Lompat ke isi

Determinan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Revisi sejak 26 November 2023 14.36 oleh Kekavigi (bicara | kontrib) (perbaikan pranala)
Luas jajar genjang pada gambar di atas sama dengan nilai absolut dari determinan matriks yang dibentuk oleh vektor (a,b) dan vektor (c,d), yang mewakili sisi-sisi jajar genjang.

Dalam matematika khususnya aljabar linear, determinan (bahasa Inggris: determinant) adalah nilai skalar yang dihasilkan fungsi dari entri-entri suatu matriks persegi. Determinan dari matriks A umumnya dinyatakan dengan notasi det(A), det A, atau |A|. Determinan dapat dianggap sebagai faktor penskalaan transformasi yang digambarkan oleh matriks. Nilai determinan mencirikan beberapa sifat dari matriks tersebut, dan peta linear yang diwakili oleh matriks tersebut. Contohnya, determinan bernilai tidak nol jika dan hanya jika matriks tersebut tidak singular dan peta linear yang diwakilinya merupakan suatu isomorfisme. Determinan dari hasil perkalian matriks-matriks sama dengan hasil perkalian dari determinan matriks-matriks tersebut.

Determinan dari matriks 2 × 2 adalah

dan determinan dari matriks 3 × 3 adalah

Determinan dari matriks ukuran n × n dapat didefinisikan dalam beberapa cara yang berbeda. Cara paling umum adalah rumus Leibniz, yang menyatakan determinan sebagai jumlah dari (n faktorial) perkalian bertanda dari entri-entri matriks. Cara ini selanjutnya dapat dihitung dengan ekspansi Laplace yang menyatakan determinan sebagai kombinasi linear dari determinan-determinan submatriks; atau dengan eliminasi Gauss yang menyatakan determinan sebagai hasil kali entri-entri diagonal dari matriks diagonal, yang diperoleh dengan serangkaian operasi baris elementer. Determinan juga dapat didefinisikan dari beberapa sifat mereka. Determinan adalah suatu fungsi unik yang didefinisikan pada matriks n × n dan memiliki empat sifat berikut: determinan dari matriks identitas bernilai 1; pertukaran dua baris matriks akan mengalikan nilai determinan dengan −1; mengalikan sebuah baris dengan sebuah bilangan, akan mengalikan nilai determinan dengan bilangan tersebut; dan menambahkan kelipatan dari sebuah baris dengan baris lainnya tidak mengubah determinan.

Determinan umum muncul dalam matematika. Sebagai contoh, sebuah matriks sering digunakan untuk merepresentasikan koefisien-koefisien dalam sebuah sistem persamaan linear, dan determinan dapat digunakan untuk menyelesaikan sistem tersebut (aturan Cramer); meskipun ada metode penyelesaian lain yang jauh lebih efisien secara komputasi. Determinan digunakan untuk menentukan polinomial karakteristik dari sebuah matriks, yang akar-akarnya adalah nilai-nilai eigen matriks tersebut. Dalam geometri, volume bertanda dari jajar genjang n-dimensi dapat dinyatakan dengan sebuah determinan, dan determinan dari (matriks) transformasi linear menentukan cara orientasi dan volume objek n-dimensi berubah. Hal ini selanjutnya digunakan determinan Jacobi dalam kalkulus, khususnya untuk subtitusi variabel dalam integral lipat.

Matriks persegi dimensi 2

Determinan dari matriks ukuran 2 × 2 dengan entri-entri , umumnya disimbolkan antara dengan "det" atau dengan garis tegak diantara matriks. Nilai dari determinannya selanjutnya didefinisikan sebagai

Berikut adalah sebuah contoh perhitungan determinan,

Determinan memiliki beberapa sifat penting yang dapat dibuktikan dengan menggunakan definisi determinan untuk matriks . Sifat-sifat ini selanjutnya masih berlaku untuk determinan matriks yang berukuran lebih besar. Sifat-sifat itu adalah:[1] pertama, determinan dari matriks identitas bernilai . Kedua, determinan akan bernilai nol jika ada dua baris yang sama pada matriks; secara aljabar: Sifat ini juga berlaku ketika ada dua kolom yang sama. Lebih lanjut, mengubah semua entri pada sembarang kolom (atau baris) pada matriks akan menghasilkan hubungan:Terakhir, jika sembarang kolom (atau baris) dikalikan dengan bilangan (artinya setiap entri pada kolom tersebut dikalikan dengan bilangan tersebut), nilai determinan matriks tersebut juga akan dikalikan dengan bilangan tersebut:

Makna geometris

Luas jajar genjang adalah nilai absolut dari determinan matriks yang dibentuk oleh vektor-vektor yang mewakili sisi-sisi jajar genjang tersebut.

