Lompat ke isi

Barisan: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Hadithfajri (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: VisualEditor pranala ke halaman disambiguasi
Hadithfajri (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 1: Baris 1:
[[Berkas:First six triangular numbers.svg|jmpl|231x231px|[[Bilangan segitiga]] membentuk barisan <math display="inline">\left(\frac{n(n+1)}{2}\right)=(1, 3, 6, 10, 15, 21, ...)</math>]]
[[Berkas:First six triangular numbers.svg|jmpl|231x231px|[[Bilangan segitiga]] membentuk barisan <math display="inline">\left(\frac{n(n+1)}{2}\right)=(1, 3, 6, 10, 15, 21, ...)</math>]]
Dalam [[matematika]], '''barisan''' secara sederhana dapat dibayangkan sebagai suatu daftar benda (seperti bilangan, [[Fungsi (matematika)|fungsi]], [[Variabel acak|peubah acak]], dsb) yang diatur dalam suatu urutan tertentu<ref>{{Cite book|last=Spiegel|first=Murray R.|date=1986|url=http://worldcat.org/oclc/975000500|title=Teori dan soal-soal matematika dasar|location=Jakarta|publisher=Erlangga|translator-last=Drs. Kasir Iskandar, M.Sc.|oclc=975000500|url-status=live}}</ref>. Tiap-tiap benda dalam barisan diberi nomor urut atau indeks untuk menunjukkan tempatnya benda tersebut dalam barisan itu. Benda dengan indeks ''i'' disebut ''suku ke-i''. Banyak suku dalam barisan (mungkin tak terhingga) disebut ''panjang'' barisan. Berbeda dengan himpunan, urutan suku dalam barisan sangat penting. Unsur yang tepat sama dapat muncul berulang kali pada tempat berbeda dalam suatu barisan.
Dalam [[matematika]], '''barisan''' secara sederhana dapat dibayangkan sebagai suatu daftar benda (seperti bilangan, [[Fungsi (matematika)|fungsi]], [[Variabel acak|peubah acak]], dsb) yang diatur dalam suatu urutan tertentu<ref>{{Cite book|last=Spiegel|first=Murray R.|date=1986|url=http://worldcat.org/oclc/975000500|title=Teori dan soal-soal matematika dasar|location=Jakarta|publisher=Erlangga|translator-last=Drs. Kasir Iskandar, M.Sc.|oclc=975000500|url-status=live}}</ref>. Tiap-tiap benda dalam barisan diberi nomor urut atau indeks untuk menunjukkan tempatnya benda tersebut dalam barisan itu. Benda dengan indeks ''i'' disebut ''suku ke-i''. Banyak suku dalam barisan (mungkin tak terhingga) disebut ''panjang'' barisan.

Berbeda dengan [[Himpunan (matematika)|himpunan]], urutan suku dalam barisan sangat penting. Seperti barisan huruf (S, E, U, L G, I) adalah berbeda dengan barisan huruf (G, E ,U, L, I, S) walau himpunan nilai keduanya sama-sama {E, G, I, L, S, U}. Unsur yang tepat sama dapat muncul berulang kali pada tempat berbeda dalam suatu barisan. Seperti dalam barisan bilangan Fibonacci, angka 1 muncul pada suku pertama dan kedua.


Secara lebih tepat, suatu barisan dapat dipandang sebagai suatu [[fungsi (matematika)|fungsi]] dengan daerah asalnya adalah [[bilangan asli]]<ref>{{Cite book|last=Afidah Khairunnisa|date=2018|url=https://scholar.google.co.id/citations?view_op=view_citation&hl=en&user=aX8YzqsAAAAJ&citation_for_view=aX8YzqsAAAAJ:roLk4NBRz8UC|title=Matematika Dasar|location=Depok|publisher=Rajawali Pers|isbn=978-979-769-764-8|url-status=live}}</ref>.
Secara lebih tepat, suatu barisan dapat dipandang sebagai suatu [[fungsi (matematika)|fungsi]] dengan daerah asalnya adalah [[bilangan asli]]<ref>{{Cite book|last=Afidah Khairunnisa|date=2018|url=https://scholar.google.co.id/citations?view_op=view_citation&hl=en&user=aX8YzqsAAAAJ&citation_for_view=aX8YzqsAAAAJ:roLk4NBRz8UC|title=Matematika Dasar|location=Depok|publisher=Rajawali Pers|isbn=978-979-769-764-8|url-status=live}}</ref>.
Baris 8: Baris 10:
== Penulisan barisan ==
== Penulisan barisan ==
Barisan secara sederhana dapat dibayangkan sebagai daftar benda-benda yang ''berbaris''. Masing-masing anggota barisan disebut ''suku'' dan masing-masing suku lazim ditulis dengan lambang <math>u_n</math>, sebagai melambangkan suku ke-''n''. Secara lebih persis, barisan adalah aturan yang mengaitkan bilangan asli ke anggota suatu himpunan, yakni <math>1</math> dikaitkan dengan <math>u_1</math>, <math>2</math> dikaitkan dengan <math>u_2
Barisan secara sederhana dapat dibayangkan sebagai daftar benda-benda yang ''berbaris''. Masing-masing anggota barisan disebut ''suku'' dan masing-masing suku lazim ditulis dengan lambang <math>u_n</math>, sebagai melambangkan suku ke-''n''. Secara lebih persis, barisan adalah aturan yang mengaitkan bilangan asli ke anggota suatu himpunan, yakni <math>1</math> dikaitkan dengan <math>u_1</math>, <math>2</math> dikaitkan dengan <math>u_2
</math>, dan seterusnya. Barisan itu sendiri biasa dituliskan dengan lambang <math>(u_n)</math> atau <math>\langle u_n\rangle</math><ref>{{Cite book|last=Hendra Gunawan|first=|date=2016|title=Pengantar Analisis Real|location=Bandung|publisher=Penerbit ITB|isbn=978-602-7861-58-9|url-status=live}}</ref> atau <math display="inline">(u_n\mid n\in\mathbb{N})</math><ref>{{Cite book|last=Endang Cahya|last2=Makbul Muksar|date=2011|title=Analisis Real|location=Tanggerang Selatan|publisher=Universitas Terbuka|isbn=978-979-011-674-0|url-status=live}}</ref>. <!--
</math>, dan seterusnya. Barisan itu sendiri biasa dituliskan dengan lambang <math>(u_n)</math> atau <math>\langle u_n\rangle</math><ref>{{Cite book|last=Hendra Gunawan|first=|date=2016|title=Pengantar Analisis Real|location=Bandung|publisher=Penerbit ITB|isbn=978-602-7861-58-9|url-status=live}}</ref> atau <math display="inline">(u_n\mid n\in\mathbb{N})</math><ref>{{Cite book|last=Endang Cahya|last2=Makbul Muksar|date=2011|title=Analisis Real|location=Tanggerang Selatan|publisher=Universitas Terbuka|isbn=978-979-011-674-0|url-status=live}}</ref>.
Misalnya, (M, A, R, Y) adalah suatu urutan huruf-huruf dengan is huruf 'M' pada posisi pertama dan 'Y' pada posisi terakhir. Urutan ini berbeda dengan (A, R, M, Y). Juga, urutan (1, 1, 2, 3, 5, 8), yang memuat angka 1 pada dua posisi berbeda, merupakan urutan yang valid. Urutan dapat bersifat ''[[finite set|finite]]'', seperti pada contoh ini, atau ''[[Infinite set|infinite]]'', seperti urutan semua [[integer]] [[even and odd numbers|genap]] [[positive and negative numbers|positif]] (2, 4, 6,...). Urutan finit kadangkala dikenal sebagai ''string'' atau ''word'' dan urutan infinit disebut juga ''stream''. Urutan yang kosong&nbsp;(&nbsp;) dimasukkan dalam kebanyakan pengertian urutan, tetapi dapat pula tidak dimasukkan tergantung dari konteksnya.
[[Image:Cauchy sequence illustration2.svg|right|thumb|350px|Suatu urutan infinit [[bilangan real]] (biru). Urutan ini tidak meningkat maupun menurun, maupun konvergen, maupun bersifat [[barisan Cauchy|Cauchy]]. Namun, bersifat ''terbatas''.]]-->
<!--
== Contoh dan notasi ==
A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying [[Function (mathematics)|functions]], [[Space (mathematics)|spaces]], and other mathematical structures using the [[#Limits and convergence|convergence]] properties of sequences. In particular, sequences are the basis for [[series (mathematics)|series]], which are important in [[differential equations]] and [[analysis (mathematics)|analysis]]. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of [[prime number]]s.

