Rumus Vieta

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
François Viète matematikawan asal Prancis berhasil menemukan Rumus Vieta[1]

Dalam matematika, rumus Vieta adalah rumus antara koefisien pada polinomial bersama angka dan hasil nilai akarnya. Ditemukan oleh François Viète rumus tersebut digunakan secara khusus dalam aljabar.

François Viète mendefinisikan rumus tersebut untuk kasus menemukan akar positif. Di masa François Viète, diyakini bahwa hanya ada akar positif dalam persamaan. François Viète percaya bahwa tidak ada akar negatif dan hanya memahami sebagian hubungan antara akar persamaan dan koefisiennya. Pada 1629, matematikawan asal Prancis Albert Girard, menemukan Rumus Vieta bersifat umum, tidak terbatas pada akar nyata positif .

Ada juga spekulasi bahwa formula Viete sebenarnya ditemukan oleh Albert Girard sebelum François Viète. Misalnya, menurut matematikawan asal Inggris pada abad ke-18 Charles Hutton, Albert Girard menulis tentang keadaan umum rumus Vieta dalam karyanya sebelum François Viète.

Rumus Vieta dalam persamaan Kuadrat[sunting | sunting sumber]

Gambar 5. Grafik perbedaan antara pendekatan Vieta untuk akar persamaan kuadrat yang lebih kecil x kuadrat plus b x plus c sama dengan nol dibandingkan dengan nilai yang dihitung menggunakan rumus kuadrat. Selisihnya diplot sebagai fungsi dari b untuk dua nilai c yang berbeda, c sama dengan 4, dan c sama dengan 400.000. Grafik adalah grafik log log, dengan sumbu vertikal, perbedaannya, mulai dari sepuluh hingga. Sumbu horizontal, b, berkisar dari 10 di kiri hingga sepuluh hingga kedelapan di kanan. Pendekatan Vieta untuk akar yang lebih kecil tidak akurat untuk b kecil tetapi akurat untuk b besar. Evaluasi langsung dari akar yang lebih kecil menggunakan rumus kuadrat akurat untuk b kecil dengan nilai akar yang sebanding, tetapi mengalami hilangnya kesalahan signifikansi untuk b besar dan spasi lebar. Ketika c sama dengan 4, pendekatan Vieta dimulai dengan buruk di sebelah kiri, tetapi menjadi lebih baik dengan b yang lebih besar, perbedaan antara pendekatan Vieta dan rumus kuadrat mencapai minimum pada perkiraan. Perkiraan Vieta dan rumus kuadrat kemudian mulai divergen lagi karena rumus kuadrat mengalami error loss of signifikan. Jika c sama dengan empat ratus ribu, perbedaan antara pendekatan Vieta dan rumus kuadrat mencapai minimum pada kira-kira b sama dengan sepuluh pangkat tujuh. Kedua kurva tersebut lurus ke kiri minimum, menunjukkan hubungan kekuatan monomial sederhana antara selisih dan b. Demikian juga, kedua kurva tersebut kira-kira lurus ke kanan minimum, yang menunjukkan hubungan kekuatan, kecuali bahwa garis lurus memiliki coretan di dalamnya karena hilangnya signifikansi
Gambar 5. Grafik perbedaan antara pendekatan Vieta untuk akar persamaan kuadrat yang lebih kecil x2 + bx + c = 0 dibandingkan dengan nilai yang dihitung menggunakan rumus kuadrat. Perkiraan Vieta tidak akurat untuk yang kecil b tetapi akurat untuk ukuran besar b. Evaluasi langsung menggunakan rumus kuadrat akurat untuk yang kecil b dengan akar dari nilai yang sebanding tetapi mengalami hilangnya kesalahan signifikansi yang besar b dan akar berjarak lebar. Perbedaan antara perkiraan Vieta versus penghitungan langsung mencapai minimum pada titik-titik besar, dan pembulatan menyebabkan coretan di kurva melebihi minimum ini.

Rumus Vieta memberikan hubungan sederhana antara akar polinomial dan koefisiennya. Dalam kasus polinomial kuadrat, mereka mengambil bentuk berikut:

dan

Hasil ini langsung mengikuti dari relasi:

yang dapat dibandingkan istilah demi istilah dengan

Rumus pertama di atas menghasilkan ekspresi yang sesuai saat membuat grafik fungsi kuadrat. Karena grafiknya simetris terhadap garis vertikal melalui simpul, ketika ada dua akar nyata, koordinat x titik koordinat terletak di av. Jadi x koordinat dari simpul diberikan oleh ekspresi

y koordinat dapat diperoleh dengan mensubstitusi hasil di atas ke dalam persamaan kuadrat yang diberikan, memberikan

Sebagai masalah praktis, rumus Vieta menyediakan metode yang berguna untuk menemukan akar kuadrat dalam kasus di mana satu akar jauh lebih kecil dari yang lain. Bila | x2| << | x1|, maka x1 + x2x1, dan kami memiliki perkiraan:

Rumus Vieta kedua kemudian memberikan:

Rumus-rumus ini jauh lebih mudah untuk dievaluasi daripada rumus kuadrat dengan syarat satu akar besar dan satu akar kecil, karena rumus kuadrat mengevaluasi akar kecil sebagai selisih b), yang menyebabkan kesalahan pembulatan dalam evaluasi numerik. Gambar 5 menunjukkan perbedaan antara (i) evaluasi langsung menggunakan rumus kuadrat (akurat ketika akar memiliki nilai yang berdekatan) dan (ii) evaluasi berdasarkan perkiraan rumus Vieta di atas (akurat ketika akar berjarak lebar). Sebagai koefisien linear b meningkat, awalnya rumus kuadrat akurat, dan rumus perkiraan meningkatkan keakuratannya, yang mengarah ke perbedaan yang lebih kecil antara metode sebagai b meningkat. Namun, pada titik tertentu rumus kuadrat mulai kehilangan akurasinya karena kesalahan pembulatan, sedangkan metode perkiraan terus ditingkatkan. Akibatnya, perbedaan antara metode-metode tersebut mulai meningkat karena rumus kuadrat menjadi semakin buruk.