Jika entri-entri matriks berupa bilangan real, matriks A dapat digunakan untuk merepresentasikan dua peta linear: satu yang memetakan vektor basis standar ke baris-baris dari A, dan satu lagi yang memetakannya ke kolom-kolom dari A. Pada kedua kasus tersebut, bayangan dari vektor-vektor basis akan membentuk sebuah jajar genjang yang merepresentasikan bayangan persegi satuan akibat pemetaan tersebut. Menggunakan matriks 2 × 2 pada bagian sebelumnya, jajar genjang yang didefinisikan oleh baris-baris matriks memiliki titik-titik sudut di (0, 0), (a, b), (a + c, b + d), dan (c, d), seperti yang ditunjukkan pada diagram disamping.

Nilai absolut dari adbc menyatakan luas dari jajar genjang, dan dengan demikian, mewakili faktor skala yang digunakan untuk mentransformasikan persegi satuan. (Jajar genjang yang dibentuk oleh kolom-kolom A pada umumnya merupakan jajar genjang yang berbeda dengan yang dibentuk dari baris-baris A, namun karena determinan bersifat simetris terhadap baris dan kolom, maka luasnya akan sama).

Nilai absolut dari determinan bersama dengan tandanya menjadi luas bertanda (oriented area) dari jajar genjang. Luas bertanda sama dengan luas yang biasa, kecuali luas akan bernilai negatif ketika sudut dari vektor pertama ke vektor kedua yang mendefinisikan jajar genjang, bergerak searah jarum jam (yang berlawanan arah, dengan arah yang didapat untuk matriks identitas).

Untuk menunjukkan bahwa adbc adalah luas bertanda, kita dapat memisalkan sebuah matriks yang berisi dua vektor, u ≡ (a, b) dan v ≡ (c, d), yang merepresentasikan sisi-sisi jajar genjang. Luas jajar genjang yang dibentuk dari kedua vektor tersebut dapat dinyatakan sebagai |u| |v| sin θ, dengan θ adalah sudut diantara vektor-vektor tersebut. Karena sifat sinus, luas ini sudah merupakan luas bertanda. Kosinus dapat digunakan untuk lebih menunjukkan hubungan dengan perkalian vektor, yakni menggunakan sudut komplementer ke vektor tegak lurus, misalnya u = (−b, a) sehingga luas juga dapat ditulis sebagai |u| |v| cos θ′:Dengan demikian, determinan menyatakan faktor penskalaan dan arah (tanda, orientasi) yang dihasilkan, oleh pemetaan yang diwakili oleh A. Ketika determinan bernilai 1, peta linear yang didefinisikan oleh matriks tersebut bersifat equi-areal dan orientation-preserving.

Volume balok jajar genjang ini adalah nilai absolut dari determinan matriks yang dibentuk oleh kolom-kolom yang dibangun dari vektor dan

Jika matriks real A ukuran n × n ditulis dalam komponen vektor-vektor kolomnya, sehingga , makaHal ini mengartikan A memetakan kubus dimensi-n menjadi balok jajar genjang dimensi-n dengan sisi-sisi berupa vektor-vektor dengan domain Nilai determinan menyatakan volume dimensi-n bertanda dari balok jajar genjang ini, dan secara lebih umum faktor penskalaan objek dimensi-n akibat transformasi linear yang dihasilkan oleh A.[2] (Tanda dari nilai determinan menunjukkan apakah transformasi mengawetkan (preserve) orientasi atau tidak). Secara khusus, jika determinan bernilai nol, maka balok jajar genjang memiliki volume nol dan tidak berada di dimensi-n sepenuhnya, yang selanjutnya mengartikan dimensi dari bayangan A kurang dari n. Hal ini (menggunakan teorema rank-nolitas) menunjukkan transformasi A tidak bersifat surjektif maupun bijektif, sehingga tidak terbalikkan (invertibel).

