Lompat ke isi

Optimisasi: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Makecat-bot (bicara | kontrib)
Fitur saranan suntingan: 2 pranala ditambahkan.
 
(16 revisi perantara oleh 13 pengguna tidak ditampilkan)
Baris 1: Baris 1:
{{distinguish|Optimal}}
'''Optimisasi''' ialah suatu [[proses]] untuk mencapai hasil yang ideal atau '''optimal''' (nilai efektif yang dapat dicapai).
[[File:Max paraboloid.svg|right|thumb|Grafik yang dibentuk dari persamaan ''z'' = f(''x'', ''y'') = −(''x''² + ''y''²) + 4. Titik [[Maksimum dan minimum|maksimum]] global fungsi terletak pada (''x, y, z'') = (0, 0, 4), dtandai oleh titik berwarna biru.]]
Dalam disiplin [[matematika]] optimisasi merujuk pada studi permasalahan yang mencoba untuk mencari nilai [[minimal]] atau [[maximal]] dari suatu [[fungsi]] [[bilangan riil|riil]]. Untuk dapat mencapai nilai ''optimal'' baik minimal atau maximal tersebut, secara sistimatis dilakukan pemilihan nilai variabel bilangan bulat atau riil yang akan memberikan solusi optimal. Permasalahan ini dapat direpresentasikan dalam notasi matematis sebagai berikut :
:''Berdasarkan:'' [[fungsi]] ''f'' : ''A'' <math>\to</math> '''R''' dari himpunan ''A'' ke himpunan [[bilangan riil]]
:''Cari:'' sebuah elemen ''x''<sub>0</sub> dalam ''A'' sedemikian sehingga :
* ''f''(''x''<sub>0</sub>) ≤ ''f''(''x'') untuk semua ''x'' dalam ''A'', untuk proses ''minimalisasi''
* ''f''(''x''<sub>0</sub>) ≥ ''f''(''x'') untuk semua ''x'' dalam ''A'', untuk proses ''maximalisasi''


[[File:Nelder-Mead Simionescu.gif|thumb|Visualisasi pencarian minimum [[Metode Nelder-Mead|Nelder-Mead]] untuk [[Fungsi untuk mengetes optimisasi|fungsi Siminescu]]. Verteks simplex diurutkan berdasarkan nilai mereka, dengan 1 menjadi nilai terkecil.|alt=]]
Perumusan yang telah diuraikan di atas adalah perumusan permasalahan optimisasi, atau sering disebut juga permasalahan pemrograman matematis, salah satu bentuk dari [[pemrograman linear]]. Banyak masalah dalam dunia nyata yang dapat direpresentasikan dalam kerangka permasalahan ini.


'''Optimisasi matematika''' (terkadang hanya ditulis sebagai '''optimisasi''') adalah proses memilih sebuah elemen terbaik, menurut suatu atau beberapa kriteria, dari suatu himpunan berisi alternatif elemen yang tersedia.<ref>"[http://glossary.computing.society.informs.org/index.php?page=nature.html The Nature of Mathematical Programming] {{webarchive|url=https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html |date=2014-03-05 }}," ''Mathematical Programming Glossary'', INFORMS Computing Society.</ref> Masalah optimisasi muncul dalam banyak bidang ilmu dari [[ilmu komputer]] dan [[Teknik|ilmu teknik]]<ref name="edo2021">{{Cite book|last1=Martins|first1=Joaquim R. R. A.|last2=Ning|first2=Andrew|date=2021-10-01|url=https://www.researchgate.net/publication/352413464_Engineering_Design_Optimization|title=Engineering Design Optimization|publisher=Cambridge University Press|isbn=978-1108833417|language=en}}</ref> sampai [[riset operasi]] dan [[ekonomi]], juga selama bertahun-tahun menarik perhatian [[matematika]] dalam mengembangkan metode menemukan solusi.<ref>{{cite book |last1=Du |first1=D. Z. |last2=Pardalos |first2=P. M. |last3=Wu |first3=W. |year=2008 |chapter=History of Optimization |editor-link=Christodoulos Floudas |editor-last=Floudas |editor-first=C. |editor2-last=Pardalos |editor2-first=P. |title=Encyclopedia of Optimization |publisher=Springer |location=Boston |pages=1538–1542 }}</ref>
Pada umumnya A adalah himpunan bagian dari [[Ruang Euclid]] '''R'''<sup>''n''</sup>. Biasanya juga ada syarat-syarat tertentu (''kendala'' atau ''constraint'') berupa persamaan atau ketidaksamaan yang harus dipenuhi oleh elemen dari ''A''. Elemen dari ''A'' biasa disebut sebagai solusi yang mungkin (''feasible solution''), sementara fungsi ''f'' biasa disebut sebagai [[fungsi objektif]] atau [[fungsi biaya]]. Di antara solusi yang mungkin, terdapat solusi yang dapat meminimalkan atau memaksimalkan [[fungsi objektif]], solusi yang demikian ini disebut sebagai [[solusi optimal]].


