Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Versi yang bisa dicetak tidak lagi didukung dan mungkin memiliki kesalahan tampilan. Tolong perbarui markah penjelajah Anda dan gunakan fungsi cetak penjelajah yang baku.
Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapat memahami maksud dari "Simetri ikosahedral". Contoh paragraf pembuka "Simetri ikosahedral adalah ...".(Juli 2021) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)
Sebuah ikosahedron reguler memiliki 60 simetri rotasi (atau pelestari orientasi), dan urutan simetri sebanyak 120 termasuk transformasi yang menggabungkan refleksi dan rotasi. Sebuah dodecahedron beraturan memiliki himpunan simetri yang sama, karena merupakan ganda dari ikosahedron.
Grup simetri penuh (termasuk refleksi) dikenal juga sebagai grup Coxeter H3, dan diwakili oleh notasi Coxeter [5,3] dan diagram Coxeter.
Himpunan simetri orientasi-kekal dalam bentuk subgrup isomorfik pada grup A5 (grup selang-seling pada 5 huruf).
Sebagai titik grup
Terlepas dari dua deret tak hingga dari simetri prismatik dan antiprismatik, simetri ikosahedral rotasi atau simetri ikosahedral kiral dari objek kiral dan simetri ikosahedral penuh atau simetri ikosahedral akiral adalah simetri titik diskret (atau ekuivalen, simetri pada bola) dengan grup simetri terbesar.
Tepi sebuah bola gabungan lima oktahedra mewakili 15 bidang cermin sebagai lingkaran besar berwarna. Setiap oktahedron/segi delapan mewakili 3 bidang cermin ortogonal pada tepinya.
Simetri piritohedron adalah subgrup indeks 5 simetri ikosahedral, dengan 3 garis refleksi hijau ortogonal dan 8 titik girasi urutan-3 merah. Ada 5 orientasi yang berbeda dari simetri piritohedron.
Grup berisi 5 versi Th dengan 20 versi D3 (10 sumbu, 2 per sumbu), dan 6 versi D5.
Grup ikosahedral penuhIh memiliki urutan 120. Memiliki I sebagai subgrup normal dari indeks 2. Grup Ih isomorfik dengan I × Z2, atau A5 × Z2, dengan inversi di tengah sesuai dengan elemen (identitas,-1), dimana Z2 ditulis secara perkalian.
Grup ini berisi 10 versi D3d dan 6 versi D5d (simetri seperti antiprisma).
I adalah isomorfik pada PSL2(5), namun Ih tidak isomorfik terhadap SL2(5).
Isomorfisme I dengan A5
Hal ini berguna untuk menggambarkan secara eksplisit seperti apa isomorfisme antara I dan A5. Pada tabel berikut, permutasi Pi dan Qi masing-masing bekerja pada 5 dan 12 elemen, sedangkan matriks rotasi Mi adalah elemen dari I. Jika Pk adalah hasil kali dari permutasi Pi dan menerapkan Pj padanya, maka untuk nilai yang sama dari i, j dan k, juga benar bahwa Qk adalah hasil kali dari pengambilan Qi dan menerapkan Qj, dan juga mengalikan sebuah vektor dengan Mk sama dengan mengalikan vektor tersebut dengan Mi dan kemudian mengalikan hasilnya dengan Mj, yaitu Mk = Mj × Mi. Karena permutasi Pi adalah semua 60 permutasi genap dari 12345, korespondensi satu-ke-satu dibuat eksplisit, oleh karena itu isomorfismenya juga.