There are a number of ways to denote a sequence, some of which are more useful for specific types of sequences. One way to specify a sequence is to list the elements. For example, the first four odd numbers form the sequence (1,3,5,7). This notation can be used for infinite sequences as well. For instance, the infinite sequence of positive odd integers can be written (1,3,5,7,...). Listing is most useful for infinite sequences with a [[pattern]] that can be easily discerned from the first few elements. Other ways to denote a sequence are discussed after the examples.

=== Contoh-contoh penting ===
[[File:FibonacciBlocks.svg|thumb|220px|right|A tiling with squares whose sides are successive Fibonacci numbers in length.]]

There are many important integer sequences. The [[prime number]]s are the [[natural numbers]] bigger than 1, that have no [[divisor]]s but 1 and themselves. Taking these in their natural order gives the sequence (2,3,5,7,11,13,17,...). The study of prime numbers has important applications for [[mathematics]] and specifically [[number theory]].

The [[Fibonacci numbers]] are the integer sequence whose elements are the sum of the previous two elements. The first two elements are either 0 and 1 or 1 and 1 so that the sequence is (0,1,1,2,3,5,8,13,21,34,...).

Other interesting sequences include the [[ban number]]s, whose spellings do not contain a certain letter of the alphabet. For instance, the eban numbers (do not contain 'e') form the sequence (2,4,6,30,32,34,36,40,42,...). Another sequence based on the English spelling of the letters is the one based on their number of letters (3,3,5,4,4,3,5,5,4,3,6,6,8,...).

For a list of important examples of integers sequences see [http://oeis.org/wiki/Welcome#Some_Famous_Sequences On-line Encyclopedia of Integer Sequences].

Other important examples of sequences include ones made up of [[rational numbers]], [[real number]]s, and [[complex numbers]]. The sequence (.9,.99,.999,.9999,...) approaches the number 1. In fact, every real number can be written as the [[limit of a sequence]] of rational numbers. For instance, for a sequence (3,3.1,3.14,3.141,3.1415,...) the [[limit of a sequence]] can be written as [[pi|π]]. It is this fact that allows us to write any real number as the limit of a sequence of [[decimal]]s. The decimal for π, however, does not have any pattern like the one for the sequence (0.9,0.99,...).

===Indexing===
Other notations can be useful for sequences whose pattern cannot be easily guessed, or for sequences that do not have a pattern such as the digits of [[pi|π]]. This section focuses on the notations used for sequences that are a map from a subset of the [[natural numbers]]. For generalizations to other [[countable]] [[index set]]s see the [[#Definition and basic properties|following section]] and below.

The terms of a sequence are commonly denoted by a single variable, say ''a<sub>n</sub>'', where the ''index'' n indicates the nth element of the sequence.
:<math>\begin{align} a_1 &\leftrightarrow& \text{ 1st element} \\
a_2 &\leftrightarrow &\text{ 2nd element } \\
a_3 &\leftrightarrow &\text{ 3rd element } \\
\vdots& &\vdots \\
a_{n-1} &\leftrightarrow &\text{ (n-1)th element} \\
a_n &\leftrightarrow &\text{ nth element} \\
a_{n+1} &\leftrightarrow &\text{ (n+1)th element} \\
\vdots& &\vdots
\end{align}</math>
Indexing notation is used to refer to a sequence in the abstract. It is also a natural notation for sequences whose elements are related to the index n (the element's position) in a simple way. For instance, the sequence of the first 10 square numbers could be written as
:<math>(a_1,a_2,...,a_{10}), \qquad a_k = k^2.</math>
This represents the sequence (1,4,9,...100). This notation is often simplified further as
:<math>(a_k)_{k=1}^{10}, \qquad a_k = k^2.</math>

Here the subscript {k=1} and superscript 10 together tell us that the elements of this sequence are the ''a<sub>k</sub>'' such that ''k'' = 1, 2, ..., 10.

