Lompat ke isi

Fungsi zeta Riemann

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 21 Januari 2023 20.23 oleh Juliandane (bicara | kontrib) (Menambahkan bagian identitas darab Euler dan bukti persamaan fungsional Riemann)
Fungsi zeta Riemann ζ(z) digambarkan dengan pewarnaan domain.[1]
Pole di dan dua akar di garis kritis.

Fungsi zeta Riemann atau fungsi zeta Euler–Riemann adalah fungsi variabel kompleks, dilambangkan dengan huruf Yunani (zeta), yang dirumuskan sebagai berikut

, jika , dan melalui pengontinuan analitik jika .[2]

Fungsi ini memiliki peranan yang krusial pada teori bilangan analitik dan juga memiliki aplikasi pada fisika, teori probabilitas, dan statistika terapan.

Fungsi ini pertama kali diperkenalkan oleh Leonhard Euler, namun awalnya ia memperkenalkan fungsi ini sebagai fungsi real pada abad ke-18. Kemudian, pada 1859, Bernhard Riemann memperluas definisi yang diberikan oleh Euler, menjadikan fungsi ini sebagai fungsi kompleks yang meromorfik, memberikan persamaan fungsional untuk fungsi ini dan memaparkan hubungan antara nol dari fungsi ini dan distribusi bilangan prima, melalui artikelnya yang berjudul "On the Number of Primes Less Than a Given Magnitude". Artikel ini juga memuat hipotesis Riemann, suatu konjektur tentang distribusi nol kompleks dari fungsi zeta Riemann. Banyak matematikawan berpandangan bahwa hipotesis ini merupakan salah satu masalah terpenting di bidang matematika murni.[3]

Nilai dari fungsi zeta Riemann pada bilangan genap positif telah ditemukan oleh Euler. Nilai , khususnya, menyelesaikan permasalahan Basel. Pada 1979, Roger Apéry membuktikan bahwa bernilai irasional. Euler juga menemukan nilai fungsi zeta Riemann pada bilangan bulat negatif yang merupakan bilangan rasional dan memiliki peranan penting pada bentuk modular. Fungsi zeta Riemann juga memiliki perumuman, seperti deret Dirichlet, fungsi-L Dirichlet, dan fungsi-L.

Definisi

Fungsi zeta Riemann adalah fungsi variabel kompleks . (Penggunaan notasi dan di sini mengikuti notasi yang awalnya digunakan Riemann untuk memelajari fungsi ). Jika , fungsi ini dapat dituliskan sebagai deret atau integral konvergen berikut:denganadalah fungsi Gamma. Untuk nilai kompleks lainnya, fungsi zeta Riemann didefinisikan melalui pengontinuan analitik dari fungsi yang telah didefinisikan untuk .

Leonhard Euler menggunakan definisi deret di atas untuk bilangan bulat positif pada 1740, dan kemudian Chebyshev memperluas definisi ini untuk .[4]

Deret di atas merupakan prototipe dari deret Dirichlet yang konvergen mutlak ke suatu fungsi analitik untuk dengan dan divergen untuk nilai lainnya. Riemann menunjukkan bahwa fungsi yang didefinisikan oleh deret yang konvergen hanya pada setengah bidang kompleks memiliki pengontinuan analitik ke seluruh nilai kompleks . Untuk , deret di atas adalah deret harmonik yang divergen menuju , dan

Dengan demikian, fungsi zeta Riemann merupakan fungsi meromorfik pada bidang kompleks , yang holomorfik di mana-mana, kecuali di yang merupakan kutub sederhana dengan residu 1.

Identitas darab Euler

Pada 1737, hubungan antara fungsi zeta dan bilangan prima ditemukan oleh Euler, yang membuktikan membuktikan identitas berikut.

dengan bentuk matematika pada ruas kiri adalah ζ(s) dari definisi dan pada ruas kanan adalah darab (perkalian) tak hingga yang menjangkau seluruh bilangan prima p (bentuk demikian disebut darab Euler):

Kedua ruas pada identitas darab Euler konvergen jika Re(s) > 1. Identitas Euler di atas dapat dibuktikan dengan hanya menggunakan deret geometri dan teorema dasar aritmetika. Karena deret harmonik, yang diperoleh dengan mensubstitusi s = 1 pada ekspresi matematika di atas, divergen, identitas Euler (yang menjadi Πp pp − 1) memberikan bukti bahwa banyaknya bilangan prima adalah tak hingga.[5] Karena logaritma dari pp − 1 mendekati 1p, identitas ini dapat digunakan untuk membuktikan hasil yang lebih kuat bahwa deret resiprokal bilangan prima divergen menuju tak hingga. Di sisi lain, hasil ini dan tapis Erasthothenes memperlihatkan bahwa kepadatan himpunan bilangan prima dalam himpunan bilangan bulat positif adalah nol.