Dalam kasus paling sederhana, sebuah [[masalah optimisasi]] berisi tentang cara [[Maksimum dan minimum|memaksimumkan atau meminimumkan]] nilai sebuah [[Fungsi (matematika)|fungsi real]], dengan secara sistematis memilih nilai [[Argumen sebuah fungsi|input]] dari suatu himpunan yang diperbolehkan. Perumuman dari teori-teori optimisasi dan teknik-teknik ke berbagai bentuk formulasi masalah menjadi bahan kajian sebagian besar bidang [[matematika terapan]].
[[Domain]] dari ''A'' disebut sebagai [[ruang pencarian]] sementara elemen dari ''A'' disebut sebagai kandidat solusi, atau solusi yang mungkin.


== Masalah optimisasi ==
{{Bidang matematika}}
Sebuah masalah optimisasi dapat dinyatakan dalam bentuk sebagai berikut:
:''Diberikan:'' sebuah [[Fungsi (matematika)|fungsi]] <math>f: A\to \mathbb{R}</math> yang memetakan suatu [[Himpunan (matematika)|himpunan]] <math>A</math> ke [[Bilangan riil|bilangan real]]
:''Dicari:'' sebuah elemen <math>\mathbf{x}_0 \in A</math> yang memenuhi <math>f(\mathbf{x}_0) \leq f(\mathbf{x})</math> untuk setiap <math>\mathbf{x} \in A</math> (masalah minimisasi), atau yang memenuhi <math>f(\mathbf{x}_0) \geq f(\mathbf{x})</math> untuk setiap <math>\mathbf{x} \in A</math> (masalah maksimisasi)


Formulasi tersebut juga disebut dengan '''masalah pemrograman matematika'''. Terminologi ini yang tidak berhubungan langsung dengan [[Pemrograman Komputer|pemrograman komputer]], namun masih digunakan di beberapa hal seperti [[Program linear|pemrograman linear]]. Banyak masalah nyata (''real-world problem'') maupun masalah teoritis dapat dimodelkan dalam kerangka umum tersebut.
{{matematika-stub}}


Perhatikan bahwa hubungan <math>f\left(\mathbf{x}_{0}\right)\geq f\left(\mathbf{x}\right) \Leftrightarrow \tilde{f}\left(\mathbf{x}_{0}\right)\leq \tilde{f}\left(\mathbf{x}\right)</math> terpenuhi jika kita mendefinisikan <math>\tilde{f}\left(\mathbf{x}\right) := - f\left(\mathbf{x}\right),\, \tilde{f}\, :\, A \rightarrow \mathbb{R}</math>. Hal ini yang mengartikan setiap masalah maksimisasi dapat diubah menjadi masalah minimisasi (dan sebaliknya). Dalam matematika, masalah optimisasi umumnya dinyatakan sebagai masalah minimisasi. Di bidang [[fisika]], formulasi seperti ini dapat merujuk pada teknik ''minimisasi [[energi]]'', dengan nilai fungsi <math>f</math> merepresentasikan energi dari [[sistem]] yang dimodelkan. Dalam [[pemelajaran mesin]], penting untuk mengevaluasi kualitas parameter data menggunakan [[Fungsi kerugian|fungsi biaya]], dengan nilai fungsi yang minimum mengimplikasikan kemungkinan parameter dengan nilai optimal (terkecil).
[[Kategori:Riset operasi]]


Umumnya <math>A</math> adalah [[Himpunan bagian|subset]] dari [[ruang Euklides]] <math>\mathbb{R}^n</math>, umum ditandai oleh sebuah himpunan [[Konstrain (matematika)|konstrain]], yakni kumpulan persamaan atau pertidaksamaan yang perlu dipenuhi oleh anggota <math>A</math>. Domain <math>A</math> dari fungsi <math>f</math> disebut dengan ''ruang pencarian'' atau ''ruang pilihan'', sedangkan elemen dari <math>A</math> disebut dengan ''kandidat solusi'' atau ''solusi feasibel'' (solusi yang mungkin).
[[ar:رياضيات الاستمثال]]