Sequences can be indexed beginning and ending from any integer. The [[infinity]] symbol <big>∞</big> is often used as the superscript to indicate the sequence including all integer ''k''-values starting with a certain one. The sequence of all positive squares is then denoted
:<math>(a_k)_{k=1}^\infty, \qquad a_k = k^2.</math>

In cases where the set of indexing numbers is understood, such as in [[analysis (mathematics)|analysis]], the subscripts and superscripts are often left off. That is, one simply writes ''a<sub>k</sub>'' for an arbitrary sequence. In analysis, k would be understood to run from 1 to ∞. However, sequences are often indexed starting from zero, as in
:<math>(a_k)_{k=0}^\infty = (a_0, a_1, a_2,...).</math>
In some cases the elements of the sequence are related naturally to a sequence of integers whose pattern can be easily inferred. In these cases the index set may be implied by a listing of the first few abstract elements. For instance, the sequence of squares of [[odd number]]s could be denoted in any of the following ways.

* <math>(1,9,25,...)</math>
* <math>(a_1,a_3,a_5,...), \qquad a_k = k^2</math>
* <math>(a_{2k-1})_{k=1}^\infty, \qquad a_k = k^2</math>
* <math>(a_{k})_{k=1}^\infty, \qquad a_k = (2k-1)^2</math>
* <math>((2k-1)^2)_{k=1}^\infty</math>

Moreover, the subscripts and superscripts could have been left off in the third, fourth, and fifth notations if the indexing set was understood to be the [[natural numbers]].

Finally, sequences can more generally be denoted by writing a [[set (mathematics)|set]] inclusion in the subscript, such as in
:<math>(a_k)_{k \in \mathbf{N}}</math>
The set of values that the index can take on is called the '''[[index set]]'''. In general, the ordering of the elements ''a<sub>k</sub>'' is specified by the order of the elements in the indexing set. When '''N''' is the index set, the element ''a<sub>k''+1</sub> comes after the element ''a<sub>k</sub>'' since in '''N''', the element (''k''+1) comes directly after the element ''k''.

=== Specifying a sequence by recursion ===
Sequences whose elements are related to the previous elements in a straightforward way are often specified using '''[[Recursive definition|recursion]]'''. This is in contrast to the specification of sequence elements in terms of their position.

To specify a sequence by recursion requires a rule to construct each consecutive element in terms of the ones before it. In addition, enough initial elements must be specified so that new elements of the sequence can be specified by the rule. The principle of [[mathematical induction]] can be used to [[proof (mathematics)|prove]] that a sequence is [[well-defined]], which is to say that that every element of the sequence is specified at least once and has a single, unambiguous value. Induction can also be used to prove properties about a sequence, especially for sequences whose most natural specification is by recursion.

The [[Fibonacci sequence]] can be defined using a recursive rule along with two initial elements. The rule is that each element is the sum of the previous two elements, and the first two elements are 0 and 1.
:<math>a_n = a_{n-1} + a_{n-2}</math>, {{pad|4em}} with {{pad|2em}} ''a''<sub>0</sub> = 0 {{pad|.5em}}and{{pad|.5em}} ''a''<sub>1</sub> = 1.
The first ten terms of this sequence are 0,1,1,2,3,5,8,13,21, and 34. A more complicated example of a sequence that is defined recursively is [http://oeis.org/A005132 Recaman's sequence], considered at the beginning of this section. We can define Recaman's sequence by
:''a''<sub>0</sub> = 0 {{pad|2em}}and{{pad|2em}} ''a<sub>n</sub>'' = ''a<sub>n''−1</sub>−''n'' {{pad|1em}} if the result is positive and not already in the list. Otherwise, {{pad|1em}} ''a<sub>n</sub>'' = ''a<sub>n''−1</sub>+''n'' .

Not all sequences can be specified by a rule in the form of an equation, recursive or not, and some can be quite complicated. For example, the sequence of [[prime number]]s is the set of prime numbers in their natural order. This gives the sequence (2,3,5,7,11,13,17,...).

One can also notice that the next element of a sequence is a function of the element before, and so we can write the next element as:
<math>a_{n+1} = f(a_n)</math>

This functional notation can prove useful when one wants to prove the global monotony of the sequence.

== Formal definition and basic properties ==
There are many different notions of sequences in mathematics, some of which (''e.g.'', [[exact sequence]]) are not covered by the definitions and notations introduced below.

===Formal definition===
A sequence is usually defined as a [[function (mathematics)|function]] whose domain is a [[countable]] [[totally ordered]] set, although in many disciplines the domain is restricted, such as to the [[natural numbers]]. In [[real analysis]] a sequence is a function from a [[subset]] of the [[natural numbers]] to the [[real number]]s.<ref name="Gaughan" /> In other words, a sequence is a map ''f''(''n''): '''N''' → '''R'''. To recover our earlier notation we might identify ''a<sub>n</sub>'' = ''f''(''n'') {{pad|.5em}} for all ''n'' or just write ''a<sub>n</sub>'': '''N''' → '''R'''.