Definisi

Misalkan adalah matriks persegi berdimensi-, yang dapat dituliskan sebagai berikutElemen-elemen dari umumnya berupa bilangan real atau bilangan kompleks, namun determinan juga dapat didefinisikan untuk matriks dengan elemennya berasal dari gelanggang komutatif. Terdapat banyak cara berbeda namun setara untuk mendefinisikan determinan dari . Rumus Leibniz mendefinisikan rumus eksplisit yang menggunakan penjumlahan dari perkalian elemen-elemen matriks. Beberapa cara lain menggunakan fungsi dari elemen-elemen matriks yang memenuhi sifat-sifat tertentu; pendekatan ini dapat digunakan untuk mempermudah perhitungan dengan menyederhanakan matriks yang dikerjakan.

Rumus Leibniz

Rumus Leibniz, yang dinamakan demikian untuk menghormati Gottfried Leibniz, menyatakan determinan dari matriks persegi sebagai permutasi dari elemen-elemen matriks. Secara lebih formal, definisi ini didasarkan dari fakta (lebih tepatnya teorema) hanya ada satu fungsi multilinear alternating terhadap kolom-kolom matriks, yang memenuhi dengan adalah matriks identitas.[3] Determinan selanjutnya dapat ditulis secara eksplisit sebagaidengan adalah fungsi tanda (signum) dari permutasi dalam grup permutasi , yang menghasilkan nilai dan masing-masing untuk permutasi genap dan ganjil. Fungsi multilinear alternating dan sifat dipilih agar fungsi determinan memenuhi sifat-sifat yang diharapkan dari determinan (lihat pembahasan pada bagian § Matriks persegi dimensi 2).

Rumus Leibniz untuk determinan dari matriks adalahDalam ekspresi tersebut, setiap suku memiliki satu faktor dari setiap baris dan kolom yang unik. Sebagai contoh, memiliki faktor dari elemen baris pertama kolom kedua, dari baris kedua kolom pertama, dan dari baris ketiga kolom ketiga. Tanda dari suku ditentukan dari banyaknya pertukaran faktor-faktor agar terurut menaik berdasarkan urutan kolomnya. Tanda positif untuk pertukaran berjumlah genap dan negatif untuk berjumlah genap. Sebagai contoh, suku memerlukan satu pertukaran agar menjadi , yang masing-masing faktornya sekarang terurut menaik: kolom pertama, kedua, dan ketiga. Karena pertukaran berjumlah ganjil, suku akan dikalikan .

Bentuk visual dari aturan Sarrus untuk menghitung determinan matriks dimensi 3.

Aturan Sarrus dapat digunakan sebagai jembatan keledai untuk mengingat rumus eksplisit dari determinan ini: tulis salinan dari dua kolom pertama matriks di sisi kanan kolom ketiga. Determinan adalah jumlah dari tiga perkalian elemen-elemen diagonal matriks dari kiri-atas ke kanan-bawah, lalu dikurang dengan jumlah dari tiga perkalian elemen-elemen diagonal matriks dari kiri-bawah ke kanan-atas. Malangnya, aturan ini tidak dapat diterapkan untuk matriks dengan dimensi yang lebih besar.

Notasi lain yang umum digunakan untuk menuliskan rumus Leibniz adalah dengan menggunakan simbol Levi-Civita dengan penjumlahan Einstein. Simbol Levi-Civita terdefinisi pada rangkap- dari bilangan bulat .[4][5] Simbol akan bernilai jika ada dua bilangan bulat yang sama, dan bernilai tanda dari permutasi dari rangkap-n untuk kasus-kasus lainnya. Rumus Leibniz dalam notasi ini adalah

Ekspansi Laplace

Ekspansi Laplace, rumus Laplace, atau ekspansi baris/kolom, mendefinisikan determinan dari matriks ukuran secara rekursif sebagai penjumlahan determinan matriks-matriks yang lebih kecil, yang disebut minor. Minor didefinisikan sebagai determinan matriks berukuran yang dihasilkan dari menghapus baris ke- dan kolom ke- matriks . Untuk sembarang , akan berlaku hubungan