Identitas darab Euler dapat digunakan untuk menghitung peluang asimtotik terpilihnya s bilangan bulat positif yang membentuk himpunan yang koprima pada pengambilan s bilangan bulat positif secara acak. Secara intituitif, peluang sebuah bilangan habis dibagi suatu bilangan prima (atau sembarang bilangan bulat positif) p adalah 1p. Akibatnya, peluang semua s bilangan yang terpilih habis dibagi bilangan p adalah 1ps, dan peluang setidaknya ada satu bilangan yang tidak habis dibagi p adalah 1 − 1ps. Untuk sembarang prima yang berbeda, kejadian keterbagian ini saling bebas, sebab kandidat pembaginya (yaitu bilangan-bilangan prima) saling koprima. Dengan demikian, peluang asimtotik terpilihnya s bilangan bulat positif yang membentuk himpunan yang koprima diberikan oleh darab berikut yang menjangkau seluruh bilangan prima,

Persamaan fungsional Riemann

Fungsi zeta ini memenuhi persamaan fungsionaldengan Γ(s) adalah fungsi Gamma. Ini adalah persamaan fungsi meromorfik yang valid di seluruh bidang kompleks. Persamaan ini menghubungkan nilai dari fungsi zeta Riemann di titik s dan 1 − s, khususnya mengaitkan nilai fungsi ini di titik bilangan bulat positif dengan titik bilangan ganjil negatif. Karena fungsi sinus di persamaan memiliki nol sederhana di setiap bilangan bulat, persamaan fungsional ini menunjukkan bahwa ζ(s) memiliki nol sederhana di setiap bilangan bulat negatif s = −2n, yang dikenal sebagai nol trivial dari ζ(s). Di sisi lain, jika s adalah bilangan genap positif, hasi kali sin(πs2)Γ(1 − s) pada ruas kanan bernilai tidak nol karena Γ(1 − s) memiliki kutub sederhana, yang dapat dicoret dengan nol sederhana dari fungsi sinus.

Bukti persamaan fungsional Riemann —

Bukti dari persamaan fungsional Riemann adalah sebagai berikut: Perhatikan bahwa jika , berlaku

Akibatnya, jika maka Perhatikan bahwa penukaran deret dan integral valid dari konvergensi mutlak (oleh karenanya syarat pada diperketat).

Untuk memudahkan, misalkan

Maka

Dari Identitas deret Poisson, berlaku

sehingga

Akibatnya,

yang ekuivalen dengan atau

Sekarang,

yang konvergen untuk setiap s, sehingga identitas ini berlaku dari pengontinuan analitik. Lebih lanjut lagi, ruas sebelah kanan juga tidak berubah jika s diganti menjadi 1 − s, sehingga yang merupakan persamaan fungsional di atas. E. C. Titchmarsh (1986). The Theory of the Riemann Zeta-function (edisi ke-2nd). Oxford: Oxford Science Publications. hlm. 21–22. ISBN 0-19-853369-1.  Attributed to Bernhard Riemann.

Referensi

  1. ^ "Jupyter Notebook Viewer". Nbviewer.ipython.org. Diakses tanggal 2017-01-04. 
  2. ^ Steuding, Jörn; Suriajaya, Ade Irma (1 November 2020). "Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines". Computational Methods and Function Theory. 20 (3): 389–401. doi:10.1007/s40315-020-00316-x. ISSN 2195-3724. S2CID 216323223. "Teorema 2 menyiratkan bahwa fungsi ζ memiliki singularitas di tak terhingga."
  3. ^ Bombieri, Enrico. "The Riemann Hypothesis – official problem description" (PDF). Clay Mathematics Institute. Diakses tanggal 2014-08-08. 
  4. ^ Devlin, Keith (2002). The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time. New York: Barnes & Noble. hlm. 43–47. ISBN 978-0-7607-8659-8. 
  5. ^ Sandifer, Charles Edward (2007). How Euler Did It. Mathematical Association of America. hlm. 193. ISBN 978-0-88385-563-8.