In [[complex analysis]], sequences are defined as maps from the natural numbers to the complex numbers ('''C''').<ref name=Saff>{{Cite book |title=Fundamentals of Complex Analysis|chapter=Chapter 2.1 |url=http://books.google.com/books?id=fVsZAQAAIAAJ&q=saff+%26+Snider&dq=saff+%26+Snider&hl=en&sa=X&ei=rT7PUPaiL4OE2gXvg4GoBQ&ved=0CFEQ6AEwAw
|author=Edward B. Saff & Arthur David Snider |year=2003 |isbn=01-390-7874-6}}</ref> In [[topology]], sequences are often defined as functions from a subset of the natural numbers to a [[topological space]].<ref name=Munkres>{{Cite book|title=Topology| chapter=Chapters 1&2 |url=http://books.google.com/books?id=XjoZAQAAIAAJ |author=James R. Munkres |isbn=01-318-1629-2}}</ref> Sequences are an important concept for studying functions and, in topology, topological spaces. An important generalization of sequences, called a [[net (mathematics)|net]], is to functions from a (possibly [[uncountable]]) [[directed set]] to a topological space.

=== Finite and infinite ===
The '''length''' of a sequence is defined as the number of terms in the sequence.

A sequence of a finite length ''n'' is also called an [[n-tuple|''n''-tuple]]. Finite sequences include the '''empty sequence'''&nbsp;(&nbsp;) that has no elements.

{{anchor|Doubly infinite|Doubly-infinite sequences}}
Normally, the term ''infinite sequence'' refers to a sequence which is infinite in one direction, and finite in the other—the sequence has a first element, but no final element (a ''singly infinite sequence''). A sequence that is infinite in both directions—it has neither a first nor a final element—is called a '''bi-infinite sequence''', '''two-way infinite sequence''', or '''doubly infinite sequence'''. For instance, a function from ''all'' [[integers]] into a set, such as the sequence of all even integers (…, −4, −2, 0, 2, 4, 6, 8…), is bi-infinite. This sequence could be denoted <math>(2n)_{n=-\infty}^{\infty}</math>. Formally, a bi-infinite sequence can be defined as a mapping from '''Z'''.

One can interpret singly infinite sequences as elements of the [[group ring|semigroup ring]] of the [[natural numbers]] ''R''['''N'''], and doubly infinite sequences as elements of the [[group ring]] of the [[integer]]s ''R''['''Z''']. This perspective is used in the [[Cauchy product]] of sequences.

===Increasing and decreasing===
A sequence is said to be ''[[monotonically increasing]]'' if each term is greater than or equal to the one before it. For a sequence <math>(a_n)_{n=1}^{\infty} </math> this can be written as ''a''<sub>''n''</sub> ≤ ''a''<sub>''n''+1</sub> {{pad|.5em}} for all ''n'' ∈ '''N'''. If each consecutive term is strictly greater than (>) the previous term then the sequence is called '''strictly monotonically increasing'''. A sequence is '''monotonically decreasing''' if each consecutive term is less than or equal to the previous one, and '''strictly monotonically decreasing''' if each is strictly less than the previous. If a sequence is either increasing or decreasing it is called a '''monotone''' sequence. This is a special case of the more general notion of a [[monotonic function]].

The terms '''nondecreasing''' and '''nonincreasing''' are often used in place of ''increasing'' and ''decreasing'' in order to avoid any possible confusion with ''strictly increasing'' and ''strictly decreasing'', respectively.

===Bounded===
If the sequence of real numbers (''a<sub>n</sub>'') is such that all the terms, after a certain one, are less than some real number ''M'', then the sequence is said to be '''bounded from above'''. In less words, this means ''a<sub>n</sub>'' ≤ ''M''{{pad|2em}} for all ''n'' greater than ''N'' for some pair ''M'' and ''N''. Any such ''M'' is called an ''upper bound''. Likewise, if, for some real ''m'', ''a<sub>n</sub>'' ≥ ''m'' for all ''n'' greater than some ''N'', then the sequence is '''bounded from below''' and any such ''m'' is called a ''lower bound''. If a sequence is both bounded from above and bounded from below then the sequence is said to be '''bounded'''.

===Other types of sequences===
A '''[[subsequence]]''' of a given sequence is a sequence formed from the given sequence by deleting some of the elements without disturbing the relative positions of the remaining elements. For instance, the sequence of positive even integers (2,4,6,...) is a subsequence of the positive integers (1,2,3,...). The positions of some elements change when other elements are deleted. However, the relative positions are preserved.

Some other types of sequences that are easy to define include:
*An '''[[integer sequence]]''' is a sequence whose terms are integers.
*A '''[[polynomial sequence]]''' is a sequence whose terms are polynomials.
*A positive integer sequence is sometimes called '''multiplicative''' if ''a''<sub>''nm''</sub> = ''a''<sub>''n''</sub> ''a''<sub>''m''</sub> for all pairs ''n'',''m'' such that ''n'' and ''m'' are [[coprime]].<ref>{{cite book|title=Lectures on generating functions|last=Lando|first=Sergei K.|publisher=AMS|ISBN=0-8218-3481-9|chapter=7.4 Multiplicative sequences}}</ref> In other instances, sequences are often called ''multiplicative'' if ''a''<sub>''n''</sub> = ''na''<sub>1</sub> for all ''n''. Moreover, the [[Lagged Fibonacci generator|''multiplicative'' Fibonacci sequence]] satisfies the recursion relation ''a''<sub>''n''</sub> = ''a''<sub>''n''−1</sub> ''a''<sub>''n''−2</sub>.

==Limits and convergence==

{{Main|Limit of a sequence}}

[[File:Converging Sequence example.svg|320px|thumb|The plot of a convergent sequence (''a<sub>n</sub>'') is shown in blue. Visually we can see that the sequence is converging to the limit zero as ''n'' increases.]]

One of the most important properties of a sequence is ''convergence''. Informally, a sequence converges if it has a ''limit''. Continuing informally, a ([[#Finite and infinite|singly infinite]]) sequence has a limit if it approaches some value ''L'', called the limit, as ''n'' becomes very large. That is, for an abstract sequence (''a''<sub>''n''</sub>) (with ''n'' running from 1 to infinity understood) the value of ''a''<sub>''n''</sub> approaches ''L'' as ''n'' → ∞, denoted
:<math>\lim_{n\to\infty} a_n = L.</math>

More precisely, the sequence converges if there exists a limit L such that the remaining a<sub>n</sub>'s are arbitrarily close to L for some n large enough.