Ekspresi dikenal dengan sebutan kofaktor. Definisi determinan tersebut juga disebut sebagai "ekspansi Laplace baris ke-". Sebagai contoh, ekspansi Laplace baris pertama () dari matriks ukuran menghasilkan rumus Ekspansi Laplace dapat digunakan secara iteratif untuk menghitung determinan, namun cara ini tidak efisien untuk matriks berukuran besar. Walau demikian, ekspansi Laplace ini berguna untuk menghitung determinan dari matriks-matriks tertentu seperti matriks Vandermonde:Ekspansi Laplace juga dapat digunakan untuk membantu menemukan invers dari matriks. Matriks adjugat didefinisikan sebagai transpos dari matriks-matriks kofaktor, secara matematis Definisi ini memastikan perkalian matriks dengan adjugatnya akan menghasilkan menghasilkan matriks diagonal yang elemen diagonal utamanya bernilai .[6] Hubungan ini ditulis secara matematis sebagai dengan merupakan matriks identitas. Hubungan tersebut menunjukkan sifat penting dalam aljabar matriks, yakni memiliki invers jika dan hanya jika tidak bernilai . Ketika sifat ini berlaku, hubungan di atas dapat disusun (dengan mengalikan ruas tengah dan ruas kanan dengan dari kanan) sehingga

Sifat-sifat determinan

Fungsi determinan dapat dicirikan dari tiga sifat utama berikut. Untuk lebih mudah menyebutkannya, pandang matriks berukuran   sebagai rangkap- dari vektor-vektor kolomnya; secara notasi, dengan adalah vektor di kolom ke- matriks.

  1. , dengan adalah matriks identitas.
  2. Determinan merupakan pemetaan multilinear: jika kolom ke- matriks dapat ditulis sebagai kombinasi linear dari dua vektor kolom dan dan skalar , maka determinan dari dapat dinyatakan sebagai kombinasi linear:    
  3. Determinan bersifat alternating: ketika ada dua kolom matriks yang identik, determinan matriks tersebut sama dengan ;  secara matematis

Ketiga sifat tersebut mengakibatkan beberapa sifat turunan:

  • Determinan termasuk fungsi homogen, yakni,
  • Menukar dua kolom pada matriks akan mengalikan nilai determinan dengan : Rumus di atas dapat diterapkan secara iteratif jika ada beberapa kolom yang ingin ditukar. Sebagai contoh Lebih umum lagi, sebarang permutasi kolom-kolom akan mengalikan determinan dengan tanda dari permutasi tersebut.
  • Jika ada kolom pada matriks yang dapat dinyatakan sebagai kombinasi linear dari kolom-kolom lainnya (dengan kata lain kolom-kolom matriks saling bergantung linear), determinan matriks tersebut sama dengan . Salah satu contoh kasus ini adalah ketika ada kolom yang semua elemennya bernilai .
  • Jika suatu kelipatan skalar suatu kolom ditambahkan ke kolom yang lain, determinan dari matriks yang dihasilkan tidak berubah.
  • Jika adalah matriks segitiga, yakni yang semua elemen ketika (atau alternatif lain, ketika ), maka determinannya sama dengan hasil perkalian dari elemen-elemen diagonal utamanya,

Contoh

Selain penting dari aspek teoritis, ketiga sifat utama dan sifat-sifat turunan dari matriks dapat digunakan untuk mempermudah perhitungan nilai determinan. Sebagai contoh, metode eliminasi Gauss dapat diterapkan untuk mengubah matriks ke bentuk matriks segitiga atas, dalam langkah-langkah yang teratur. Contoh berikut mengilustrasikan cara menghitung determinan matriks dengan metode tersebut:

Perhitungan determinan dari matriks
Matriks
Dihasilkan dari menambahkan kolom kedua ke yang pertama menambahkan 3 kali kolom ketiga ke yang kedua menukar dua kolom pertama menambahkan kali kolom kedua ke yang pertama
Determinan

Menggabungkan semua persamaan ini menghasilkan

Transpos

Determinan dari transpos matriks sama dengan determinan dari : Hubungan ini dapat ditunjukan dengan menginspeksi rumus Leibniz.[7] Hal ini mengakibatkan semua penggunaan kata "kolom" pada semua sifat-sifat sebelumnya, dapat digantikan dengan kata "baris". Sebagai contoh, menukar dua baris pada matriks akan mengalikan nilai determinan dengan .