[[az:Optimallaşdırma]]
Terdapat banyak nama bagi fungsi <math>f</math>, yang secara umum disebut dengan ''fungsi objektif''. Untuk masalah minimisasi, fungsi ini terkadang disebut dengan ''[[fungsi kerugian]]'' atau ''fungsi biaya'');<ref>W. Erwin Diewert (2008). "cost functions," ''The New Palgrave Dictionary of Economics'', 2nd Edition [http://www.dictionaryofeconomics.com/article?id=pde2008_C000390&edition=current&q= Contents].</ref> sedangkan masalah maksimisasi terkadang menggunakan terminologi ''fungsi kecocokan'' (fitness function) atau ''fungsi utilitas''. Pada beberapa bidang, fungsi ini juga disebut dengan ''fungsi energi''. Solusi feasibel yang meminimumkan (atau memaksimumkan jika itu tujuan akhirnya) nilai fungsi objektif dikenal sebagai ''solusi optimal''.
[[bg:Оптимиране (математика)]]

[[bn:সেরা-অনুকূলকরণ (গণিত)]]
Sebuah [titik] ''minimum lokal'' <math>\mathbf{x}^*</math> didefinisikan sebagai elemen yang memiliki suatu <math>\delta > 0</math> dan untuk<math display="block">\forall\mathbf{x}\in A \; \text{dengan} \;\left\Vert\mathbf{x}-\mathbf{x}^{\ast}\right\Vert\leq\delta,\,</math>akan berlaku hubungan <math>f(\mathbf{x}^*) \leq f(\mathbf{x})</math>. Secara informal definisi ini mengatakan bahwa <math>\mathbf{x}^*</math> menghasilkan nilai fungsi yang terkecil, ketika dibandingkan tetangga-tetangga disekitarnya. [Titik] maksimum lokal didefinisikan dengan cara yang serupa. Jika titik minimum ''lokal'' memberikan solusi yang setidaknya sama baiknya dengan solusi disekitar titik tersebut, titik minimum ''global'' akan memberikan solusi yang setidaknya sama baiknya dengan semua solusi yang mungkin. Secara umum, kecuali fungsi objektif bersifat [[Fungsi konveks|konveks]], ada kemungkinan titik [minimum/maksimum] lokal, dan tidak semuanya juga merupakan titik [minimum/maksimum] global.
[[ca:Optimització matemàtica]]

[[cs:Optimalizace (matematika)]]
Banyak algoritma dikembangkan untuk menyelesaikan masalah non-konveks, namun sebagian besar tidak dapat membedakan solusi optimal lokal dengan solusi optimal global; mereka akan menganggap solusi optimal lokal sebagai solusi sebenarnya bagi masalah optimisasi. [[Optimisasi global]] adalah cabang [[matematika terapan]] dan [[analisis numerik]] yang mengkaji perkembangan algoritma [[Determinisme|deterministik]] dan memastikan konvergensi dalam waktu yang terbatas (''finite time''), untuk menemukan solusi optimal masalah non-konveks
[[da:Optimering (matematik)]]

[[de:Optimierung (Mathematik)]]
== Notasi ==
[[el:Βελτιστοποίηση]]
Masalah optimisasi sering diekspresikan menggunakan notasi khusus. Berikut beberapa notasi yang digunakan berserta penjelasan singkatnya:
[[en:Mathematical optimization]]

[[eo:Optimumigo (matematiko)]]
=== Nilai minimum dan maksimum sebuah fungsi ===
[[es:Optimización (matemática)]]
Perhatikan notasi berikut:<math display="block">\min_{x\in\mathbb R}\; \left(x^2 + 1\right)</math>Notasi ini menandakan nilai minimum dari fungsi objektif <math>x^2+1</math>, ketika <math>x</math> dipilih dari himpunan [[Bilangan riil|bilangan real]] <math>\mathbb{R}</math>. Nilai minimum dalam kasus ini adalah 1, dan terjadi ketika <math>x=0</math> .
[[eu:Hoberenatze (matematika)]]