If a sequence converges to some limit, then it is '''convergent'''; otherwise it is '''divergent'''.

If ''a<sub>n</sub>'' gets arbitrarily large as ''n'' → ∞ we write
:<math>\lim_{n\to\infty}a_n = \infty.</math>
In this case the sequence (''a<sub>n</sub>'') ''diverges'', or that it converges to infinity.

If ''a<sub>n</sub>'' becomes arbitrarily "small" negative numbers (large in magnitude) as ''n'' → ∞ we write
:<math>\lim_{n\to\infty}a_n = -\infty</math>
and say that the sequence diverges or converges to minus infinity.

===Definition of convergence===
For sequences that can be written as <math>(a_n)_{n=1}^\infty</math> with ''a''<sub>''n''</sub> ∈ '''R''' we can write (''a<sub>n</sub>'') with the indexing set understood as '''N'''. These sequences are most common in [[real analysis]]. The generalizations to other types of sequences are considered in the following section and the main page [[Limit of a sequence]].

Let (''a<sub>n</sub>'') be a sequence. In words, the sequence (''a''<sub>''n''</sub>) is said to ''converge'' if there exists a number ''L'' such that no matter how close we want the ''a''<sub>''n''</sub> to be to ''L'' (say ε-close where ε > 0), we can find a natural number ''N'' such that all terms (''a''<sub>''N+1''</sub>, ''a''<sub>''N+2''</sub>, ...) are further closer to L (within ε of ''L'').<ref name="Gaughan">{{cite book|title=Introduction to Analysis |last=Gaughan |first=Edward |publisher=AMS (2009)|ISBN=0-8218-4787-2|chapter=1.1 Sequences and Convergence}}</ref> This is often written more compactly using symbols. For instance,
:for all ε > 0, there exists a natural number ''N'' such that ''L''−ε < ''a<sub>n</sub>'' < L+ε for all ''n'' ≥ ''N''.
In even more compact notation
:<math> \forall \epsilon > 0, \exists N \in \mathbf{N} \text{ s.t. } \forall n\geq N, |a_n-L|<\epsilon.</math>
The difference in the definitions of convergence for (one-sided) sequences in [[complex analysis]] and [[metric spaces]] is that the absolute value |''a''<sub>''n''</sub>&nbsp;−&nbsp;''L''| is interpreted as the distance in the [[complex plane]] (<math>\sqrt{z^*z}</math>), and the distance under the appropriate metric, respectively.

===Applications and important results===
Important results for convergence and limits of (one-sided) sequences of real numbers include the following. These equalities are all true at least when both sides exist. For a discussion of when the existence of the limit on one side implies the existence of the other see a real analysis text such as can be found in the [[#References|references]].<ref name="Gaughan" /><ref name="Dawkins">{{cite web |url=http://tutorial.math.lamar.edu/Classes/CalcII/Sequences.aspx |title=Series and Sequences |last1=Dawikins |first1=Paul |work=Paul's Online Math Notes/Calc II (notes) |accessdate=18 December 2012}}</ref>

*The limit of a sequence is unique.
*<math>\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n</math>
*<math>\lim_{n\to\infty} c a_n = c \lim_{n\to\infty} a_n</math>
*<math>\lim_{n\to\infty} (a_n b_n) = (\lim_{n\to\infty} a_n)( \lim_{n\to\infty} b_n)</math>
*<math>\lim_{n\to\infty} \frac{a_n} {b_n} = \frac{ \lim_{n\to\infty} a_n}{ \lim_{n\to\infty} b_n}</math> provided <math>\lim_{n\to\infty} b_n \ne 0</math>
*<math>\lim_{n\to\infty} a_n^p = \left[ \lim_{n\to\infty} a_n \right]^p</math>
*If ''a<sub>n</sub>'' ≤ ''b<sub>n</sub>'' for all ''n'' greater than some ''N'', then <math>\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n </math>.
*([[Squeeze Theorem]]) If <math>a_n \leq c_n \leq b_n</math> for all ''n'' > ''N'', and <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L</math>, {{pad|.5em}} then <math>\lim_{n\to\infty} c_n = L</math>.
*If a sequence is [[#Bounded|bounded]] and [[#Increasing and decreasing|monotonic]] then it is convergent.
*A sequence is convergent if and only if every subsequence is convergent.

=== Cauchy sequences ===
{{main|Cauchy sequence}}

[[File:Cauchy sequence illustration.svg|350px|thumb| The plot of a Cauchy sequence (''X<sub>n</sub>''), shown in blue, as ''X<sub>n</sub>'' versus ''n''. Visually, we see that the sequence appears to be converging to the limit zero as the terms in the sequence become closer together as ''n'' increases. In the [[real number]]s every Cauchy sequence converges to some limit.]]

A Cauchy sequence is a sequence whose terms become arbitrarily close together as n gets very large. The notion of a Cauchy sequence is important in the study of sequences in [[metric spaces]], and, in particular, in [[real analysis]]. One particularly important result in real analysis is ''Cauchy characterization of convergence for sequences'':
:In the real numbers, a sequence is convergent if and only if it is Cauchy.
In contrast, in the [[rational number]]s, e.g. the sequence defined by
''x''<sub>1</sub> = 1 and ''x''<sub>''n''+1</sub> = {{sfrac|1=''x''<sub>''n''</sub> + {{sfrac|1=2|2=''x''<sub>''n''</sub>}}|2=2}}
is Cauchy, but has no rational limit, cf. [[Cauchy sequence#Counter-example: rational numbers|here]].