Multiplikativitas dan grup matriks

Determinan merupakan sebuah pemetaan multiplikatif. Hal ini mengartikan untuk sebarang matriks persegi dan yang berukuran sama, determinan dari perkalian matriks sama dengan perkalian dari determinan-determinan matriks, Fakta penting ini dapat dibuktikan dengan menunjukkan bahwa, untuk matriks yang sudah ditetapkan, kedua sisi persamaan di atas merupakan fungsi yang bersifat multilinear dan alternating terhadap kolom-kolom . Lebih lanjut, kedua sisi bernilai ketika berupa matriks identitas. Ketiga sifat unik ini membuktikan fakta tersebut. [8] Rumus Cauchy–Binet adalah perumuman rumus determinan untuk perkalian matriks-matriks umum (tidak harus persegi).

Matriks dengan elemen-elemen berasal dari sebuah lapangan, dapat dibalikkan (invertibel, memiliki invers) jika dan hanya jika determinan matriks tersebut tidak nol. Hal ini berasal dari sifat multiplikatif determinan, juga dari rumus yang melibatkan matriks adjugat dari ekspansi Laplace. Ketika determinan bernilai tak-nol, determinan dari matriks inversnya adalah Secara khusus, hasil perkalian maupun invers dari matriks-matriks dengan determinan tak-nol, masih memiliki sifat tersebut. Akibatnya, himpunan matriks-matriks tersebut (yang berukuran atas suatu lapangan ) membentuk sebuah grup linear umum ; dan ketika semua matriks memiliki determinan bernilai , membentuk sebuah subgrup bernama grup linear khusus . Umumnya, kata "khusus" ("special") digunakan untuk menandakan subgrup dari grup matriks dengan determinan bernilai . Contoh lainnya adalah grup ortogonal khusus (yang berisi semua matriks rotasi ketika dan ), dan grup uniter khusus.

Matriks blok

Rumus determinan untuk matriks ukuran masih berlaku untuk matriks blok, dengan beberapa asumsi tambahan. Matriks blok adalah matriks yang terdiri dari submatriks , masing masing berdimensi , , dan . Rumus dalam bentuk yang paling sederhana, yang dapat dibukti dengan rumus Leibniz atau lewat faktorisasi dengan komplemen Schur, adalah Jika matriks terbalikkan, dengan menggunakan hasil pada bagian multiplikativitas, dapat ditemukan yang dapat disederhanakan menjadi ketika merupakan matriks ukuran . Rumus ini dapat digunakan untuk membantu menghasilkan teorema determinan Sylvester, yang menyatakan untuk matriks berukuran dan matriks berukuran , berlaku hubungan dengan dan masing-masing adalah matriks identitas dimensi dan .

Ketika semua submatriks merupakan matriks persegi yang berukuran sama, beberapa rumus lain juga berlaku. Sebagai contoh, ketika dan komutatif (artinya ), maka[9] Rumus ini dapat diperumum ke matriks blok dengan lebih dari submatriks, dengan beberapa syarat tambahan terkait kekomutatifan antar submatriks.[10]

Catatan

  1. ^ Lang 1985, §VII.1
  2. ^ "Determinants and Volumes". textbooks.math.gatech.edu. Diakses tanggal 16 March 2018. 
  3. ^ Serge Lang, Linear Algebra , 2nd Edition, Addison-Wesley, 1971, pp 173, 191.
  4. ^ Harris 2014, §4.7
  5. ^ McConnell (1957). Applications of Tensor AnalysisPerlu mendaftar (gratis). Dover Publications. hlm. 10–17. 
  6. ^ Horn & Johnson 2018, §0.8.2.
  7. ^ Lang 1987, §VI.7, Theorem 7.5
  8. ^ Bourbaki 1998, §III.8, Proposition 1 menunjukkan cara lain membuktikan hubungan ini dengan menggunakan functorialitas dari exterior power.
  9. ^ Silvester, J. R. (2000). "Determinants of Block Matrices". Math. Gaz. 84 (501): 460–467. doi:10.2307/3620776. JSTOR 3620776. 
  10. ^ Sothanaphan, Nat (January 2017). "Determinants of block matrices with noncommuting blocks". Linear Algebra and Its Applications. 512: 202–218. arXiv:1805.06027alt=Dapat diakses gratis. doi:10.1016/j.laa.2016.10.004. 

Referensi