[[fa:بهینه‌سازی (ریاضیات)]]
Serupa dengan itu, notasi<math display="block">\max_{x\in\mathbb R}\; 2x</math>menandakan nilai maksimum dari fungsi objektif <math>2x</math>, dengan <math>x</math> dapat berupa sebarang bilangan real. Fungsi objektif ini tidak memiliki nilai maksimum, karena fungsi tidak terbatas (dari atas). Dalam kasus ini nilai maksimum adalah "[[tak hingga]]" atau "tidak terdefinisi", tergantung konteks pembicaraan.
[[fi:Matemaattinen optimointi]]

[[fr:Optimisation (mathématiques)]]
=== Argumen input yang optimal ===
[[he:אופטימיזציה (מתמטיקה)]]
{{Main|Arg max}}
[[hi:इष्टतमकरण]]
Notasi seperti<math display="block">\underset{x\in(-\infty,-1]}{\operatorname{arg\,min}} \; x^2 + 1,</math>atau secara ekuivalen juga dapat ditulis sebagai<math display="block">\underset{x}{\operatorname{arg\,min}} \; x^2 + 1, \; \text{dengan kendala:} \; x\in(-\infty,-1].</math>menandakan nilai (atau nilai-nilai jika ada lebih dari satu) [[Argumen sebuah fungsi|argumen]] <math>x</math> pada [[Selang (matematika)|selang]] <math>(-\infty, -1]</math> yang meminimumkan fungsi objektif <math>x^2+1</math>. Perlu diperhatikan notasi ini tidak merujuk pada nilai minimum dari fungsi, namun nilai argumen yang membuat nilai fungsi minimum. Dalam kasus ini, jawabannya adalah <math>x=-1</math>. Nilai <math>x=0</math> bukan solusi karena dia bukan anggota himpunan feasibel <math>x^2+1</math>.
[[hr:Optimizacija (matematika)]]

[[it:Ottimizzazione (matematica)]]
Serupa dengan itu, notasi seperti
[[ja:最適化問題]]
:<math>\underset{x\in[-5,5], \; y\in\mathbb R}{\operatorname{arg\,max}} \; x\cos y,</math>
[[kk:Математикалық оптимизация]]
atau juga dapat ditulis sebagai
[[ko:최적화 문제]]
:<math>\underset{x, \; y}{\operatorname{arg\,max}} \; x\cos y, \; \text{dengan kendala:} \; x\in[-5,5], \; y\in\mathbb R,</math>
[[lo:ການຊອກຄ່າເໝາະສົມ (ຄະນິດສາດ)]]

[[lt:Optimizavimas (matematika)]]
merepresentasikan semua himpunan berurut <math>\{x, y\}</math> yang memaksimumkan nilai fungsi objektif <math>x \cos y</math>, dengan batasan nilai <math>x</math> perlu terletak di selang <math>[-5,5]</math>. Dalam kasus ini, solusi dari notasi tersebut adalah semua himpunan berurut yang memiliki bentuk <math>\{5, 2k\pi\}</math> dan <math>\{-5, (2k+1)\pi\}</math>, dengan <math>k</math> merupakan [[bilangan bulat]].
[[ms:Pengoptimuman]]

[[nl:Optimalisatie]]
Operators <math>\arg \min</math> dan <math>\arg \max</math> terkadang juga ditulis sebagai <math>\text{argmin}</math> dan <math>\text{argmax}</math>; secara berurutan memiliki arti "argumen dari minimum" dan "argumen dari maksimum".
[[nn:Matematisk programmering]]