==Series==
{{main|Series (mathematics)}}
A ''series'' is, informally speaking, the sum of the terms of a sequence. That is, adding the first N terms of a (one-sided) sequence forms the Nth term of another sequence, called a ''series''. Thus the N series of the sequence (a<sub>n</sub>) results in another sequence (''S''<sub>''N''</sub>) given by:

:<math>\begin{align} S_1 &=& a_1& & &\\
S_2 &=& a_1& {}+ a_2& &\\
S_3 &= &a_1& {}+ a_2& {}+ a_3&\\
\vdots & &\vdots & & &\\
S_N &=& a_1& {}+ a_2& {}+ a_3& {}+ \cdots \\
\vdots & &\vdots & & &\end{align}</math>

We can also write the ''n''th term of the series as

:<math>S_N = \sum_{n=1}^N a_n.</math>

Then the concepts used to talk about sequences, such as convergence, carry over to series (the sequence of partial sums) and the properties can be characterized as properties of the underlying sequences (such as (''a''<sub>''n''</sub>) in the last example). The limit, if it exists, of an infinite series (the series created from an infinite sequence) is written as

:<math>\lim_{N\to\infty}S_N = \sum_{n=1}^{\infty} a_n.</math>

==Use in other fields of mathematics==

=== Topology ===
Sequence play an important role in topology, especially in the study of [[metric spaces]]. For instance:
* A [[metric space]] is [[compact space|compact]] exactly when it is [[sequential compactness|sequentially compact]].
* A function from a metric space to another metric space is [[continuous function|continuous]] exactly when it takes convergent sequences to convergent sequences.
* A metric space is a [[connected space]] if, whenever the space is partitioned into two sets, one of the two sets contains a sequence converging to a point in the other set.
* A [[topological space]] is [[separable space|separable]] exactly when there is a dense sequence of points.

Sequences can be generalized to [[net (mathematics)|nets]] or [[filter (mathematics)|filters]]. These generalizations allow one to extend some of the above theorems to spaces without metrics.

====Product topology====
A [[product space]] of a sequence of topological spaces is the [[cartesian product]] of the spaces equipped with a [[natural topology]] called the product topology.

More formally, given a sequence of spaces <math>\{X_i\}</math>, define ''X'' such that

:<math>X:= \prod_{i \in I} X_i,</math>

is the set of sequences <math>\{x_i\}</math> where each <math>x_i</math> is an element of <math>X_i</math>. Let the '''[[projection (set theory)|canonical projections]]''' be written as ''p<sub>i</sub>'': ''X'' → ''X<sub>i</sub>''. Then the '''product topology''' on ''X'' is defined to be the [[coarsest topology]] (i.e. the topology with the fewest open sets) for which all the projections ''p<sub>i</sub>'' are [[continuous (topology)|continuous]]. The product topology is sometimes called the '''Tychonoff topology'''.

===Analysis===
In [[mathematical analysis|analysis]], when talking about sequences, one will generally consider sequences of the form
:<math>(x_1, x_2, x_3, \dots)\text{ or }(x_0, x_1, x_2, \dots)\,</math>
which is to say, infinite sequences of elements indexed by [[natural number]]s.

It may be convenient to have the sequence start with an index different from 1 or 0. For example, the sequence defined by ''x<sub>n</sub>'' = 1/[[logarithm|log]](''n'') would be defined only for ''n'' ≥ 2. When talking about such infinite sequences, it is usually sufficient (and does not change much for most considerations) to assume that the members of the sequence are defined at least for all indices [[large enough]], that is, greater than some given ''N''.

The most elementary type of sequences are numerical ones, that is, sequences of real or [[complex number]]s. This type can be generalized to sequences of elements of some [[vector space]]. In analysis, the vector spaces considered are often [[function space]]s. Even more generally, one can study sequences with elements in some [[topological space]].

====Sequence spaces====
{{main|Sequence space}}
A [[sequence space]] is a [[vector space]] whose elements are infinite sequences of [[real number|real]] or [[complex numbers]]. Equivalently, it is a [[function space]] whose elements are functions from the [[natural numbers]] to the field '''K''' of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in '''K''', and can be turned into a [[vector space]] under the operations of [[pointwise addition]] of functions and pointwise scalar multiplication. All sequence spaces are [[linear subspace]]s of this space. Sequence spaces are typically equipped with a [[norm (mathematics)|norm]], or at least the structure of a [[topological vector space]].

The most important sequences spaces in analysis are the ℓ<sup>''p''</sup> spaces, consisting of the ''p''-power summable sequences, with the ''p''-norm. These are special cases of [[Lp space|L<sup>''p''</sup> spaces]] for the [[counting measure]] on the set of natural numbers. Other important classes of sequences like convergent sequences or [[#c and c0|null sequence]]s form sequence spaces, respectively denoted ''c'' and ''c''<sub>0</sub>, with the sup norm. Any sequence space can also be equipped with the [[topology]] of [[pointwise convergence]], under which it becomes a special kind of [[Fréchet space]] called [[FK-space]].

=== Linear algebra ===
Sequences over a field may also be viewed as [[Vector (geometric)|vectors]] in a [[vector space]]. Specifically, the set of ''F''-valued sequences (where ''F'' is a [[field (mathematics)|field]]) is a [[function space]] (in fact, a [[product space]]) of ''F''-valued functions over the set of natural numbers.

===Abstract algebra===
Abstract algebra employs several types of sequences, including sequences of mathematical objects such as groups or rings.

====Free monoid====
{{main|Free monoid}}
If ''A'' is a set, the [[free monoid]] over ''A'' (denoted ''A''<sup>*</sup>, also called [[Kleene star]] of ''A'') is a [[monoid]] containing all the finite sequences (or strings) of zero or more elements of ''A'', with the binary operation of concatenation. The [[free semigroup]] ''A''<sup>+</sup> is the subsemigroup of ''A''<sup>*</sup> containing all elements except the empty sequence.

====Exact sequences====
{{main|Exact sequence}}
In the context of [[group theory]], a sequence
:<math>G_0 \;\xrightarrow{f_1}\; G_1 \;\xrightarrow{f_2}\; G_2 \;\xrightarrow{f_3}\; \cdots \;\xrightarrow{f_n}\; G_n</math>
of [[group (mathematics)|groups]] and [[group homomorphism]]s is called '''exact''' if the [[Image (mathematics)|image]] (or [[Range (mathematics)|range]]) of each homomorphism is equal to the [[Kernel (algebra)|kernel]] of the next:
:<math>\mathrm{im}(f_k) = \mathrm{ker}(f_{k+1})</math>

Note that the sequence of groups and homomorphisms may be either finite or infinite.