Matriks rotasi
Permutasi 5 pada 1 2 3 4 5
Permutasi 12 pada 1 2 3 4 5 6 7 8 9 10 11 12
= ()
= ()
= (3 4 5)
= (1 11 8)(2 9 6)(3 5 12)(4 7 10)
= (3 5 4)
= (1 8 11)(2 6 9)(3 12 5)(4 10 7)
= (2 3)(4 5)
= (1 12)(2 8)(3 6)(4 9)(5 10)(7 11)
= (2 3 4)
= (1 2 3)(4 5 6)(7 9 8)(10 11 12)
= (2 3 5)
= (1 7 5)(2 4 11)(3 10 9)(6 8 12)
= (2 4 3)
= (1 3 2)(4 6 5)(7 8 9)(10 12 11)
= (2 4 5)
= (1 10 6)(2 7 12)(3 4 8)(5 11 9)
= (2 4)(3 5)
= (1 9)(2 5)(3 11)(4 12)(6 7)(8 10)
= (2 5 3)
= (1 5 7)(2 11 4)(3 9 10)(6 12 8)
= (2 5 4)
= (1 6 10)(2 12 7)(3 8 4)(5 9 11)
= (2 5)(3 4)
= (1 4)(2 10)(3 7)(5 8)(6 11)(9 12)
= (1 2)(4 5)
= (1 3)(2 4)(5 8)(6 7)(9 10)(11 12)
= (1 2)(3 4)
= (1 5)(2 7)(3 11)(4 9)(6 10)(8 12)
= (1 2)(3 5)
= (1 12)(2 10)(3 8)(4 6)(5 11)(7 9)
= (1 2 3)
= (1 11 6)(2 5 9)(3 7 12)(4 10 8)
= (1 2 3 4 5)
= (1 6 5 3 9)(4 12 7 8 11)
= (1 2 3 5 4)
= (1 4 8 6 2)(5 7 10 12 9)
= (1 2 4 5 3)
= (1 8 7 3 10)(2 12 5 6 11)
= (1 2 4)
= (1 7 4)(2 11 8)(3 5 10)(6 9 12)
= (1 2 4 3 5)
= (1 2 9 11 7)(3 6 12 10 4)
= (1 2 5 4 3)
= (2 3 4 7 5)(6 8 10 11 9)
= (1 2 5)
= (1 9 8)(2 6 3)(4 5 12)(7 11 10)
= (1 2 5 3 4)
= (1 10 5 4 11)(2 8 9 3 12)
= (1 3 2)
= (1 6 11)(2 9 5)(3 12 7)(4 8 10)
= (1 3 4 5 2)
= (2 5 7 4 3)(6 9 11 10 8)
= (1 3 5 4 2)
= (1 10 3 7 8)(2 11 6 5 12)
= (1 3)(4 5)
= (1 7)(2 10)(3 11)(4 5)(6 12)(8 9)
= (1 3 4)
= (1 9 10)(2 12 4)(3 6 8)(5 11 7)
= (1 3 5)
= (1 3 4)(2 8 7)(5 6 10)(9 12 11)
= (1 3)(2 4)
= (1 12)(2 6)(3 9)(4 11)(5 8)(7 10)
= (1 3 2 4 5)
= (1 4 10 11 5)(2 3 8 12 9)
= (1 3 5 2 4)
= (1 5 9 6 3)(4 7 11 12 8)
= (1 3)(2 5)
= (1 2)(3 5)(4 9)(6 7)(8 11)(10 12)
= (1 3 2 5 4)
= (1 11 2 7 9)(3 10 6 4 12)
= (1 3 4 2 5)
= (1 8 2 4 6)(5 10 9 7 12)
= (1 4 5 3 2)
= (1 2 6 8 4)(5 9 12 10 7)
= (1 4 2)
= (1 4 7)(2 8 11)(3 10 5)(6 12 9)
= (1 4 3 5 2)
= (1 11 4 5 10)(2 12 3 9 8)
= (1 4 3)
= (1 10 9)(2 4 12)(3 8 6)(5 7 11)
= (1 4 5)
= (1 5 2)(3 7 9)(4 11 6)(8 10 12)
= (1 4)(3 5)
= (1 6)(2 3)(4 9)(5 8)(7 12)(10 11)
= (1 4 5 2 3)
= (1 9 7 2 11)(3 12 4 6 10)
= (1 4)(2 3)
= (1 8)(2 10)(3 4)(5 12)(6 7)(9 11)
= (1 4 2 3 5)
= (2 7 3 5 4)(6 11 8 9 10)
= (1 4 2 5 3)
= (1 3 6 9 5)(4 8 12 11 7)
= (1 4 3 2 5)
= (1 7 10 8 3)(2 5 11 12 6)
= (1 4)(2 5)
= (1 12)(2 9)(3 11)(4 10)(5 6)(7 8)
= (1 5 4 3 2)
= (1 9 3 5 6)(4 11 8 7 12)
= (1 5 2)
= (1 8 9)(2 3 6)(4 12 5)(7 10 11)
= (1 5 3 4 2)
= (1 7 11 9 2)(3 4 10 12 6)
= (1 5 3)
= (1 4 3)(2 7 8)(5 10 6)(9 11 12)
= (1 5 4)
= (1 2 5)(3 9 7)(4 6 11)(8 12 10)
= (1 5)(3 4)
= (1 12)(2 11)(3 10)(4 8)(5 9)(6 7)
= (1 5 4 2 3)
= (1 5 11 10 4)(2 9 12 8 3)
= (1 5)(2 3)
= (1 10)(2 12)(3 11)(4 7)(5 8)(6 9)
= (1 5 2 3 4)
= (1 3 8 10 7)(2 6 12 11 5)
= (1 5 2 4 3)
= (1 6 4 2 8)(5 12 7 9 10)
= (1 5 3 2 4)
= (2 4 5 3 7)(6 10 9 8 11)
= (1 5)(2 4)
= (1 11)(2 10)(3 12)(4 9)(5 7)(6 8)
Grup biasa limbung
Semua grup berikut memiliki urutan 120, tetapi tidak isomorfik:
Perhatikan bahwa memiliki biasa 3 dimensi representasi yang tidak direduksi (sebagai grup rotasi ikosahedral), namun tidak memiliki representasi 3 dimensi yang tidak dapat direduksi, sesuai dengan grup ikosahedral penuh tidak sebagai grup simetris.