[[pl:Optymalizacja (matematyka)]]
== Sejarah ==
[[pt:Otimização]]
[[Pierre de Fermat|Fermat]] dan [[Joseph Louis Lagrange|Lagrange]] menemukan formula untuk mengidentifikasi nilai optimal, yang berdasar pada [[kalkulus]]. Sementara itu, [[Isaac Newton|Newton]] dan [[Carl Friedrich Gauss|Gauss]] mengusulkan metode iteratif yang mengubah nilai feasibel ke arah nilai optimal. [[George Dantzig|George B. Dantzig]] mencetuskan istilah "[[program linear|pemrograman linear]]" untuk menyelesaikan beberapa kasus optimisasi,walau sebagian teori sudah diperkenalkan oleh [[Leonid Kantorovich]] pada tahun 1939. Kata "pemrograman" dalam konteks ini tidak merujuk pada "[[Pemrograman|pemrogramam komputer]]", namun merujuk pada penggunaan ''program'' oleh pihak militer [[Amerika Serikat]] untuk menyebut proposal pelatihan dan jadwal; masalah-masalah yang dipelajari oleh Dantzig pada waktu itu. Pada tahun 1947, Dantzig mempublikasikan [[algoritma simplex]], sedangkan [[John von Neumann]] mengembangkan teori [[program linear|dualitas]].{{citation needed|date=January 2020}} Beberapa peneliti lain yang terkenal dalam bidang optimisasi adalah:{{Div col|colwidth=20em}}
[[ro:Optimizare]]
* [[Richard Bellman]]
[[ru:Оптимизация (математика)]]
* [[Roger Fletcher (mathematician)|Roger Fletcher]]
[[simple:Optimization]]
* [[Ronald A. Howard]]
[[sk:Optimalizácia (matematika)]]
* [[Fritz John]]
[[sl:Optimizacija (matematika)]]
* [[Narendra Karmarkar]]
[[sr:Оптимизација (математика)]]
* [[William Karush]]
[[su:Optimisasi (matematik)]]
* [[Leonid Khachiyan]]
[[sv:Optimeringslära]]
* [[Bernard Koopman]]
[[tr:Optimizasyon]]
* [[Harold Kuhn]]
[[uk:Оптимізація (математика)]]
* [[László Lovász]]
[[ur:کاملیت (ریاضیات)]]
* [[Arkadi Nemirovski]]
[[vi:Tối ưu hóa (toán học)]]
* [[Yurii Nesterov]]
[[zh:最优化]]
* [[Lev Pontryagin]]
* [[R. Tyrrell Rockafellar]]
* [[Naum Z. Shor]]
* [[Albert W. Tucker|Albert Tucker]]
{{div col end}}
== Referensi ==
{{Reflist}}

==Bacaan lebih lanjut==
* {{cite book |last1=Boyd |first1=Stephen P. |author-link=Stephen P. Boyd |first2=Lieven |last2=Vandenberghe |title=Convex Optimization |location=Cambridge |publisher=Cambridge University Press |year=2004 |isbn=0-521-83378-7 |url=https://web.stanford.edu/~boyd/cvxbook/ |ref=none}}
* {{cite book |first1=P. E. |last1=Gill |first2=W. |last2=Murray |first3=M. H. |last3=Wright |author-link3=Margaret H. Wright |year=1982 |title=Practical Optimization |publisher=Academic Press |location=London |isbn=0-12-283952-8 |ref=none}}
* {{cite book |last=Lee |first=Jon |author-link=Jon Lee (mathematician) |title=A First Course in Combinatorial Optimization |url=https://archive.org/details/firstcourseincom0000leej |publisher=Cambridge University Press |year=2004 |isbn=0-521-01012-8 |ref=none}}
* {{cite book | year=2006 |url=http://www.ece.northwestern.edu/~nocedal/book/num-opt.html |title=Numerical Optimization |edition=2nd |publisher=Springer |location=Berlin |isbn=0-387-30303-0 |first1=Jorge |last1=Nocedal |author-link=Jorge Nocedal |first2=Stephen J. |last2=Wright |ref=none}}
* {{cite book |last1=Snyman |first1=J. A. |last2=Wilke |first2=D. N. |title=Practical Mathematical Optimization : Basic Optimization Theory and Gradient-Based Algorithms |location=Berlin |publisher=Springer |edition=2nd |year=2018 |isbn=978-3-319-77585-2 |ref=none}}

==Pranala luar==
{{Commons category}}
* {{cite web |url=http://plato.asu.edu/guide.html |title=Decision Tree for Optimization Software }} Links to optimization source codes
* {{cite web |url=https://www.mat.univie.ac.at/~neum/glopt.html |title=Global optimization }}
* {{cite web |url=https://see.stanford.edu/Course/EE364A |title=EE364a: Convex Optimization I |work=Course from Stanford University }}
* {{cite web |title=Mathematical Optimization: Finding Minima of Functions |first=Gaël |last=Varoquaux |url=https://scipy-lectures.org/advanced/mathematical_optimization/index.html }}
{{authority control}}

{{Bidang matematika}}

[[Kategori:Riset operasi]]
[[Kategori:Optimisasi matematika]]

Revisi terkini sejak 2 Oktober 2023 03.54

Grafik yang dibentuk dari persamaan z = f(x, y) = −(x² + y²) + 4. Titik maksimum global fungsi terletak pada (x, y, z) = (0, 0, 4), dtandai oleh titik berwarna biru.
Visualisasi pencarian minimum Nelder-Mead untuk fungsi Siminescu. Verteks simplex diurutkan berdasarkan nilai mereka, dengan 1 menjadi nilai terkecil.