A similar definition can be made for certain other [[algebraic structure]]s. For example, one could have an exact sequence of [[vector space]]s and [[linear map]]s, or of [[module (mathematics)|modules]] and [[module homomorphism]]s.

====Spectal sequences====
{{main|Spectral sequence}}
In [[homological algebra]] and [[algebraic topology]], a '''spectral sequence''' is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of [[exact sequence]]s, and since their introduction by {{harvs|txt|authorlink=Jean Leray|first=Jean|last=Leray|year=1946}}, they have become an important research tool, particularly in [[homotopy theory]].

===Set theory===
An [[Order_topology#Ordinal-indexed_sequences|ordinal-indexed sequence]] is a generalization of a sequence. If α is a [[limit ordinal]] and ''X'' is a set, an α-indexed sequence of elements of ''X'' is a function from α to ''X''. In this terminology an ω-indexed sequence is an ordinary sequence.

=== Computing ===
[[Automata theory|Automata]] or [[finite state machine]]s can typically be thought of as directed graphs, with edges labeled using some specific alphabet, Σ. Most familiar types of automata transition from state to state by reading input letters from Σ, following edges with matching labels; the ordered input for such an automaton forms a sequence called a ''word'' (or input word). The sequence of states encountered by the automaton when processing a word is called a ''run''. A nondeterministic automaton may have unlabeled or duplicate out-edges for any state, giving more than one successor for some input letter. This is typically thought of as producing multiple possible runs for a given word, each being a sequence of single states, rather than producing a single run that is a sequence of sets of states; however, 'run' is occasionally used to mean the latter.

===Theoretical computer science===
Infinite sequences of [[numerical digit|digits]] (or [[character (computing)|characters]]) drawn from a [[finite set|finite]] [[alphabet (computer science)|alphabet]] are of particular interest in [[theoretical computer science]]. They are often referred to simply as ''sequences'' or ''streams'', as opposed to finite ''[[String (computer science)#Formal theory|strings]]''. Infinite binary sequences, for instance, are infinite sequences of [[bit]]s (characters drawn from the alphabet {0, 1}). The set ''C'' = {0, 1}<sup>∞</sup> of all infinite, binary sequences is sometimes called the [[Cantor space]].

An infinite binary sequence can represent a [[formal language]] (a set of strings) by setting the ''n'' th bit of the sequence to 1 if and only if the ''n'' th string (in [[shortlex order]]) is in the language. Therefore, the study of [[complexity class]]es, which are sets of languages, may be regarded as studying sets of infinite sequences.

An infinite sequence drawn from the alphabet {0, 1, ..., ''b''&nbsp;−&nbsp;1} may also represent a real number expressed in the base-''b'' [[positional number system]]. This equivalence is often used to bring the techniques of [[real analysis]] to bear on complexity classes.

In particular, the term ''[[sequence space]]'' usually refers to a [[linear subspace]] of the set of all possible infinite sequences with elements in '''C'''.
-->
== Penentuan barisan ==
== Penentuan barisan ==
Barisan dapat ditentukan dengan beberapa cara. Yaitu dengan:
Barisan dapat ditentukan dengan beberapa cara. Yaitu dengan:
Baris 280: Baris 21:
Di antaranya adalah dengan mendaftarkan langsung urutan suku-sukunya, yakni dengan bentuk<math>(u_1, u_2, u_3,...,u_n)</math> untuk barisan hingga atau <math>(u_1, u_2, u_3,...)</math> untuk barisan tak terhingga. Seperti barisan <math>(3,1,4,1,5,9,2,6,5)</math> adalah barisan sembilan bilangan digit-digit [[pi]], atau seperti barisan <math>(2, 4, 6, 8 ,...)</math> yang merupakan barisan bilangan genap.
Di antaranya adalah dengan mendaftarkan langsung urutan suku-sukunya, yakni dengan bentuk<math>(u_1, u_2, u_3,...,u_n)</math> untuk barisan hingga atau <math>(u_1, u_2, u_3,...)</math> untuk barisan tak terhingga. Seperti barisan <math>(3,1,4,1,5,9,2,6,5)</math> adalah barisan sembilan bilangan digit-digit [[pi]], atau seperti barisan <math>(2, 4, 6, 8 ,...)</math> yang merupakan barisan bilangan genap.


Barisan juga dapat ditentukan menuliskan rumus umum suku barisan tersebut Seperti barisan <math display="inline">(\frac{1}{n^2})</math>, yang menyatakan barisan balikan kuadrat bilangan asli <math display="inline">(\frac{1}{1}, \frac{1}{2},\frac{1}{3}, \frac{1}{4}, \frac{1}{5},...)</math>. Beberapa barisan juga dapat didefinisikan secara rekursif. Contoh paling terkenal bagi
Barisan juga dapat ditentukan menuliskan rumus umum suku barisan tersebut Seperti barisan <math display="inline">(\frac{1}{n^2})</math>, yang menyatakan barisan balikan kuadrat bilangan asli <math display="inline">(\frac{1}{1}, \frac{1}{2},\frac{1}{3}, \frac{1}{4}, \frac{1}{5},...)</math>.

Beberapa barisan juga dapat didefinisikan secara rekursif. Beberapa contoh barisan yang biasa dinyatakan dengan relasi perulangan adalah [[Bilangan Fibonacci|barisan Fibonacci]] dan [[barisan Recamán]].

== Penerapan barisan ==
Barisan dengan pola tersurat dapat menjadi jalan untuk mempelajari pengertian [[Fungsi (matematika)|fungsi]]<ref>{{Cite book|last=Julan Hernadi|date=2015|title=Analisis Real Elementer: dengan Ilustrasi Grafis dan Numerik|location=Jakarta|publisher=Erlangga|isbn=978-602-298-591-4|url-status=live}}</ref>, [[Ruang (matematika)|ruang]], dan struktur matematika lainnya khususnya dengan sifat-sifat kekonvergenan barisan tak hingga. Sifat-sifat barisan tak hingga yang konvergen menuju suat nilai menjadi pengantar bagi teori limit, yang menjadi landasan bagi berbagai bidang kajian [[analisis matematis]], seperti pengertian limit fungsi, pengertian [[turunan]], dan pengertian [[Integral Riemann|integral Riemman]].