Ini juga dikaitkan dengan grup linear atas Medan hingga dengan lima elemen, yang menunjukkan subgrup dan grup penutup secara langsung; tidak satupun dari ini adalah grup ikosahedral penuh:
12 × rotasi sebesar ±72°, urutan 5, mengelilingi 6 sumbu melalui pusat muka dodecahedron
12 × rotasi sebesar ±144°, urutan 5, mengelilingi 6 sumbu melalui pusat muka dodecahedron
20 × rotasi dengan ±120°, urutan 3, sekitar 10 sumbu melalui simpul dari dodecahedron
15 × rotasi 180°, urutan 2, sekitar 15 sumbu melalui titik tengah tepi dodecahedron
inversi pusat, urutan 2
12 × rotorefleksi sebesar ±36°, urutan 10, di sekitar 6 sumbu melalui pusat muka dodecahedron
12 × rotorefleksi sebesar ±108°, urutan 10, di sekitar 6 sumbu melalui pusat muka dodecahedron
20 × rotorefleksi sebesar ±60°, orde 6, di sekitar 10 sumbu melalui simpul dodecahedron
15 × refleksi, urutan 2, pada 15 bidang melalui tepi dodecahedron
Subgrup dari grup simetri ikosahedral penuh
Setiap baris dalam tabel berikut mewakili satu kelas subgrup konjugat (yaitu, ekuivalen secara geometris). Kolom "Banyak." (multiplisitas) memberikan jumlah subgrup yang berbeda di kelas konjugasi. Penjelasan warna: hijau = grup yang dihasilkan oleh refleksi, merah = grup kiral (pelestarian orientasi), yang hanya berisi rotasi.
Grup tersebut digambarkan secara geometris dalam bentuk dodecahedron. Singkatan "s.p.m.t.(tepi)" berarti "setengah putaran menukar tepi ini dengan tepi berlawanan", dan juga untuk "wajah" dan "simpul".
stabilisator dari sepasang sisi dalam I memberikan Klein empat grup; 5 diantaranya, diberikan oleh rotasi 180° dalam 3 sumbu tegak lurus.
stabilisator dari sepasang sisi dalam Ih memberikan ; 5 diantaranya, yang diberikan oleh refleksi dalam 3 sumbu tegak lurus.
Stabilisator wajah
Stabilisator dari pasangan wajah berlawanan diartikan sebagai stabilisator anti-prisma yang dihasilkan.
stabilisator wajah di I memberikan grup siklik C5
stabilisator wajah di Ih memberikan grup dihedral D5
stabilisator dari pasangan wajah berlawanan di I memberikan grup dihedral D5
stabilisator dari pasangan wajah yang berlawanan di Ih memberikan
Stabilisator polihedron
Untuk masing-masing, 5 salinan konjugasi, dan tindakan konjugasi memberikan peta, .
stabilisator dari tetrahedra tertulis di I adalah salinan T
stabilisator dari tetrahedra tertulis di Ih adalah salinan T
stabilisator dari kubus tertulis (atau pasangan berlawanan dari tetrahedra, atau oktahedra) di I adalah salinan T
stabilisator dari kubus tertulis (atau pasangan berlawanan dari tetrahedra, atau oktahedra) di Ih adalah salinan dari Th
Generator grup Coxeter
Grup simetri ikosahedral penuh [5,3] () urutan 120 memiliki generator diwakili oleh matriks refleksi R0, R1, R2, dengan relasi R02 = R12 = R22 = (R0×R1)5 = (R1×R2)3 = (R0×R2)2 = Identitas. Grup [5,3]+ () urutan 60 dihasilkan oleh dua rotasi S0,1, S1,2, S0,2. Sebuah refleksi rotor urutan 10 dihasilkan oleh V0,1,2, produk dari ketiga refleksi. Di sini menunjukkan rasio emas.