Optimisasi matematika (terkadang hanya ditulis sebagai optimisasi) adalah proses memilih sebuah elemen terbaik, menurut suatu atau beberapa kriteria, dari suatu himpunan berisi alternatif elemen yang tersedia.[1] Masalah optimisasi muncul dalam banyak bidang ilmu dari ilmu komputer dan ilmu teknik[2] sampai riset operasi dan ekonomi, juga selama bertahun-tahun menarik perhatian matematika dalam mengembangkan metode menemukan solusi.[3]

Dalam kasus paling sederhana, sebuah masalah optimisasi berisi tentang cara memaksimumkan atau meminimumkan nilai sebuah fungsi real, dengan secara sistematis memilih nilai input dari suatu himpunan yang diperbolehkan. Perumuman dari teori-teori optimisasi dan teknik-teknik ke berbagai bentuk formulasi masalah menjadi bahan kajian sebagian besar bidang matematika terapan.

Masalah optimisasi

[sunting | sunting sumber]

Sebuah masalah optimisasi dapat dinyatakan dalam bentuk sebagai berikut:

Diberikan: sebuah fungsi yang memetakan suatu himpunan ke bilangan real
Dicari: sebuah elemen yang memenuhi untuk setiap (masalah minimisasi), atau yang memenuhi untuk setiap (masalah maksimisasi)

Formulasi tersebut juga disebut dengan masalah pemrograman matematika. Terminologi ini yang tidak berhubungan langsung dengan pemrograman komputer, namun masih digunakan di beberapa hal seperti pemrograman linear. Banyak masalah nyata (real-world problem) maupun masalah teoritis dapat dimodelkan dalam kerangka umum tersebut.

Perhatikan bahwa hubungan terpenuhi jika kita mendefinisikan . Hal ini yang mengartikan setiap masalah maksimisasi dapat diubah menjadi masalah minimisasi (dan sebaliknya). Dalam matematika, masalah optimisasi umumnya dinyatakan sebagai masalah minimisasi. Di bidang fisika, formulasi seperti ini dapat merujuk pada teknik minimisasi energi, dengan nilai fungsi merepresentasikan energi dari sistem yang dimodelkan. Dalam pemelajaran mesin, penting untuk mengevaluasi kualitas parameter data menggunakan fungsi biaya, dengan nilai fungsi yang minimum mengimplikasikan kemungkinan parameter dengan nilai optimal (terkecil).

Umumnya adalah subset dari ruang Euklides , umum ditandai oleh sebuah himpunan konstrain, yakni kumpulan persamaan atau pertidaksamaan yang perlu dipenuhi oleh anggota . Domain dari fungsi disebut dengan ruang pencarian atau ruang pilihan, sedangkan elemen dari disebut dengan kandidat solusi atau solusi feasibel (solusi yang mungkin).

Terdapat banyak nama bagi fungsi , yang secara umum disebut dengan fungsi objektif. Untuk masalah minimisasi, fungsi ini terkadang disebut dengan fungsi kerugian atau fungsi biaya);[4] sedangkan masalah maksimisasi terkadang menggunakan terminologi fungsi kecocokan (fitness function) atau fungsi utilitas. Pada beberapa bidang, fungsi ini juga disebut dengan fungsi energi. Solusi feasibel yang meminimumkan (atau memaksimumkan jika itu tujuan akhirnya) nilai fungsi objektif dikenal sebagai solusi optimal.

Sebuah [titik] minimum lokal didefinisikan sebagai elemen yang memiliki suatu dan untukakan berlaku hubungan . Secara informal definisi ini mengatakan bahwa menghasilkan nilai fungsi yang terkecil, ketika dibandingkan tetangga-tetangga disekitarnya. [Titik] maksimum lokal didefinisikan dengan cara yang serupa. Jika titik minimum lokal memberikan solusi yang setidaknya sama baiknya dengan solusi disekitar titik tersebut, titik minimum global akan memberikan solusi yang setidaknya sama baiknya dengan semua solusi yang mungkin. Secara umum, kecuali fungsi objektif bersifat konveks, ada kemungkinan titik [minimum/maksimum] lokal, dan tidak semuanya juga merupakan titik [minimum/maksimum] global.