== Sifat barisan ==
== Sifat barisan ==

=== Barisan terbatas ===


=== Kekonvergenan barisan ===
=== Kekonvergenan barisan ===


=== Kemonotonan barisan ===
=== Kemonotonan barisan ===
[[Barisan Cauchy]]


== Jenis ==
== Jenis ==
* [[Barisan tanda]]
* [[Barisan tanda]]
* [[Barisan Recamán]]
* [[Barisan Cauchy]]
* [[Barisan Farey]]
* [[Barisan Farey]]
* [[Look-and-say sequence]]
* [[Look-and-say sequence]]
Baris 312: Baris 59:
* [[Permutasi]]
* [[Permutasi]]
* [[Kombinasi]]
* [[Kombinasi]]
* [[Relasi pengulangan]]
* [[Relasi perulangan]]
* [[Sequence space]]
* [[Sequence space]]
* [[Deret (matematika)]]
* [[Deret (matematika)]]

Revisi per 4 Desember 2022 13.41

Bilangan segitiga membentuk barisan

Dalam matematika, barisan secara sederhana dapat dibayangkan sebagai suatu daftar benda (seperti bilangan, fungsi, peubah acak, dsb) yang diatur dalam suatu urutan tertentu[1]. Tiap-tiap benda dalam barisan diberi nomor urut atau indeks untuk menunjukkan tempatnya benda tersebut dalam barisan itu. Benda dengan indeks i disebut suku ke-i. Banyak suku dalam barisan (mungkin tak terhingga) disebut panjang barisan.

Berbeda dengan himpunan, urutan suku dalam barisan sangat penting. Seperti barisan huruf (S, E, U, L G, I) adalah berbeda dengan barisan huruf (G, E ,U, L, I, S) walau himpunan nilai keduanya sama-sama {E, G, I, L, S, U}. Unsur yang tepat sama dapat muncul berulang kali pada tempat berbeda dalam suatu barisan. Seperti dalam barisan bilangan Fibonacci, angka 1 muncul pada suku pertama dan kedua.

Secara lebih tepat, suatu barisan dapat dipandang sebagai suatu fungsi dengan daerah asalnya adalah bilangan asli[2].

Kebanyakan suku-suku barisan dibariskan menurut pola tertentu, yang dapat dirumuskan seperti barisan aritmatika dan barisan geometri, atau yang dibentuk dengan aturan tertentu seperti barisan Fibonacci dan barisan bilangan prima. Namun secara umum barisan tidak perlu mengikut pola tertentu.

Penulisan barisan

Barisan secara sederhana dapat dibayangkan sebagai daftar benda-benda yang berbaris. Masing-masing anggota barisan disebut suku dan masing-masing suku lazim ditulis dengan lambang , sebagai melambangkan suku ke-n. Secara lebih persis, barisan adalah aturan yang mengaitkan bilangan asli ke anggota suatu himpunan, yakni dikaitkan dengan , dikaitkan dengan , dan seterusnya. Barisan itu sendiri biasa dituliskan dengan lambang atau [3] atau [4].

Penentuan barisan

Barisan dapat ditentukan dengan beberapa cara. Yaitu dengan:

  • mendaftar seluruh sukunya apabila mungkin apalagi untuk barisan hingga atau mendaftarkan beberapa suku-suku awalnya,
  • menyuratkan rumus suku umumnya,
  • dengan relasi perulangan
  • menerangkannya dengan kalimat.

Di antaranya adalah dengan mendaftarkan langsung urutan suku-sukunya, yakni dengan bentuk untuk barisan hingga atau untuk barisan tak terhingga. Seperti barisan adalah barisan sembilan bilangan digit-digit pi, atau seperti barisan yang merupakan barisan bilangan genap.

Barisan juga dapat ditentukan menuliskan rumus umum suku barisan tersebut Seperti barisan , yang menyatakan barisan balikan kuadrat bilangan asli .

Beberapa barisan juga dapat didefinisikan secara rekursif. Beberapa contoh barisan yang biasa dinyatakan dengan relasi perulangan adalah barisan Fibonacci dan barisan Recamán.

Penerapan barisan

Barisan dengan pola tersurat dapat menjadi jalan untuk mempelajari pengertian fungsi[5], ruang, dan struktur matematika lainnya khususnya dengan sifat-sifat kekonvergenan barisan tak hingga. Sifat-sifat barisan tak hingga yang konvergen menuju suat nilai menjadi pengantar bagi teori limit, yang menjadi landasan bagi berbagai bidang kajian analisis matematis, seperti pengertian limit fungsi, pengertian turunan, dan pengertian integral Riemman.

Sifat barisan

Barisan terbatas

Kekonvergenan barisan

Kemonotonan barisan

Barisan Cauchy

Jenis

Konsep terkait

Operasi

Lihat pula

Referensi

  1. ^ Spiegel, Murray R. (1986). Teori dan soal-soal matematika dasar. Diterjemahkan oleh Drs. Kasir Iskandar, M.Sc. Jakarta: Erlangga. OCLC 975000500. 
  2. ^ Afidah Khairunnisa (2018). Matematika Dasar. Depok: Rajawali Pers. ISBN 978-979-769-764-8. 
  3. ^ Hendra Gunawan (2016). Pengantar Analisis Real. Bandung: Penerbit ITB. ISBN 978-602-7861-58-9. 
  4. ^ Endang Cahya; Makbul Muksar (2011). Analisis Real. Tanggerang Selatan: Universitas Terbuka. ISBN 978-979-011-674-0. 
  5. ^ Julan Hernadi (2015). Analisis Real Elementer: dengan Ilustrasi Grafis dan Numerik. Jakarta: Erlangga. ISBN 978-602-298-591-4. 

Pranala luar