[5,3],
Refleksi
Rotasi
Rotorefleksi
Nama
R0
R1
R2
S0,1
S1,2
S0,2
V0,1,2
Grup
Urutan
2
2
2
5
3
2
10
Matrix
(1,0,0)n
n
(0,1,0)n
sumbu
sumbu
sumbu
Domain fundamental
Domain fundamental untuk grup rotasi ikosahedral dan grup ikosahedral penuh diberikan oleh:
Dalam triacontahedron Disdyakis satu wajah penuh adalah domain fundamental; padatan lain dengan simetri yang sama diperoleh dengan menyesuaikan orientasi wajah, misalnya himpunan bagian wajah dipilih untuk menggabungkan setiap himpunan bagian menjadi satu wajah, atau mengganti setiap wajah dengan beberapa wajah, atau permukaan melengkung.
Untuk fase bahan antara yang disebut kristal cair keberadaan simetri ikosahedral diusulkan oleh H. Kleinert dan K. Maki[2]
dan strukturnya pertama kali dianalisis secara rinci dalam makalah itu. Lihat artikel ulasan disini.
Dalam aluminium, struktur ikosahedral ditemukan secara eksperimental tiga tahun setelah ini oleh Dan Shechtman, yang membuatnya mendapatkan Hadiah Nobel pada tahun 2011.
Geometri terkait
Simetri ikosahedral setara dengan grup linear khusus proyeksi PSL(2,5), dan adalah grup simetri dari kurva modular X(5), dan lebih umum PSL(2,p) adalah grup simetri dari kurva modular X(p). Kurva modular X(5) secara geometris merupakan dodecahedron dengan titik puncak di tengah setiap wajah poligonal, yang menunjukkan grup simetri.
Geometri ini, dan grup simetri terkait, dipelajari oleh Felix Klein sebagai kelompok monodromi permukaan Belyi – permukaan Riemann dengan peta holomorfik ke bola Riemann, bercabang hanya 0, 1, dan tak hingga (sebuah fungsi Belyi) – puncaknya adalah titik-titik yang terletak atas tak hingga, sedangkan simpul dan pusat setiap tepi terletak di atas 0 dan 1; tingkat penutup (jumlah lembar) sama dengan 5.
Ini muncul dari usahanya untuk memberikan pengaturan geometris mengapa simetri ikosahedral muncul dalam solusi persamaan kuintik, dengan teori yang diberikan dalam (Klein 1888) yang terkenal; eksposisi modern diberikan dalam (Tóth 2002, Bagian 1.6, Topik Tambahan: Teori Klein tentang Ikosahedron, p. 66).
Penyelidikan Klein dilanjutkan dengan penemuan simetri urutan 7 dan urutan 11 dalam (Klein 1878/79b) dan (Klein 1879) (dan penutup terkait derajat 7 dan 11) dan dessins d'enfants, yang pertama menghasilkan kuintik Klein, geometri yang terkait memiliki ubin dengan 24 segi enam (dengan titik puncak di tengah).
Geometri serupa dengan PSL(2,n) dan grup yang umum untuk kurva modular lainnya.
Lebih eksotis lagi, relasi khusus antara grup PSL(2,5) (urutan 60), PSL(2,7) (urutan 168) dan PSL(2,11) (urutan 660), yang juga menerima interpretasi geometris – PSL(2,5) adalah simetri ikosahedron (genus 0), PSL(2,7) dari Klein quartic (genus 3), dan PSL(2,11) permukaan bukminsterfulerena (genus 70). Kelompok-kelompok ini membentuk "trinitas" dalam arti Vladimir Arnold, yang memberikan kerangka kerja untuk berbagai hubungan; lihat trinitas untuk detailnya.
Klein, Felix (1888), Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Trübner & Co., ISBN0-486-49528-0trans. George Gavin Morrice
Tóth, Gábor (2002), Finite Möbius groups, minimal immersions of spheres, and moduli
Peter R. Cromwell, Polyhedra (1997), p. 296
The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN978-1-56881-220-5
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
N.W. Johnson: Geometries and Transformations, (2018) ISBN978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.5 Spherical Coxeter groups