Situasi ini umumnya muncul dalam desain amplifier, di mana akar yang terpisah jauh diinginkan untuk memastikan operasi yang stabil (lihat respons langkah).

Bukti dari pernyataan tersebut akan diberikan di akhir bagian.

Jika rumus persamaan kuadrat dirumuskan

Diatas merupakan rumus persamaan kuadrat yang membuktikan rumus kuadrat.

Rumus utama[sunting | sunting sumber]

Untuk nilai polinomial dengan hasil n

Rumus tersebut bersama teorema fundamental aljabar hanya memiliki nila n berbeda dengan akar kompleks r1, r2, ..., rn . Rumus Vieta menghubungkan koefisien polinomial dengan jumlah yang ditandatangani dari produk akar r1, r2, ..., rn sebagai berikut:

Rumus Vieta dapat dibuat secara ekuivalen sebagai

Generalisasi gelanggang[sunting | sunting sumber]

Rumus Vieta sering digunakan hubungan dengan polinomial hasil koefisien dalam ranah integral R. Maka, hasil bagi memiliki gelanggang pecahan R dan akarnya diambil dalam ekstensi tertutup aljabar. Biasanya,

Rumus R adalah gelanggang bilangan bulat, medan pecahan adalah medan bilangan rasional dan medan yang ditutup secara aljabar adalah bidang bilangan kompleks.

Contoh[sunting | sunting sumber]

Rumus Vieta dapat diterapkan pada polinomial kuadrat dan kubik:

Akar kuadrat dari dari polinomial kuadrat , yaitu

Persamaan pertama dapat digunakan untuk mencari nilai minimum (atau maksimum) dari nilai P; lihat Persamaan kuadrat § Rumus Vieta.

Akar kuadrat dari dari polinomial kubik , yaitu

Pemecahan Masalah Rumus Vieta[sunting | sunting sumber]

Menunjukkan bahwa

untuk bilangan bulat apa pun

Dengan ini yang pertama dengan menggunakan teorema De-Moivre untuk bilangan bulat positif m:

Saat dapat mengelompokkan RHS sebagai berikut sejak kami memilikinya :

Menyamakan bagian imajiner di kiri dan kanan, kita dapatkan

Membiarkan nilai maka persamaannya dalam u dan jumlah akarnya diberikan oleh seperti yang kita ketahui dari formula Vieta. Sejak nilai

Keterangan[sunting | sunting sumber]

Rumus Vieta dapat dibuktikan dengan memperluas persamaan:

(yang benar yaitu nilai apakah semua akar dari polinomial ini), mengalikan faktor-faktor dari sisi kanan, dan mengidentifikasi koefisien dari masing-masing pangkat

Secara formal, jika ada yang mengembang pada nilai istilahnya adalah nilai darimana nilai adalah 0 atau 1, sesuai dengan apakah termasuk dalam produk atau tidak, dan k adalah jumlah pada nilai hal yang ini tidak seharusnya digunakan, jadi jumlah total faktor dalam produk adalah n (dengan perhitungan dengan keserbaragaman k) sebagaimana adanya nilai n pilihan biner (yang termasuk perhitungan atau x), dan istilah tersebut dapat dicari dalam bentuk geometris, hal ini dapat memahami sebagai simpul dari kubusganda. Mengelompokkan persamaan tersebut berdasarkan derajat menghasilkan polinomial simetris dasar di untuk nilai xk, mendapatkan semua produk lipat pada nilai k yang berbeda dari

Sejarah[sunting | sunting sumber]

Seperti yang tercermin dalam namanya, rumus tersebut ditemukan oleh ahli matematika asal Prancis abad ke-16 François Viète, untuk kasus akar positif.

Menurut pendapat ahli matematika asal Inggris abad ke-18 Charles Hutton, seperti dikutip oleh Funkhouser,[2] prinsip utama (tidak hanya untuk akar nyata positif) pertama kali dipahami oleh ahli matematika Prancis abad ke-17 Albert Girard:

...[Girard was] orang pertama yang memahami doktrin umum pembentukan koefisien kekuatan dari jumlah akar dan produknya. Dia adalah orang pertama yang menemukan aturan untuk sum.

Lihat pula[sunting | sunting sumber]

Referensi[sunting | sunting sumber]

  1. ^ 433 tahun
  2. ^ (Funkhouser 1930)

Pranala luar[sunting | sunting sumber]

  • Djukić, Dušan; et al. (2006), Ringkasan IMO: kumpulan masalah yang disarankan untuk Olimpiade Matematika Internasional, 1959–2004, Springer, New York, NY, ISBN 0-387-24299-6 
Katalog perpustakaan
dan Klasifikasi
BlissARS
ColonB2

Aljabar (dari Arab الجبر ("al-djebr" berarti "reuni", "koneksi" atau "penyelesaian")) adalah cabang matematika yang dapat didefinisikan sebagai generalisasi dan perluasan dan difokuskan pada menemukan pola antara kelompok angka, operator, dan objek matematika lainnya. Kategori berikut mencakup artikel tentang aljabar. Aljabar juga merupakan cabang matematika yang menggantikan angka dengan huruf, menggantikan nilai yang tidak diketahui dengan huruf.