substrat yang dipanaskan melalui epitaksi fase uap metalorganik (metalorganic vapor phase epitaxy; MOVPE) dalam produksi dioda pemancar cahaya (LED).

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ a b c Crabtree, Robert H. (2009). The Organometallic Chemistry of the Transition Metals (dalam bahasa Inggris) (edisi ke-5th). New York, NY: John Wiley and Sons. hlm. 2, 560, dan passim. ISBN 0470257628. Diakses tanggal 23 Mei 2016. 
  2. ^ a b Oliveira, José; Elschenbroich, Christoph (2006). Organometallics (dalam bahasa Inggris) (edisi ke-3., completely rev. and extended). Weinheim: Wiley-VCH-Verl. ISBN 978-3-527-29390-2. 
  3. ^ Hunt, L. B. (1984). "The First Organometallic Compounds: William Christopher Zeise and his Platinum Complexes" (PDF). Platinum Metals Rev. 28 (2): 76–83. Diarsipkan dari versi asli (PDF) tanggal 2015-09-24. Diakses tanggal 2018-07-16. 
  4. ^ Zeise, W. C. (1831). "Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen". Annalen der Physik (dalam bahasa Jerman). 97 (4): 497–541. Bibcode:1831AnP....97..497Z. doi:10.1002/andp.18310970402. 
  5. ^ Dragutan, V.; Dragutan, I.; Balaban, A. T. (2006). "2005 Nobel Prize in Chemistry". Platinum Metals Review (dalam bahasa Inggris). 50 (1): 35–37. doi:10.1595/147106706X94140. ISSN 0032-1400. 
  6. ^ Waterman, Rory (2013-12-23). "σ-Bond Metathesis: A 30-Year Retrospective". Organometallics (dalam bahasa Inggris). 32 (24): 7249–7263. doi:10.1021/om400760k. ISSN 0276-7333. 
  7. ^ "The Organometallic HyperTextBook: Olefin Metathesis". www.ilpi.com (dalam bahasa Inggris). Diakses tanggal 26 Desember 2017. 
  8. ^ "Organometallic HyperTextBook: Sigma Bond Metathesis". www.ilpi.com (dalam bahasa Inggris). Diakses tanggal 26 Desember 2017. 
  9. ^ W. Bertleff; M. Roeper; X. Sava (2005), "Carbonylation", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a05_217 
  10. ^ Leeuwen, Piet W.N.M. van (2004). Homogeneous catalysis : understanding the art (dalam bahasa Inggris). Dordrecht: Springer. ISBN 978-1-4020-3176-2. 
  11. ^ Klosin, Jerzy; Fontaine, Philip P.; Figueroa, Ruth (2015). "Development of Group IV Molecular Catalysts for High Temperature Ethylene-α-Olefin Copolymerization Reactions". Accounts of Chemical Research (dalam bahasa Inggris). 48 (7): 2004–2016. doi:10.1021/acs.accounts.5b00065. ISSN 0001-4842. 
  12. ^ Paul N. Rylander, "Hydrogenation and Dehydrogenation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a13_487

Bacaan lebih lanjut

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]