Banyak algoritma dikembangkan untuk menyelesaikan masalah non-konveks, namun sebagian besar tidak dapat membedakan solusi optimal lokal dengan solusi optimal global; mereka akan menganggap solusi optimal lokal sebagai solusi sebenarnya bagi masalah optimisasi. Optimisasi global adalah cabang matematika terapan dan analisis numerik yang mengkaji perkembangan algoritma deterministik dan memastikan konvergensi dalam waktu yang terbatas (finite time), untuk menemukan solusi optimal masalah non-konveks

Masalah optimisasi sering diekspresikan menggunakan notasi khusus. Berikut beberapa notasi yang digunakan berserta penjelasan singkatnya:

Nilai minimum dan maksimum sebuah fungsi

[sunting | sunting sumber]

Perhatikan notasi berikut:Notasi ini menandakan nilai minimum dari fungsi objektif , ketika dipilih dari himpunan bilangan real . Nilai minimum dalam kasus ini adalah 1, dan terjadi ketika .

Serupa dengan itu, notasimenandakan nilai maksimum dari fungsi objektif , dengan dapat berupa sebarang bilangan real. Fungsi objektif ini tidak memiliki nilai maksimum, karena fungsi tidak terbatas (dari atas). Dalam kasus ini nilai maksimum adalah "tak hingga" atau "tidak terdefinisi", tergantung konteks pembicaraan.

Argumen input yang optimal

[sunting | sunting sumber]

Notasi sepertiatau secara ekuivalen juga dapat ditulis sebagaimenandakan nilai (atau nilai-nilai jika ada lebih dari satu) argumen pada selang yang meminimumkan fungsi objektif . Perlu diperhatikan notasi ini tidak merujuk pada nilai minimum dari fungsi, namun nilai argumen yang membuat nilai fungsi minimum. Dalam kasus ini, jawabannya adalah . Nilai bukan solusi karena dia bukan anggota himpunan feasibel .

Serupa dengan itu, notasi seperti

atau juga dapat ditulis sebagai

merepresentasikan semua himpunan berurut yang memaksimumkan nilai fungsi objektif , dengan batasan nilai perlu terletak di selang . Dalam kasus ini, solusi dari notasi tersebut adalah semua himpunan berurut yang memiliki bentuk dan , dengan merupakan bilangan bulat.

Operators dan terkadang juga ditulis sebagai dan ; secara berurutan memiliki arti "argumen dari minimum" dan "argumen dari maksimum".

Fermat dan Lagrange menemukan formula untuk mengidentifikasi nilai optimal, yang berdasar pada kalkulus. Sementara itu, Newton dan Gauss mengusulkan metode iteratif yang mengubah nilai feasibel ke arah nilai optimal. George B. Dantzig mencetuskan istilah "pemrograman linear" untuk menyelesaikan beberapa kasus optimisasi,walau sebagian teori sudah diperkenalkan oleh Leonid Kantorovich pada tahun 1939. Kata "pemrograman" dalam konteks ini tidak merujuk pada "pemrogramam komputer", namun merujuk pada penggunaan program oleh pihak militer Amerika Serikat untuk menyebut proposal pelatihan dan jadwal; masalah-masalah yang dipelajari oleh Dantzig pada waktu itu. Pada tahun 1947, Dantzig mempublikasikan algoritma simplex, sedangkan John von Neumann mengembangkan teori dualitas.[butuh rujukan] Beberapa peneliti lain yang terkenal dalam bidang optimisasi adalah:

Referensi

[sunting | sunting sumber]
  1. ^ "The Nature of Mathematical Programming Diarsipkan 2014-03-05 di Wayback Machine.," Mathematical Programming Glossary, INFORMS Computing Society.
  2. ^ Martins, Joaquim R. R. A.; Ning, Andrew (2021-10-01). Engineering Design Optimization (dalam bahasa Inggris). Cambridge University Press. ISBN 978-1108833417. 
  3. ^ Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". Dalam Floudas, C.; Pardalos, P. Encyclopedia of Optimization. Boston: Springer. hlm. 1538–1542. 
  4. ^ W. Erwin Diewert (2008). "cost functions," The New Palgrave Dictionary of Economics, 2nd Edition Contents.

Bacaan lebih lanjut

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]